

Linear programming assisted (not embedded)
genetic algorithm for flexible jobshop scheduling

with lot streaming

Published in 2018 in Computers & Industrial

Engineering, Vol. 117, 319-335

Please cite this article as:

Defersha, F. M., and Bayat Movahed, S. (2018) Linear

programming assisted (not embedded) genetic algorithm

for flexible jobshop scheduling with lot streaming,

Computers & Industrial Engineering, Vol. 117, pp.319-

335

The online version can be found at the following link:

https://www.sciencedirect.com/science/article/pii/S036083521830046

9

https://www.sciencedirect.com/science/article/pii/S0360835218300469
https://www.sciencedirect.com/science/article/pii/S0360835218300469

Linear programming assisted (not embedded) genetic algorithm for
flexible jobshop scheduling with lot streaming

Fantahun M. Defersha∗, Saber Bayat-Movahed

School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1

Abstract

The hybridization of metaheuristics with other techniques for optimization has been one of the
most interesting trends. The focus of research on metaheuristics is also becoming problem oriented
rather than algorithm oriented. This has led researchers to try combining different algorithmic
components in order to design more powerful algorithms. In this paper, we developed a linear
programming assisted genetic algorithm for solving a flexible jobshop lot streaming problem. The
genetic algorithm searches over both discrete and continuous variables in the problem solution space.
A linear programming is used to assist the genetic algorithm by further refining promising solutions
in a population periodically through determining the optimal values of the continuous variables
corresponding to those promising solutions. This is different from one common way of hybridization
referred to as linear programming embedded metaheuristics where the algorithm searches only over
the integer variables and a linear programming subproblem is solved corresponding to every solution
visited, which can be computationally prohibitive. Numerical examples showed that the proposed
linear programming assisted (not embedded) genetic algorithm is superior to the embedded approach
and as well as to a resource intensive multi-population pure parallel genetic algorithm.

Keywords: Flexible Job-shop Scheduling; Lot Streaming; Hybrid Genetic Algorithm; Linear
Programming Embedded; Linear Programming Assisted.

1. Introduction

Over the last decades, many efforts have been made by researchers to explore metaheuristics.
This is due to the fact that metaheuristics have been proven to be very promising alternatives
to classical optimization methods. However, in recent years, it has become apparent that pure
applications of metaheuristics are limiting when solving complex and large problems. Hence, many
researchers from different disciplines started to undertake research in exploring hybrid metaheuristics
(HMH). For example, a conference series in integrating artificial intelligence and operation research
techniques (CPAIOR Conferece series, n.d) has been held yearly in different countries since 2004.
In that same year, a series of international workshops on HMH (HM 2004, 2005, ..., 2016, ...) was
launched and its 10th workshop was held in 2016 in Plymouth, United Kingdon (Blesa et al., 2016).
A new artificial term “matheuristics” was introduced in another workshop series, a Workshop on
Mathematical Contribution to Metaheuristics (Matheuristics2006, 2006), and subsequently used by
many researchers to refer to optimization algorithms made by the interoperation of (meta)heuristics
and mathematical programming (MP) techniques. Books that are specifically devoted to HMH

∗Corresponding author
Email address: fdefersh@uoguelph.ca (Fantahun M. Defersha)

Preprint submitted to This Journal February 23, 2018

have been published (e.g. Blum et al. (2008); Maniezzo et al. (2009); Talbi (2013)). This growing
interest in HMH is an indication of their suitability in solving complex problems. The questions
regarding the proper integration of different algorithmic components and the adequate analysis of
results are becoming contemporary and attracting a large number of researchers. As a result, articles
documenting the successful applications of HMH and their design and implementation issues are
flourishing in large numbers. Thus providing a comprehensive review of those articles is beyond the
scope of this paper. Instead, in the following sections we briefly review articles that deal with the
classification of HMH and the hybridization of metaheuristics with linear programming as they are
relevant to the work presented in this paper. Interested readers can find a comprehensive survey on
HMH in Blum et al. (2011).

1.1. Classification of hybrid metaheuristics

Hybrid-metaheuristics (HMH) can be classified in many different ways. Talbi (2002) provided
a hierarchical classification based on the design issues in hybridization. At the top of the hierar-
chy, Talbi classified HMHs as low-level versus high-level hybridizations. In low-level hybridization,
a functional component of an optimization algorithm is exchanged with other metaheuristic. In
high-level hybridization, on the other hand, apart from a controlled exchange of information, there is
no internal relation between the individual optimization algorithms and all the algorithms preserve
their identities. Within the low- and high-levels classifications of HMHs, Talbi further distinguished
the hybridization of algorithms as teamwork versus relay. In teamwork hybridizations, optimization
algorithms cooperate with each other so that each algorithm performs a search in the solution space
simultaneously, whereas relay hybridizations are those in which the output of an optimization algo-
rithm is used as an input for the other algorithm. Raidl (2006) provides a more detail classification
(see Figure 1) of HMHs based on four attributes: (1) the types of algorithms which may be combined,
(2) level of hybridization, (3) order of execution, and (4) control strategy. According to the first at-
tribute, metaheuristics may be hybridized with other metaheuristics, problem-specific algorithms,
simulations, exact techniques, heuristics, and soft computing methods. The classifications based on
the 2nd and 3rd attributes are more elaborated versions of the hierarchical classification in Talbi
(2002) discussed previously. Based on control strategies, fourth attribute, hybrid metaheuristics are
divided into integrative and collaborative categories. In the integrative approach, an optimization
algorithm is embedded in a primary algorithm to work as a subordinate algorithm. However, in the
collaborative approach, the relation between the optimization algorithms is limited to exchanging
the information and the algorithms work separately. Other research articles also exist that provide
classifications of HMH. Cotta et al. (2005) provide classification of parallel HMH. A classification
and review of HMH that hybridize metaheuristics with exact method can be found in Puchinger and
Raidl (2005). The exact methods hybridized with metaheuristic include branch and bound, dynamic
programming, constraint programming, integer programming and linear programming (LP).

1.2. Hybridization of metaheuristics with LP

Consider a general mixed integer linear programming (MILP) mathematical model in Eqs. 1-6
where x and y are n1-dimensional continuous and n2-dimensional integer column vectors of variables,
respectively. The entries for the parameters are p ∈ Rn1 , q ∈ Rn2 , A ∈ Rm1×n1 , B ∈ Rm1×n2 , e ∈
Rm1 , C ∈ Rm2×n2 and f ∈ Rm2 . The constraint in Eq. (2) provides m1 inequalities where each
inequality is composed of both the continuous and the integer variables. The constraint in Eq. (3)
represents m2 inequalities where each inequality is involving of only the integer variables.

2

Hybrid
MH

What is
hybridized

Control Strategy

Order of
execution

Level of
Hybridization

MHS with MHS

MHS with problem-
specific algorithm/

simulation

MHS with other OR/AI
techniques

With Exact
Methods

With other
heuristics/soft-

computing
methods

Tree based search
Constraint programming
Dynamic programming

Linear Programming
(LP-A-MH and LP-E-MH)

High-level weak
coupling

Low-level high
coupling

i.e. algorithms retain own identities
(LP-A-MH)

i.e. individual components are exchanged
(LP-E-MH)

Interleaved

Batch
(Sequential)

Parallel

Collaborative

Integrative

hardware

synchronization

Task and data collection

memory

granularity

architecture

Local improvement of a candidate solution by
an inner optimization algorithm (LP-A-MH)

Exact technique for searching very large
neighborhoods

Indirect or incomplete representations and the
use of decoders (LP-E-MH)

Intelligent merging solutions

MIMD

SIMD

Coarse-grain

Fine-grain

Heterogeneous

Homogeneous

Distributed

Shared

Dynamic

Static

Asynchronous

Synchronous

Homogeneity

Space
Decomposition

Several instances of the
same MH

Different technique

Implicitly decomposition

Explicit Decomposition

LP-E-MH & LP-A-MH

LP-A-MH

LP-E-MH

Legend:

Figure 1: Classification of hybrid metaheuristic based on Raidl (2006) - Within this general classification, we
indicated the places of LP-E-MH and LP-A-MH (See Section 1.3)

3

MILP:

Minimize Z = pTx+ qT y (1)

Subject to:

Ax+By ≤ e (2)

Cy ≤ f (3)

x ∈ Rn1 (4)

y ∈ Zn2 (5)

x, y ≥ 0 (6)

A seemingly straightforward approach to solve the above model with a hybrid metaheuristic is
to split the model into integer and continuous variable parts. One can then apply a metaheuristic to
optimize the integer part only; before evaluating a solution, a linear programming solver is applied
on an LP-subproblem in Eqs. 7-10 to augment the integer part with an optimal choice of continuous
variables. To the best of our knowledge, this approach was first reported in Teghem et al. (1995).
The authors applied this technique to solve a MILP model using a LP embedded simulated annealing
(SA). Other early attempts of this approach are described in conjunction with GRASP by Neto and
Pedroso (2003) and in conjunction with tabu search (TS) by Pedroso (2005). Similar strategies
in solving MILP models were developed recently in Defersha and Chen (2008), Cao et al. (2009),
Defersha and Chen (2009b), Defersha and Chen (2010a), Luo et al. (2014) and Shafigh et al. (2016).
Mathematical models that consist of only binary and general integer were also solved in Rezazadeh
et al. (2011) and Bayram and Şahin (2016) by LP-embedded metaheuristics. In those hybridizations,
the metaheuristics search over the binary variables and for each solution visited a linear programming
subproblem is formulated by relaxing the general integer variables. A complete solution is obtained
by rounding the variables in the optimal solution of the LP-subproblem to the nearest integer values.
Linear programming embedded probabilistic TS for facility layout was proposed in Kulturel-Konak
(2012) where the authors did not formally develop MILP model. Instead, the solution representation
of the TS is used as a modelling tool to decide the relative locations of departments. Given such
a candidate solution, the actual locations and sizes of the departments are determined by solving a
LP-subproblem.

LP-subproblem:

Given {y|Cy ≤ f}
Minimize Z = pTx (7)

Subject to:

Ax ≤ e−By (8)

x ∈ Rn1 (9)

x ≥ 0 (10)

Other LP-embedded metaheuristics, that are closely related but do not necessarily fall into the
scheme of the MILP solution approach discussed above, have also been developed in literature. For
example, a three-level LP-embedded genetic algorithm (GA) was developed in Urdaneta et al. (1999)
for reactive power planning problem. A particular GA solution provides locations of reactive power
sources, a LP-subproblem determines the magnitude of the power sources and finally a simulation
model provides fitness measure for the overall solution. Hybrid GAs for water distribution system

4

optimization were developed in Reis et al. (2005) and Cisty (2010) where, for each solution visited
by the GAs, more than one (perhaps many) LP-subproblems need to be solved. There are also many
other hybridizations of metaheuristics with (integer) linear programming that completely fall outside
the scheme of the hybridization discussed in this section. A review of many of those methods can be
found in Raidl and Puchinger (2008).

1.3. LP-embedded vs LP-assisted metaheuristics

In this paper, we distinguished LP-embedded and LP-assisted metaheuristics (LP-E-MH and LP-
A-MH, respectively) as two levels of hybridizations in solving MILP models following the strategy
discussed in the previous section. In LP-E-MH, the solution representation of the metaheuristic
involves only the integer variables. Hence, for each individual solution visited by the metaheuristic, a
LP-subproblem has to be solved to augment this solution. Raidl (2006) categorized such approaches
as decoder-based metaheuristics, in which a master algorithm acts on an implicit or incomplete
representation of candidate solutions and a decoder is used to obtain corresponding actual solutions.
According to Raidl, such a decoder can be virtually any kind of algorithm ranging from a simple
problem specific heuristic to sophisticated exact optimization techniques or other OR/AI methods.
All the hybrid metaheuristics reviewed in the previous section fall into this category where the
decoder is a LP solver. However, a very large number of repeated calls to a LP solver in LP-E-MH
approach can be computationally challenging when one attempts to solve a complex problem. To
alleviate this problem, we proposed LP-A-MH as an alternative where the solution representation
of the metaheuristic should include both the integer and the continues variables. In this way, the
metaheuristics will have the capability to search the complete solution space without the LP solver.
Instead, the LP solver will be used to assist the metaheuristic by further refining only promising
solutions periodically after a certain number of iterations through determining the optimal values
of the continuous variables corresponding to those promising solutions. In this case, the LP solver
plays a role of a local improvement algorithm not as a sole decoder. The places of LP-E-MH and
LP-A-MH are indicated in the classification of HMH in Figure 1.

1.4. The problem considered - lot streaming in flexible jobshop

A flexible jobshop scheduling problem (FJSP) consists of scheduling a given number of jobs on
a given number of machines where a job is a batch of identical parts to be processed by following a
given sequence of operations. In FJSP, unlike classical jobshop scheduling problem (JSP), operations
can have alternative routes (machines). This makes FJSP a more complex problem than JSP due
to the fact that in addition to operations assignment and sequencing, selection of a machine among
the possible alternatives for each operation should also be accomplished simultaneously. Various
meta-heuristics approaches such as TS, SA, and GA have been utilized to solve FJSP problem in
literature. Among these approaches, the GA has been broadly applied (See for example Chen et al.
(1999); Kacem (2003); and Zhang and Gen (2005)). Another extension to jobshop scheduling is the
concept of lot streaming. The term lot streaming was first introduced by Reiter (1966) with the
context of jobshop scheduling. It is a manufacturing technique in which jobs (or lots) are split into
sublots in order to benefit from simultaneous processing of different operations of a job (Potts and
Baker, 1989). In today’s era of time-based competition (TBC), this process has been implemented
by many top-notch companies in order to reduce their manufacturing lead time and improve their
customer service (Blackburn, 1991; Bockerstette and Shell, 1993; Chang and Chiu, 2005). A very
limited number of researches in jobshop scheduling with lot streaming (JSP-LS) have been reported
in literature. In Dauzere-Peres and Lasserre (1997), an iterative approach for solving JSP-LS is
developed. This approach solves JSP-LS, first with given lot sizes and then with given job sequences
repeatedly until convergence is reached. Later, in Chan et al. (2004), a procedure using GA for

5

solving equal-sized lot streaming in JSP is introduced. Also, Chan et al. (2008b) proposed a method
based on GA and simple dispatching rule to solve assembly jobshop scheduling problems with lot
streaming. Likewise, Chan et al. (2008a), developed an approach based on the GA. In this approach,
lot sizing and job-shop problems are solved simultaneously. In Defersha and Chen (2012), a more
comprehensive mode for FJSP lot streaming (FJSP-LS) is proposed considering (1) unequal lot sizes,
(2) sequence-dependent set-up time, (3) attached/detached set ups, (4) machine release dates, and
(5) lag time. The authors developed a pure parallel GA that uses multiple population over multiple
concurrently available computers to solve this comprehensive model. The model and the parallel
genetic algorithm in Defersha and Chen (2012) is an extension of Defersha and Chen (2010b) where
lot streaming was not considered. In this paper, we develop a sequential LP-assisted GA (LP-A-GA)
that utilizes a single computational resource and still outperforms or equally performs as the resource
intensive parallel pure GA presented in Defersha and Chen (2012). The remainder of this paper is
organized as follows. In Section 2, a mixed integer-linear programming (MILP) model for FJSP-LS
is represented. In Section 3, the common and distinct features of pure GA and the proposed hybrid
GA are presented in details. Numerical examples are in Section 4. Finally, in Section 5, discussion
and conclusions are provided.

2. Mathematical formulation

The main objective of this paper is to present a linear programming assisted GA to solve a
scheduling problem (with lot streaming) in flexible job shop presented in Defersha and Chen (2012).
However, for a better comprehension of this paper, we describe the problem and present the mathe-
matical model here again.

2.1. Problem description and notations

Consider a job-shop consisting of M machines where machines with common functionalities are
grouped into a department (e.g. turning machines in a turning department). Assume that the system
is currently processing jobs from previous schedules and each machine m (where m = 1, . . . , M) has
a release date Dm at which time it will be available for next schedule. Consider also a total number
of J independent jobs to be scheduled next in the system where a job is a batch of identical parts.
The number of parts in a batch of job j (where j = 1, . . . , J) is given by Bj and this batch is to be
split into Sj number of unequal sublots (transfer batches). A decision variable bs,j is used to denote
the size of sublot s (where s = 1, . . . , Sj) of job j. Each sublot of job j is to undergo Oj number of
operations in a fixed sequence such that each operation o (where o = 1, . . . , Oj) can be processed
by one of several eligible machines. To,j,m is unit processing time for an operation o of a sublot of
job j on machine m. An operation o of a sublot of job j can be started on an eligible machine m
after lag time Lo,j and after the setup is performed. The lag time Lo,j is a waiting time that may be
required either for cooling, drying or for some other purpose. The setup time for an operation o of
job type j on machine m depends on the preceding operations and is denoted by So,j,m,o′,j′ , where
operation o′ of a sublot of job j′ is the preceding operation on machine m. If operation o of sublot
s of job j is the first operation to be processed on machine m, the setup time is simply represented
as S∗o,j,m. The setup time So,j,m,o′,j′ (or S∗o,j,m) for operation o of a sublot of job j can be overlapped
with the processing time of operation o− 1 of the same sublot if it is a detached setup and machine
m is available for setup. The problem is to determine the size of each sublot, to assign the operation
of each sublot to one of the eligible machines and to determine the sequence and starting time of the
assigned operations on each machine. The objective is to minimize the makespan of the schedule.
We next introduce some additional notations and then present a mixed integer linear programming
(MILP) formulation for FJSP-LS.

6

Additional Parameters:

Rm Maximum number of production runs of machine m where production runs are indexed
by r or u = 1, 2,, Rm; Each of these production runs can be assigned to at most one
operation of one sublot. Thus the assignment of the operations to production runs of a
given machine determines the sequence of the operations on that machine;

Po,j,m A binary data equal to 1 if operation o of a sublot job j can be processed on machine m,
0 otherwise;

Ao,j A binary data equal to 1 if setup of operation o of a sublot of job j is attached (non-
anticipatory), or 0 if this setup is detached (anticipatory);

Ω Large positive number.

Variables:

Continuous Variables:

cmax Makespan of the schedule

co,s,j,m Completion time of operation o of sublot s of job j on machine m;

ĉr,m Completion time of the rth run of machine m;

bs,j Size of sublot s of job j

Binary Integer Variables:

xr,m,o,s,j A binary variable which takes the value 1 if the rth run on machine m is for operation o
of sublot s of job j, 0 otherwise;

yr,m,o,j A binary variable which takes the value 1 if the rth run on machine m is for operation o
of any one of the sublots of job j, 0 otherwise;

γs,j A binary variable that takes the value 1 if sublot s of job j is non-zero (bs,j ≥ 1), 0
otherwise,

zr,m A binary variable that takes the value 1 if the rth potential run of machine m has been
assigned to an operation, 0 otherwise;

2.2. MILP model for FJSP-LS

Following the problem description and using the notations given above, the MILP mathematical
model for the FJSP-LS is presented below.
Minimize:

Objective = cmax (11)

Subject to:

cmax ≥ co,s,j,m ; ∀(o, s, j,m) (12)

7

ĉr,m ≥ co,s,j,m + Ω · xr,m,o,s,j − Ω ; ∀(r,m, o, s, j) (13)

ĉr,m ≤ co,s,j,m − Ω · xr,m,o,s,j + Ω ; ∀(r,m, o, s, j) (14)

ĉ1,m − bs,j · To,j,m − S∗o,j,m − Ω · x1,m,o,s,j + Ω ≥ Dm ; ∀(m, o, s, j) (15)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ − Ω · (yr−1,m,o′,j′ + xr,m,o,s,j) + 2Ω ≥ ĉr−1,m ;

∀(r,m, o, s, j, o′, j′)|(r > 1) (16)

ĉ1,m − bs,j · To,j,m − S∗o,j,m ·Ao,j − Ω · (x1,m,o,s,j + xr′,m′,o−1,s,j) + 2Ω ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, s, j)|{
(
(1,m) 6= (r′,m′)

)
∧ (o > 1)} (17)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j −Ω · (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j) + 3Ω ≥ ĉr′,m′ + Lo,j ;

∀(r,m, r′,m′, o, s, j, o′, j′)|{(r > 1) ∧ (o > 1) ∧ (r,m) 6= (r′,m′) ∧ (o, j) 6= (o′, j′)} (18)

yr,m,o,j ≤ Po,j,m ; ∀(r,m, o, j) (19)

yr,m,o,j =

Sj∑
s=1

xr,m,o,s,j ; ∀(r,m, o, j) (20)

M∑
m=1

Rm∑
r=1

xr,m,o,s,j = γs,j ; ∀(o, s, j) (21)

bs,j ≤ Bj · γs,j ; ∀(s, j) (22)

γs,j ≤ bs,j ; ∀(s, j) (23)

Sj∑
s=1

bs,j = Bj ; ∀(j) (24)

J∑
j=1

Sj∑
s=1

Oj∑
o=1

xr,m,o,s,j = zr,m ; ∀(r,m) (25)

zr+1,m ≤ zr,m ; ∀(r,m) (26)

xr′,m,o′,s,j ≤ 1− xr,m,o,s,j ; ∀(r, r′,m, o, o′, s, j)|{(o′ > o) ∧ (r′ < r)} (27)

8

xr′,m,o′,s,j ≤ 1− xr,m,o,s,j ; ∀(r, r′,m, o, o′, s, j)|{(o′ < o) ∧ (r′ > r)} (28)

xr,m,o,s,j , yr,m,o,j , γs,j and zr,m are binary (29)

The complete description and the meanings of the objective function in Eq. (11) and the con-
straints in Eqs. (12)-(29) can be found in Defersha and Chen (2012). (Please note the purpose of
this paper is to present an improved linear programming assisted genetic algorithm to solve this
mathematical model).

3. Improved solution procedure

An initial parallel pure GA was developed in Defersha and Chen (2009a) and latter expanded in
Defersha and Chen (2012) to solve the model presented in the previous section. In this section, we
present a way of combining the pure GA with linear programming to create an efficient sequential hy-
brid algorithm. As noted in Section 1.3, we distinguished two levels of hybridization of metaheuristics
with LP. In reference to GA, we refer to these levels of hybridization as LP-Assisted GA (LP-A-GA)
and LP-Embedded GA (LP-E-GA). The LP-A-GA, the subject of this paper, while utilizes a single
computational resource, outperforms or performs equally as the resource-intensive parallel pure GA.
The following subsections convey the common and distinct features of both the pure and the hybrid
GA.

3.1. Solution representation

The solution representations of LP-A-GA and LP-E-GA are adopted from that of the pure genetic
algorithm developed in Defersha and Chen (2012). Hence, for better understanding of this paper, it
is necessary to briefly describe the solution representation of the pure GA developed in Defersha and
Chen (2012) to solve the FJSP-LS problem. As a way to portraying this representation, Defersha and
Chen (2012) considered a small flexible job shop which processes three jobs with four machines. The
data for this small system are given in Table 1. As per Defersha and Chen (2012), a possible operation
assignment and sequencing for this small problem can be encoded as shown in Figure 2. In this
representation, every sublot is considered as a job, and each gene in the chromosome is represented by
a quadruple (j, s, o, m) denoting the assignment of the oth operation of sublot s of job j to machine
m. The sequence of the genes in the chromosome provides the sequences of the operations on every
machine. For instance, through looking to the genes from left to right the assignment and sequencing
of operations on machine-1 can be interpreted as follows: (j1, s3, o1)→(j3, s2, o3)→(j3, s3, o3). These
data are obtained from the genes at locations 10, 22 and 23 on the chromosome where m = 1. The
assignment of operations to the other machines and their sequences as decoded from the chromosome
is given in Table 2. In this solution representation, in order to ensure that precedence requirement of
the operations of a particular sublot are not violated, for a given j and s, the gene (j, s, o,m) always
lies to the right hand side of all the other genes (j, s, o′,m′) having o′ < o. For detail discussion
about this solution representation, one can refer to Defersha and Chen (2012).

In order to solve the proposed FJSP-LS model using GA, it is essential to include the number
of sublots for each job and their sizes into the solution representation (Defersha and Chen, 2012).
The chromosome in Figure 2 is capable of encoding only the assignment and sequencing of the
operations of the sublots. Therefore, a left hand side segment (LHS-Segment) has been added to
this chromosome as depicted in Figure 3. In this segment, every gene is represented by αs,j , which
takes a random value in the interval [0, 1]. The value each αs,j takes is used in Eq. (30) in order to
compute the size of the sth sublot of job j. It is possible for a certain sublot to have a size of zero

9

Table 1: An example small flexible job-shop problem (adopted from Defersha and Chen (2012))

Set of eligible machines
for operation

Job No. of Operations Max No. of Sublots o1 o2 o3

j1 3 3 {m1, m2} {m3} {m2, m4}
j2 2 2 {m3, m4} {m2}
j3 3 3 {m3} {m2, m4} {m1, m3}

Figure 2: Representation of the assignment of operations to machines and their sequencing (adopted from Defersha
and Chen (2012))

Table 2: Operation assignment and sequencing decoded from Figure 2 (adopted from Defersha and Chen (2012))

Operation assigned to production run

Machine r1 r2 r3 r4 r5 r6 r7 r8

m1 (j1, s3, o1) (j3, s2, o3) (j3, s3, o3)

m2 (j1, s2, o1) (j3, s1, o2) (j1, s1, o1) (j3, s3, o2) (j2, s1, o2) (j2, s2, o2) (j1, s2, o3)

m3 (j3, s2, o1) (j2, s1, o1) (j3, s1, o1) (j3, s3, o1) (j1, s2, o2) (j1, s1, o2) (j3, s1, o3) (j1, s3, o2)

m4 (j2, s2, o1) (j3, s2, o2) (j1, s1, o3) (j1, s3, o3)

10

if its corresponding αs,j has a value equal to zero. If all αs,j values are zero, the size of a sublot is
computed by dividing the number of parts in a batch of job j (Bj) to the maximum number of sublots
of Sj of that job. Thus, the maximum and actual numbers of sublots for each job and their sizes
are encoded in the LHS-Segment. The solution representation discussed above is applicable both in
the pure GA and LP-A-GA. However, in the case of LP-E-GA, the sizes of the sublots are always
determined by solving a linear programming subproblem. Hence, the LHS-segment is used only to
determine the number of sublots of each job. In that case, the gene αs,j in the LHS-segment takes a
binary value either 0 or 1 denoting whether sublot s of job j is created or not. During initialization
and evolution in LP-E-GA, for each job j in the LHS-segment, it is necessary to have at least one of
αs,j = 1 to ensure at least one sublot is created and the job is processed.

1,
 2

, 3
, 2

3,
 3

, 3
, 1

3,
 2

, 3
, 1

222120321

1,
 2

, 1
, 2

3,
 2

, 1
, 3

j,
s,

o,
 m

Job -1 Job -2 Job -3

1,1 2,1 3,1 1,2 2,2 1,3 2,3 3,3

s, j takes a real value from 0 to 1 in the case of pure GA and LP-A-GA
and takes only a binary value (0 or 1) in the case of LP-E-GA

LHS-Segment RHS-Segment

Figure 3: Solution representation (adopted from Defersha and Chen (2012))

bs,j =


αs,j∑Sj
s=1 αs,j

×Bj ; if
∑Sj

s=1 αs,j > 0

Bj/Sj ; otherwise

(30)

3.2. Evaluation Procedure

The evaluation procedure of a solution of the pure GA can be found in Defersha and Chen (2012).
This procedure utilizes the operations assignment and sequencing and sublot sizes decoded from a
solution in order to determine the makespan in a step by step procedure. The LP-A-GA also applies
this evaluation procedure with the exception that every certain number of generation, it applies a
linear programming sub-problem to further refine promising solution. The LP-E-GA, on the other
hand, solves LP-subproblem to evaluate each solution in every generation which makes the evaluation
procedure computationally prohibitive.

3.3. Linear programming subproblem

A particular solution (chromosome) of the GA can be decoded to provide the values of the
integer variables xr,m,o,s,j , yr,m,o,j , γs,j and zr,m (and the values of the continuous variables which
may not optimally correspond to these integer variable). In order to determine the values of the
continuous variable that optimally correspond to the integer variable, a linear programming (LP)
can be formulated. In formulation of this LP model, the constraints of the MILP model that are
composed of only the integer variable are omitted. The rest of the equations in MILP model are
modified slightly and inserted into LP subproblem. The object function remains unchanged and is
given in Eq. (31) in the LP subproblem. Eq. (12) in the MILP is in Eq. (32) of the LP. In the MILP
model, constraints in Eqs. (13) and (14) were used to set cr,m = co,s,j,m if variable xr,m,o,s,j = 1.
Nevertheless, these two equations can be merged together into Eq. (33) in the LP model since

11

xr,m,o,s,j is known. Knowing the values of xr,m,o,s,j , Eq. (15) is replaced by Eq. (34). Similarly, Eqs.
(16), (17) and (18) are replaced by Eqs. (35), (36) and (37), respectively. The constraints in Eq.
(24) of the main MILP is also applicable in the LP-subproblem model and it is repeated in Eq. (38).

LP: given (xr,m,o,s,j, yr,m,o,j, γs,j, zr,m) for all (r,m, o, s, j)
Minimize:

Objective = cmax (31)

Subject to:

cmax ≥ co,s,j,m ;

∀(o, s, j,m)|(γs,j = 1) (32)

ĉr,m = co,s,j,m;

∀(r,m, o, s, j)|{(xr,m,o,s,j = 1) ∧ (γs,j = 1)} (33)

ĉ1,m − bs,j · To,j,m − S∗o,j,m ≥ Dm ;

∀(m, o, s, j)|{(x1,m,o,s,j = 1) ∧ (γs,j = 1)} (34)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ≥ ĉr−1,m ;

∀(r,m, o, s, j, o′, j′)|{(r > 1) ∧ (yr−1,m,o′,j′ + xr,m,o,s,j = 2) ∧ (γs,j = 1)} (35)

ĉ1,m − bs,j · To,j,m − S∗o,j,m ·Ao,j− ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, s, j)|{[(1,m) 6= (r′,m′)] ∧ (o > 1) ∧ (x1,m,o,s,j + xr′,m′,o−1,s,j = 2)

∧ (γs,j = 1)} (36)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j− ≥ ĉr′,m′ + Lo,j ;

∀(r,m, r′,m′, o, s, j, o′, j′)|{(r > 1) ∧ (o > 1) ∧ [(r,m) 6= (r′,m′)] ∧ [(o, j) 6= (o′, j′)]

∧ (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j = 3) ∧ (γs,j = 1)} (37)

bs,j ≤ Bj · γs,j ; ∀(s, j) (38)

∑
∀s|(γs,j=1)

bs,j = Bj ; ∀(j) (39)

Once the LP-subproblem is solved, the optimal values of the continuous variables cmax, co,s,j,m,
ĉr,m and bs,j are known for the chromosome under consideration. The fitness value of this chromosome
is then set to cmax. The optimal value of each bs,j is also encoded back into the LHS-Segment of this
chromosome by updating its αs,j with bs,j/Bj for all (j, s).

12

3.4. LP-subproblem implementation approaches

In the LP-A-GA, improving a particular solution using a LP-subproblem involves: (i) adding
the objective function and the constraints of the subproblem into a modelling environment, and
(ii) solving it using a linear programming solver. These two steps are performed for a very large
number of solutions during the entire search process. At first, one may think that a large number of
calls to the linear programming solver of the second step can pose a major computational difficulty.
However, a closer look into these two steps in a related study by Shafigh et al. (2016) revealed
that a repeated call to the first step can be the main source of a computational hurdle. In order
to shed light on this issue, let us first consider the implementation of the largest set of constraints
(Eq. (18)) of the MILP model in solving this model using an exact method such as branch-and-
bound (B&B) algorithm. This constraint has to be added into a modeling environment following
a pseudopod in Figure 4 with no apparent alternative. In this figure, it can be seen that the
implementation of this constraint involves M2 × (R − 1)(R)× J2 × S × O2 number of nested loops
(assuming Rm = R, Sj = S, Oj = O; ∀(m, j)). For a small size problem with M = 5, R = 15,
J = 5, S = 3, and O = 4, the number of loops involved is 6,300,000 which is quite large. And this
process may take up to several minutes depending on the size of the problem, but it contributes
less to the overall computational challenge as this process happens only once at the beginning of
the B&B algorithm. However, as it was stated above, the process of adding an objective function
and constraints is repeated for a very large number of trial solutions in the LP-A-GA. Hence, it can
hinder the hybridization of the GA with the linear programming if it is not implemented creatively.

One possible implementation of the LP-subproblem is partially depicted in Figure 5, showing
the implementation of only Eq. (37). We refer to this approach as a direct approach (Approach-1)
since it follows the same “for-loop” structure as the implementation of the corresponding constraint
in the MILP shown in Figure 4. In this approach all the integer variables are first decoded from the
solution chromosome under consideration and their values are used to determine the conditions in
which the constraints of the LP-subproblem are applicable. A simple comparison between Figures
4 and 5 clearly indicates that Approach-1 involves the same large number of loops as that of the
MILP implementation. Thus, a repeated call to this approach is computationally prohibitive. To
alleviate this computational difficulty, we develop an alternative approach (Approach-2) that drasti-
cally reduces the number of “for-loops” required to populate the constraints of the LP-subproblem.
The pseudocode for this approach is partially depicted in Figure 6. In this approach, we first define
two data structures: (i) {Machine[m].Run[r].JobIndex or SubloIndex or OperationsIndex} and (ii)
{Job[j].Sublot[s].Opertions[o].MachineIdex or RunIndex}. The former can be dot operated to
store (or access) the JobIndex, SubloIndex or OperationsIndex of the process assigned to the rth

run of machine m, whereas the later can be dot operated to store(or access) the MachineIdex or
RunIndex in which operation o of sublot s of job j is processed.

Before the for-loop is started, the integer variable γs,j for each (s, j) is decoded from the chro-
mosome and a run counter RC[m] is set to zero for each machine m. Then, the for-loop scans the
genes in RHS-segment of the chromosome for g = 1 to TotalNummerOfOperations (see Figure 2
where g runs from 1 to TotalNummerOfOperations =

∑
j Sj × Oj = 22). At a particular stage g

of the loop, the indices (j, s, o,m) are obtained from gene(g) of the chromosome. The run counter
for machine m is increased by one and the value is passed to the index r. For γs,j > 1, this corre-
sponds to xr,m,o,s,j = 1 and yr,m,o,j = 1 and the corresponding indices (j, s, o,m, r) are stored in the
appropriate data structure. Now, if r > 1 and o > 1, the indices (r′,m′, j′, o′) that correspond to
yr−1,m,o′,j′ = 1 and xr′,m′,o−1,s,j = 1 are retrieved from the data that were recorded in precious stage
of the for-loop. Once the indices that correspond to yr−1,m,o′,j′+xr,m,o,s,j+xr′,m′,o−1,s,j = 3 are iden-
tified, the constraint is added to the LP-subproblem. By following this approach, the total number of
loops required to populate all the constraints of the LP-subproblem is reduced to

∑
j Sj ×Oj (which

13

equal to J × S ×O assuming Sj = S and Oj = O for each job j). For the values of M , R, J , S, and
O considered in the previous paragraph, the number of loops in Approach-2 is only J × S ×O = 60
which is extremely low compared to 6,300,000 in Approach-1. This drastic reduction in the number
of loops required to populate the constraints of the LP-subproblem enables the hybridization of the
GA with linear programming. The complete pseudocodes for both Approach-1 and Approach-2 are
given in the appendixes Appendix A and Appendix B, respectively.

1 for {m← 1 to M} for {r ← 2 to Rm} for {m′ ← 1 to M} for {r′ ← 1 to Rm′} for {j ← 1 to J} for
{s← 1 to Sj} for {o← 2 to Oj} for {j′ ← 1 to J} for {o′ ← 1 to Oj′} do

2 ADD-Constraint Eq. (18):
ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j − Ω · (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j) + 3Ω ≥ ĉr′,m′ + Lo,j

3 end

Figure 4: Pseudocode for populating constraint Eq. (18) into the MILP-model

Input: For the solution under consideration decode the values of the integer variables xr,m,o,s,j , yr,m,o,j , γs,j ,
zr,m for all (r,m, o, s, j)

1

2 for {m← 1 to M} for {r ← 1 to Rm} for {m′ ← 1 to M} for {r′ ← 1 to Rm′} for {j ← 1 to J} for
{s← 1 to Sj} for {o← 2 to Oj} for {j′ ← 1 to J} for {o′ ← 1 to Oj′} do

3 if {(yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j = 3) and γs,j = 1} then
4 ADD-Constraint Eq. (37): ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j− ≥ ĉr′,m′ + Lo,j
5 end

6 end

Figure 5: Pseudocode for Approach-1 of implementing constraint Eq. (37) of the LP-Subproblem

3.5. Genetic operators

Genetic operators make the population evolve towards promising regions of the search space.
Their design is so crucial as the convergence behaviour of the algorithm largely depends on them.
Five crossover and six mutation operators were designed for the pure GA in Defersha and Chen
(2012). As the solution representations of the pure GA and LP-A-GA are identical, all the operators
of the pure GA are applicable in LP-A-GA as well. Most of the operators are also directly applicable
in the LP-E-GA with few minor exceptions. The Sublot Step Mutation (SStM) operator, in pure
GA and LP-A-GA, is applied on each gene αs,j in the LHS-Segment to step up or down the value of
this gene while keeping its value between 0 and 1. However, in LP-E-GA, the gene αs,j can assume
only a binary value (0 or 1). Hence SStM is modified in LP-E-GA in such a way that it only flips the
value of αs,j from 0 to 1 or vice versa with a small probability. The Sublot Swap Mutation (SSwM)
is applied on each j in the LHS-Segment to swap the values of two arbitrarily selected genes αs,j and
αs′,j . However, in LP-E-GA, there is a greater chance for a pair of αs,j and αs′,j to be both equal to
zero or one. Hence, the swap is performed whenever the two values are not identical.

In addition to crossover and mutation operators, the other important operator in applying a
GA is the selection operator. It is needed to simulate the natural selection process in GAs in
which individual solutions are chosen from a population to form the next generation following the
principles of the survival of the fittest and probability. This operator depends neither on the solution
representation nor on the evaluation function and as such the same selection operator can be applied
across different GAs. The selection operator applied in the LP-A-GA and the LP-E-GA is the
k−ways tournament selection which is similar to that used in the Pure GA in Defersha and Chen
(2012). In this operator, k individuals are randomly selected and the one presenting the highest

14

Input: For the solution under consideration decode the values of the integer variable γs,j .
Input: For each machine m, set its run counter RC[m] = 0.

1

2 for {g ← 1 to TotalNumberOfOperations} do
3 (j, s, o,m)← gene(g)
4 if {γs,j = 1} then
5 RC[m]← RC[m] + 1
6 r ← RC[m]
7 Machine[m].Run[r].JobIndex← j
8 Machine[m].Run[r].SublotIndex← s
9 Machine[m].Run[r].OperationsIndex← o

10 Job[j].Sublot[s].Operation[o].MachineIndex← m
11 Job[j].Sublot[s].Operation[o].RunIndex← r
12

13 if {r > 1 and o > 1} then
14 m′ = Job[j].Sublot[s].Operation[o− 1].MachineIndex
15 r′ = Job[j].Sublot[s].Operation[o− 1].RunIndex
16 j′ = Machine[m].Run[r − 1].JobIndex
17 o′ = Machine[m].Run[r − 1].OperationIndex
18 ADD-Constraint Eq. (37): ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j− ≥ ĉr′,m′ + Lo,j
19 end

20 end

21 end

Figure 6: Pseudocode for Approach-2 of implementing constraint Eq. (37) of the LP-Subproblem

fitness (smallest makespan) is declared the winner and a copy of this individual is added to the
mating pool to form the next generation. Then, the k individuals in the tournament are placed back
to the current population and the process is repeated. This continues until the number of individuals
added to the mating pool is equal to the population size.

3.6. Steps of the GAs

The steps of a typical GA are: (1) initialize population, (2) evaluate fitness, (3) generate new
population, (4) replace old population by new population, and repeat steps 2, 3 and 4 until an
end condition is satisfied. The GAs considered in this paper (Pure GA, LP-E-GA, and LP-A-GA)
follow these general steps with slight variations as indicated below. Initialization: The gene αs,j
in the LHS-Segment is initialized with a real number between 0 and 1 in the case of pure GA and
LP-A-GA, whereas in the case of LP-E-GA this gene assumes only 0 or 1. In LP-A-GA, φ% percent
of the initial population are randomly selected and improved by solving their corresponding LP-
subproblem. Evaluation: This step is performed solely by following the procedure presented in
Section 3.2 in pure GA, and by solving a LP-subproblem in LP-E-GA. Evaluation in LP-A-GA is
primarily done similar to that in pure GA with the exception that in every H number of generations
the top φ% percent of the population are further refined by solving LP-subproblems. The algorithms
were coded in C++ where a linear programming solver in ILOG CPLEX (IBM, 2015) was interfaced
to solve the LP-subproblems

Steps of the Pure GA

Step 1. Randomly generate initial population such that a gene αs,j in the LHS-Segment assumes
a real value between 0 and 1. Set a generation counter G = 1.

Step 2. Evaluate each individual solution using the procedure presented in Section 3.2 (Evaluation
in pure GA). Update the best solution so far found.

15

Step 3. Apply genetic operators (Selection, Crossover and Mutation) to create a new population.
Set G = G+ 1.

Step 4. Replace the old population by the newly generated population for the next run of the
algorithm

Step 5. If G = Gmax, stop; otherwise go to Step-2.

Steps of LP-Embedded-GA

Step 1. Randomly generate initial population such that a gene αs,j in the LHS-Segment assumes
a binary value (0 or 1). Set a generation counter G = 1.

Step 2. Evaluate each individual solution by solving the corresponding LP-sublproblem. Update
the best solution so far found.

Step 3. Apply genetic operators (Selection, Crossover and Mutation) to create the new population.
Set G = G+ 1.

Step 4. Replace the old population by the newly generated population for the next run of the
algorithm

Step 5. If G = Gmax, stop; otherwise go to Step-2.

Steps of LP-Assisted-GA

Step 1. Randomly generate initial population such that a gene αs,j in the LHS-Segment assumes
a real value between 0 and 1. Apply LP-improvement on φ% of randomly selected
individuals in the initial population. Set a generation counter G = 1.

Step 2. Evaluate each individual solution using the procedure presented in Section 3.2 (Evaluation
in pure GA). If G mod H = 0, go to Step-3; Otherwise, go to Step-4. Update the best
solution so far found.

Step 3. Sort the individuals in the population in decreasing order of their fitness (increasing order
of makespan). Apply LP-improvement on the top φ% of the population.

Step 4. Apply genetic operators (Selection, Crossover and Mutation) to create the new population.
Set G = G+ 1.

Step 5. Replace the old population by the newly generated population for the next run of the
algorithm

Step 6. If G = Gmax, stop; otherwise go to Step-2.

4. Numerical illustrations

This section presents numerical examples to illustrate the solution enhancement that can be
achieved using linear programming and compare its different implementation approaches and hy-
bridization levels. Empirical studies on the computational performances of pure and hybrid GAs
and their relative robustness to parameter settings are also presented. Readers interested in the
numerical illustrations of the features of the proposed model such as lot streaming, machine release
date, lag time and the nature of setup being attached/detached are referred to Defersha and Chen
(2012).

16

4.1. Solution improvement using LP

In the pure GA, both the continuous and discrete variables are determined by the stochastic
search alone. The search space is very large as there are infinite combinations of the values of the
continuous variables corresponding to every possible set of values of the integer variables. This makes
finding a good solution within a reasonable amount of time very difficult. In linear programming
hybridized GA, the continuous variables which optimally correspond to a particular integer solution
can be determined by solving a LP-subproblem. In order to illustrate the improvements that can be
achieved using this approach on a particular solution and on a randomly generated population, we
consider a scheduling problem (with lot streaming) in a small flexible job-shop consisting of three
jobs and four machines. The batch size and maximum number of sublots of each job are given
in Table 3 along with, for each operation, (i) the nature of the setup (attached or detached), (ii)
lag time, (iii) alternative machines, and (iv) the corresponding processing times. The sequence-
dependent setup time data are given in Table 4. The release dates of the machines were assumed to
be D1 = D2 = D4 = 1080 minutes and D3 = 0.

For this small problem, an arbitrary solution was generated based on the solution representation
in Figure 3. The solution provides the assignment and sequencing of the various operations on each
machine. The sizes of the sublots were determined using Eq. (30) and the makespan of the resulting
schedule was evaluated by applying the procedure described in Section 3.2. This same solution
was further improved, with same operation assignment and sequencing (same integer solution), by
solving the corresponding LP-subproblem to determine the optimal sublot sizes and makespan. The
resulting schedules, before and after improvement, are depicted in Figure 7 (the numerical values
of the starting and the ending times of the setups and operations are detailed in Table 5). As can
be seen from these solutions, the values of makespan of the schedules before and after improvement
are 22336 and 19823 minutes, respectively. This is about 11% reduction in the makespan on the
arbitrarily generated solution achieved by solving a LP-subproblem. To illustrate the improvement
that can be achieved on an entire initial papulation, we generate a population of 5000 individuals
for the problem described above. The makespan corresponding to each individual solution was first
evaluated by applying the procedure outlined in Section 3.2. Then each individual was further refined
by solving the corresponding LP-subproblem. The distributions of the makespan of the population
before and after the improvement are shown in Figure 8. From this figure, it can be seen that the
average makespan of the population was reduced from 24732 to 19452 minutes which represents a
21% average improvement. Moreover, from the frequency of the distributions, it is possible to see
that the number of good quality solution has been substantially increased.

Table 3: Processing Data for Jobs

Alternative routes, (m, To,j,m)

j Bj Sj o Ao,j Lo,j 1 2 3

1 1240 3 1 na na (1, 6.00) (3, 5.25)
2 1 0 (1, 4.50) (2, 5.00)
3 0 0 (1, 2.50) (3, 2.75) (4, 2.75)

2 1480 3 1 na na (3, 5.50) (4, 5.75)
2 1 0 (1, 3.50) (2, 3.25) (4, 3.50)

3 1290 3 1 na na (1, 4.50) (4, 4.75)
2 1 80 (1, 5.50) (3, 5.75) (4, 5.25)
3 1 0 (1, 6.50) (3, 6.50) (4, 6.75)

na = not applicable

17

Table 4: Sequence Dependent Setup Time Data

j o m Setup time (S∗o,j,m), (j′, o′, So,j,m,o′,j′) · · ·

1 1 1 (150), (1,1,80), (1,2,160), (1,3,160), (2,2,270), (3,1,270), (3,2,240), (3,3,210)
3 (200), (1,1,80), (1,3,160), (2,1,210), (3,2,240), (3,3,210)

2 1 (50), (1,1,120), (1,2,60), (1,3,140), (2,2,150), (3,1,180), (3,2,240), (3,3,300)
2 (100), (1,2,80), (2,2,180)

3 1 (150), (1,1,120), (1,2,160), (1,3,60), (2,2,270), (3,1,270), (3,2,270), (3,3,210)
3 (150), (1,1,140), (1,3,60), (2,1,180), (3,2,210), (3,3,270)
4 (100), (1,3,60), (2,1,240), (2,2,180), (3,1,270), (3,2,270), (3,3,270)

2 1 3 (200), (1,1,180), (1,3,300), (2,1,70), (3,2,240), (3,3,270)
4 (100), (1,3,210), (2,1,70), (2,2,160), (3,1,180), (3,2,180), (3,3,180)

2 1 (100), (1,1,180), (1,2,210), (1,3,210), (2,2,70), (3,1,150), (3,2,300), (3,3,180)
2 (150), (1,2,180), (2,2,80)
4 (150), (1,3,180), (2,1,100), (2,2,60), (3,1,270), (3,2,270), (3,3,270)

3 1 1 (100), (1,1,210), (1,2,210), (1,3,210), (2,2,240), (3,1,80), (3,2,180), (3,3,180)
4 (100), (1,3,210), (2,1,240), (2,2,240), (3,1,60), (3,2,200), (3,3,120)

2 1 (100), (1,1,180), (1,2,300), (1,3,210), (2,2,270), (3,1,140), (3,2,50), (3,3,140)
3 (200), (1,1,270), (1,3,270), (2,1,300), (3,2,60), (3,3,180)
4 (150), (1,3,180), (2,1,270), (2,2,240), (3,1,180), (3,2,80), (3,3,120)

3 1 (100), (1,1,270), (1,2,180), (1,3,150), (2,2,180), (3,1,160), (3,2,160), (3,3,70)
3 (100), (1,1,180), (1,3,180), (2,1,270), (3,2,180), (3,3,80)
4 (50), (1,3,270), (2,1,180), (2,2,150), (3,1,180), (3,2,140), (3,3,70)

Table 5: The details of the schedules shown in Figure 7

Before Solution Improvement After Solution Improvement

Machine Run (j, s, o) SB SE/PB PE (j, s, o) SB SE/PB PE

M1 R1 (1,2,2) 3235.6 3285.6 5887.6 (1,2,2) 1080 1130 1884.3
R2 (3,1,1) 5887.6 6097.6 8628.6 (3,1,1) 1884.3 2094.3 4620.7
R3 (3,3,2) 8628.6 8768.6 12016.5 (3,3,2) 17028.5 17168.5 17882.6

M2 R1 (1,3,2) 6790 6890 10198.9 (1,3,2) 6790.0 6890.0 12251.9
R2 (2,2,2) 13658.2 13838.2 17790.4 (2,2,2) 14753.6 14933.6 19533
R3 (2,3,2) 21398.4 21478.4 22336.3 (2,3,2) 19533 19613 19823.6

M3 R1 (1,2,1) 0.0 200 3235.6 (1,2,1) 0.0 200 1080
R2 (1,3,1) 3235.6 3315.6 6790.0 (1,3,1) 1080 1160 6790
R3 (2,2,1) 6790 6970 13658.2 (2,2,1) 6790 6970 14753.6
R4 (1,3,3) 13658.2 13838.2 15658.1 (1,3,3) 14753.6 14933.6 17882.6
R5 (3,3,3) 15658.1 15838.1 19676.6 (3,3,3) 17882.6 18062.6 18906.6
R6 (2,3,1) 19676.6 19946.6 21398.4 (2,3,1) 18906.6 19176.6 19533

M4 R1 (3,3,1) 1080.0 1180.0 3985.1 (3,3,1) 1080 1180 1796.7
R2 (3,2,1) 3985.1 4045.1 4696 (3,2,1) 1796.7 1856.7 4700.7
R3 (3,1,2) 8708.6 8888.6 11841.3 (3,1,2) 4700.7 4880.7 7828.2
R4 (3,2,2) 11841.3 11921.3 12640.7 (3,2,2) 7828.2 7908.2 11051.6
R5 (3,1,3) 12640.7 12780.7 16577.1 (3,1,3) 11051.6 11191.6 14981.2
R6 (3,2,3) 16577.1 16647.1 17572.1 (3,2,3) 14981.2 15051.2 19092.6
R7 (1,2,3) 17572.1 17842.1 19432.2 (1,2,3) 19092.6 19362.6 19823.6

Note: SB, SE, PB, PE stand for setup begins, setup ends, processing begins, and processing ends, respectively.

18

2,3,1

2,2,2 2,3,2

2,2,1

2,2,2 2,3,2

2,2,1

2,3,1

3,2,1

3,1,2 3,2,2 3,1,3

3,1,1 3,3,2

3,3,3

3,3,1

3,2,1

3,2,2 3,1,3 3,2,33,1,2

3,1,1 3,3,2

3,3,3

3,3,1 3,2,3

1,3,2

1,3,11,2,1 1,3,3

1,2,2

1,3,2

1,2,1 1,3,1 1,3,3

1,2,3

1,2,2

1,2,3

2000 10000 1800014000

2000 18000140006000 10000 22000

M1

M2

M3

M4

M2

M1

Sublot

Time in minutes

M4

M3

Operation

Sublot Sizes: (Job1, 0, 578, 662); (Job2, 0, 1216, 264); (Job3, 562, 137, 591)

(a)

unavailable

(b)

Sublot Sizes: (Job1, 0, 168, 1072); (Job2, 0, 1415, 65); (Job3, 561, 599, 130)

Setup Time Processing Time

j, s, o Job 1 Job 2

Job

Job 3

6000

Machine

22336.3

1982.6

Figure 7: An arbitrary generated solution for problem-1: (a) before and (b) after improvement by solving a
LP-subproblem. The detail numerical values are given in Table 5.

19

4
0

001

002

003

004

005

00061 00002 00042 00082 00023 00063 0000

M

yc
n
e
u
q
er

F

napseka

S

tnemevorpmI-PL tuohtiW
23742 = naeM

2483 = veDtS

tnemevorpmI-PL htiW
25491 = naeM

1472 = veDt

Figure 8: Distribution of makespan for an initial population of 5000 with and without LP-Improvement

4.2. LP-implementation approach-1 vs approach-2

In Section 3.4, we presented two approaches for populating the objective function and the con-
straints of the LP-subproblem. In this section, we exemplify the computational challenge in using
approach-1 and the improvement obtained by using approach-2. In order to illustrate this im-
provement, problems of larger dimensions than Problem 1 (presented in the previous section) are
considered. The general nature of the considered problems is depicted in Table 6. Table 7 shows the
average modeling and solver times (in milliseconds) required in a single LP-improvement in 50 arbi-
trarily generated solutions in each of the four problems. These computational times were evaluated
for both approaches. From this table, it can be seen that the modeling times are many times larger
than the solver times in approach-1. Approach-2 eliminates this computational difficulty to almost
nonexistent level. Without this improvement, the remarkable performance of the GA achieved (both
in terms of solution quality and computational time) through hybridization with linear programming
would be impossible. Thus, all the computational analysis in the remaining subsections are using
approach-2.

4.3. LP-E-GA vs LP-A-GA

LP-E-GA requires every solution in every generation to be evaluated by solving a LP-subproblem.
LP-A-GA, on the other hand, uses linear programming only to refine promising solutions periodically.
Figure 9 shows the convergence behaviours in the first 250 generations of LP-E-GA, LP-A-GA and
pure GA in solving problems 2 and 3 with a population size of 5000. In LP-A-GA(10) and LP-A-
GA(50), 1% of the top best individuals in the population are improved using linear programming
in every 10 and 50 generations, respectively. The convergence graphs show that both LP-E-GA
and LP-A-GA provide comparable solution quality improvements over those that can be obtained
by pure GA in both problems. However, the LP-A-GA require much shorter time compared to
LP-E-GA. In running the 250 generations, LP-A-GA requires only 1 minute in problem 2 and 2.5

20

Table 6: The general nature of the problems considered

Number of Number of Number of
Number of Number of sublots for operations for alternative routes

Problem No. machines jobs each job the jobs for the operation

2 8 20 4 3 to 5 1 to 3

3 12 30 4 3 to 6 1 to 3

4 10 25 4 3 to 4 1 to 3

5 12 35 3 2 to 4 1 to 3

Table 7: Average modeling and solver time in milliseconds for a single LP-evaluation in Approaches 1 and 2

Approach 1 Approach 2
Problem Modeling time Solver time Modeling time Solver time

2 3839.24 10.944 0.965 11.775
3 67953.60 37.898 1.875 41.258
4 8012.99 14.801 1.238 15.540
5 8361.72 9.2110 1.182 10.027

minutes in problem 3, whereas the LP-E-GA needs 35 and 88 minutes (about 3500% that of LP-A-
GA computational times) to run the same number of generations in the two problems respectively.
In addition to this tremendous speedup, the LP-A-GA also provides slightly better solutions than
the LP-E-GA. This may be because the LP-A-GA has better local improvement ability by refining
only promising solutions which may lead these refined solutions to dominate the population and the
search to be intensified around these solutions.

5000

5200

5400

5600

5800

6000

6200

6400

6600

0 20 40 60 80 100 120 140 160 180 200 220 240

M
ak

e
sp

an

Generation

LP-A-GA (10)

LP-A-GA (50)

Pure GA

LP-E-GA

LP-A-GA and Pure GA took
about 1 minutes to run the
250 generations whereas
LP-E-GA took 35 minutes
to run the same number of
generations

In LP-A-GA(10) and LP-A-GA(50), 1% of the top
best individuals in the population are
improved using LP-subproblem in every 10
and 50 generations, respectively.

 Note for the sharp improvements at some

of those intervals.

6800

7300

7800

8300

8800

0 20 40 60 80 100 120 140 160 180 200 220 240

M
ak

es
p

an

Generation

LP-A-GA (10)

LP-A-GA (50)

Pure GA

LP-E-GA

LP-A-GA and Pure GA
took about 2 minutes
and 30 seconds to run
the 250 generations
whereas LP-E-GA took 1
hr & 28 minutes to run
the same number of
generations

 The sharp improvements are
happining at LP-improvment stages of
the LP-A-GA.

(a) (b)

Figure 9: Comparison of pure GA, LP-E-GA and LP-A-GA in solving (a) Problem 2 and (b) Problem 3

4.4. Parallelization vs Hybridization

This section compares the performance improvements of the GA achieved through parallelization
and hybridization. In particular, the convergence rates and final solution qualities from pure sequen-
tial GA and pure parallel GA reposted in Defersha and Chen (2012) are compared against those found
using the proposed hybrid sequential GA (namely LP-A-GA). Figure 10(a) shows the improvement

21

in convergence rate and final solution quality that can be achieved through parallelization of the
pure GA as the number of processors (CPUs) increases in solving problem 2. The makespan of the
final solution, 5227 minutes, achieved by the sequential GA was reduced by 109, 125, 165, 170, and
183 minutes as the number of processors (CPUs) increases to 8, 16, 24, 32, and 48, respectively. On
the other hand, as shown in Figure 10(b), the sequential LP-A-GA demonstrate a faster convergence
rate and provides a final solution which is very comparable to that achieved by using the resource
intensive parallel GA. More interestingly, the LP-A-GA provides even better solutions with quicker
convergence in problems 3, 4 and 5 than the parallel GA. These results are depicted in Figure 11.

5000

5050

5100

5150

5200

5250

5300

5350

5400

0 1000 2000 3000 4000

M
ak

es
p

an
 (

m
in

u
te

s)

Generation

Pure Sequential GA

Pure Parallel GA with Number
of CPUs = 8, 16, 24, 32, to 48

5000

5050

5100

5150

5200

5250

5300

5350

5400

0 1000 2000 3000 4000

M
ak

es
p

an
 (

m
in

u
te

s)

Generation

Pure Sequential GA

Hybrid Sequential GA

(a) Parallelization (Defersha and Chen, 2012) (b) Hybridization (this paper)

Figure 10: Performance improvement in solving Problem 2: (a) by parallelization as the number of processors is
increased from 8, 16, 24, 32, to 48; (b) by hybridization of the GA with linear programming

4.5. Robustness of algorithms

In this section, the impact of the genetic parameters on the quality of the final solution from SGA
and the proposed HGA are assessed empirically. Figure 12 shows the plots of the makespan of the
schedules obtained after 3000 iterations by SGA and the proposed hybrid GA under different test
runs. The test runs are differentiated by the settings of their genetic parameters as it was described
in Defersha and Chen (2012). Figure 12 shows the makespan of the final solutions and their averages
from the ten test runs when problem 2 is solved using SGA and HGA. As it can be seen from this
figure, HGA demonstrates more robustness than the pure SGA against the changes in the genetic
parameters. In HGA, 8 from 10 final solutions lie within plus or minus 1% of mean of the final
solutions. However, in the SGA case, only 5 out of 10 answers lie within the same range of the
average of its final solutions. This makes parameter tuning, a very essential task in using GAs, much
easier in HGA than in pure GA.

5. Discussion and conclusion

A very large number of documents reporting the applications of metaheuristics have been pub-
lished from a wider range of disciplines. However, pure applications of metaheuristics can be limiting
when solving complex problems. Hence, many researchers developed hybrid metaheuristics where
the metaheuristics are hybridized with other metaheuristics or OR/AI techniques. The hybridiza-
tion of metaheuristics with linear programming (LP) is one of the many hybridization techniques

22

6700

6900

7100

7300

7500

7700

7900

8100

8300

0 1000 2000 3000

M
ak

e
sp

an
 (

M
in

u
te

s)

Problem 3

Pure Sequential GA

Pure Parallel GA-24 CPUs

Hybrid Sequential GA

4000

4100

4200

4300

4400

4500

4600

4700

4800

0 1000 2000 3000

M
ak

e
sp

an
 (

M
in

u
te

s)

Problem 4

Pure Sequential GA

Pure Parallel GA-24 CPUs

Hybrid Sequential GA

3200

3300

3400

3500

3600

3700

3800

3900

0 1000 2000 3000

M
ak

e
sp

an
 (

M
in

u
te

s)

Problem 5

Pure Sequential GA

Pure Parallel GA-24 CPUs

Hybrid SequentialGA

Figure 11: Average convergence of the SGA, PGA with 24 processor and HGA for problems 3, 4, and 5.

4950

5000

5050

5100

5150

5200

5250

5300

5350

5400

1 2 3 4 5 6 7 8 9 10

M
ak

e
sp

an
 (

M
in

u
te

s)

Test Run

SGA

SGA-Mean

HGA

HGA Mean

±1% of mean

±1% of mean

Figure 12: The effect of changing genetic parameters on the final solution quality obtained by the SGA and HGA in
solving problem 2

23

reported. In this paper, we developed a LP hybridized metaheuristic based on genetic algorithm to
solve a comprehensive MILP model in flexible jobshop scheduling problem with lot stream. Further,
we distinguished LP-E-MH and LP-A-MH as two levels of hybridizations in solving MILP models
when a LP-subproblem has to be repeatedly solved during the search process. In LP-E-MH based
algorithms, the metaheuristic searches over the integer variables and calls a LP solver for every in-
dividual solution visited to find the corresponding values of the continuous variables. However, this
can be computationally difficult when solving large size problems. To alleviate this problem, we
proposed a LP-A-MH as an alternative where the metaheuristic has the capability to search both
the integers and the continuous variables without the LP solver. Instead, the LP solver is used to
assist the metaheuristic by further refining only promising solutions after every certain number of
iterations through determining the optimal values of the continuous variables corresponding to those
promising solutions. The proposed LP-A-GA approach drastically reduce computational time and
also provides a comparable or better solution than LP-E-GA. Moreover, the sequential LP-A-GA,
utilizing a single computational resource, outperforms or equally performs as the resource intensive
parallel pure genetic algorithm that uses multiple concurrently available computational resource. We
also illustrate the potential challenge that one may encounter when developing a hybrid metaheuristic
where a LP-subproblem has to be solved repeatedly. Solving a LP-subproblem involves populating a
large number of constraints into a model (task-1) and solving the model using a LP solver (task-2).
At first it may appear that task-2 can be the major source of a computational difficulty. However, if
it is not implemented systematically, task-1 can be the major source of computational difficulty. Two
approaches, a direct approach (approach-1) and an alternative approach (approach-2) for accomplish-
ing task-1 were presented. The alternative approach drastically decreases the computational time,
making the hybridization of LP with the GA a working algorithm in solving the FJSP lot streaming
problem considered in this paper.

6. Future research

As it is noted in literature (see Raidl (2006)), metaheuristic algorithms can be hybridized with
several other OR/AI techniques. One of such OR techniques is Benders’ Decomposition. To illustrate
this hybridization process consider the general MILP problem described in Eqs. 1-6. Benders’
decomposition projects this MILP problem onto y-space by defining the optimal value function

v(y) = qT y + min
x

pTx

Subject to:

Ax ≤ e−By
x ∈ Rn1

x ≥ 0

and restating the MILP problem as

min
y

v(y)

Subject to:

y ∈ Zn2

y ≥ 0

Using the LP dual theory, the minimization w.r.t. x in the definition of v(y) can be replaced by
a maximization over the dual space. Then by enumerating the finitely many dual extreme points,

24

v(y) can be written as
v(y) = max

k=1,...K
{αky + βk}

where αk and βk are determined by the kth dual extreme point. If the LP has been solved only
K ′ < K times, we can define a function

v′(y) = max
k=1,...K′

{αky + βk} ≤ v(y)

which underestimates v(y). Thus, the dual solutions can be used to direct the genetic search for
optimal discrete variables. Reader are referred to Ming-Che Lai et al. (2012) and Ming-Che Lai et al.
(2010) for detail examples of such hybridization with the context of vehicle routing and capacitated
plant location problems, respectively. Our future research is to consider this alternative approach in
solving the flexible jobshop scheduling problem presented in this paper. We also encourage researchers
to consider this approached. Our future research also includes expanding hybrid genetic algorithm to
encompass a multi-objective scheduling with lot steaming in flexible jobshop and other manufacturing
settings.

References

Bayram, H. and Şahin, R., 2016. A comprehensive mathematical model for dynamic cellular manu-
facturing system design and linear programming embedded hybrid solution techniques. Computers
& Industrial Engineering, 91, 10–29.

Blackburn, J., 1991. Time-Based Competition. Business One Irwin, Burr Ridge, IL,

Blesa, M. J., Blum, C., Cangelosi, A., Cutello, V., DI NUOVO, A., Pavone, M., and Talbi, E. G.
(Eds.), 2016. The 10th International Workshop on Hybrid Metaheuristics HM2016, June 8-10,
2016. Plymouth, UK.

Blum, C., Blesa Aguilera, M. J., Roli, A., and Samples, M. (Eds.), 2008. Hybrid Metaheuristics-An
Emerging Approach to Optimization. Vol. 114. Springer-Verlag, Berlin, Germany.

Blum, C., Puchinger, J., Raidl, G. R., and Roli, A., 2011. Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing, 11 (6), 4135–4151.

Bockerstette, J. and Shell, R., 1993. Time Based Manufacturing. McGraw-Hill, New York,

Cao, D., Defersha, F. M., and Chen, M., 2009. Grouping operations in cellular manufacturing consid-
ering alternative routings and the impact of run length on product quality. International Journal
of Production Research, 47 (4), 989–1013.

Chan, F., Wong, T., and Chan, P., 2008a. The application of genetic algorithms to lot streaming
in a job-shop scheduling problem. International Journal of Production Research, In press (DOI:
10.1080/00207540701577369).

Chan, F., Wong, T., and Chan, P., 2008b. Lot streaming for product assembly in job shop environ-
ment. Robotics and Computer-Integrated Manufacturing, 24, 321–331.

Chan, F. T., Wong, T., and Chan, P., 2004. Equal size lot streaming to job-shop scheduling problem
using genetic algorithms. In: Intelligent Control, 2004. Proceedings of the 2004 IEEE International
Symposium on. IEEE, pp. 472–476.

25

Chang, J. H. and Chiu, H. N., 2005. A comprehensive review of lot streaming. International Journal
of Production Research,, 43, 1515–1536.

Chen, H., Ihlow, J., and Lehmann, C., 1999. A genetic algorithm for flexible job-shop scheduling.
In: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on. Vol. 2.
IEEE, pp. 1120–1125.

Cisty, M., 2010. Hybrid genetic algorithm and linear programming method for least-cost design of
water distribution systems. Water Resour Manage, 24, 1–24.

Cotta, C., Talbi, E.-G., and Alba, E., 2005. 15 parallel hybrid metaheuristics. Parallel Metaheuristics:
A New Class of Algorithms, 47, 347.

CPAIOR Conferece series, n.d. International conference on integration of AI and OR techniques in
constraint programming for combinatorial optimization problems. http://www.andrew.cmu.edu/
user/vanhoeve/cpaior/.

Dauzere-Peres, S. and Lasserre, J., 1997. Lot streaming in job-shop scheduling. Operations Research,
45, 584–595.

Defersha, F. M. and Chen, M., 2008. A linear programming embedded genetic algorithm for an inte-
grated cell formation and lot sizing considering product quality. European Journal of Operational
Research, 187, 46–69.

Defersha, F. M. and Chen, M., 2009a. A coarse-grain parallel genetic algorithm for flexible job-shop
scheduling with lot streaming. 12th IEEE International Conference on Computational Science and
Engineering. Vancover, CADADA, August 29-31, pp. 201–208.

Defersha, F. M. and Chen, M., 2009b. A simulated annealing algorithm for dynamic system reconfigu-
ration and production planning in cellular manufacturing. International Journal of Manufacturing
Technology and Management, 17 (1-2), 103–124.

Defersha, F. M. and Chen, M., 2010a. A hybrid genetic algorithm for flowshop lot streaming with
setups and variable sublots. International Journal of Production Research, 48 (6), 1705–1726.

Defersha, F. M. and Chen, M., 2010b. A parallel genetic algorithm for a flexible job-shop scheduling
with a sequence dependent setups. International Journal of Advanced Manufacturing Technology,
49, 263–279.

Defersha, F. M. and Chen, M., 2012. Jobshop lot streaming with routing flexibility, sequence-
dependent setups, machine release dates and lag time. International Journal of Production Re-
search, 50 (8), 2331–2352.

IBM, 2015. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual, Version 12.6. Online
Documentation.

Kacem, I., 2003. Genetic algorithm for the flexible jobshop scheduling problem. In the Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics. Washington, DC, pp.
3464–6469.

Kulturel-Konak, S., 2012. A linear programming embedded probabilistic tabu search for the unequal-
area facility layout problem with flexible bays. European Journal of Operational Research, 223,
614–625.

26

http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
http://www.andrew.cmu.edu/user/vanhoeve/cpaior/
http://www.ibm.com/support/knowledgecenter/api/content/nl/en-us/SSSA5P_12.6.3/ilog.odms.studio.help/Optimization_Studio/topics/PLUGINS_ROOT/ilog.odms.studio.help/pdf/usrcplex.pdf
http://www.ibm.com/support/knowledgecenter/api/content/nl/en-us/SSSA5P_12.6.3/ilog.odms.studio.help/Optimization_Studio/topics/PLUGINS_ROOT/ilog.odms.studio.help/pdf/usrcplex.pdf

Luo, X., Yang, W., Kwong, C., Tang, J., and Tang, J., 2014. Linear programming embedded genetic
algorithm for product family design optimization with maximizing imprecise part-worth utility
function. Concurrent Engineering: Research and Applications, 22 (4), 309–319.

Maniezzo, V., Stützle, T., and Vob, S. (Eds.), 2009. Matheuristics: Hybridizing Metaheuristics and
Mathematical Programming. Springer-Verlag, Berlin, Germany.

Matheuristics2006, 2006. First Workshop on Mathematical Contributions to Metaheuristics. http:
//astarte.csr.unibo.it/matheuristics2006/.

Ming-Che Lai, Han-suk Sohn, Tzu-Liang(bill) Tseng, and Bricker, Dennis L., 2012. A hybrid ben-
ders/genetic algorithm for vehicle routing and scheduling. International Journal of Industrial En-
gineering, 12 (1), 33–46.

Ming-Che Lai, Han-suk Sohn, Tzu-Liang(bill) Tseng, and Chunkun Chiang, 2010. A hybrid algorithm
for capacitated plant location problem. Expert Systems with Applications, 37 (12), 8599–8605.

Neto, T. and Pedroso, J. P., 2003. Grasp for linear integer programming. In: In J. P. Sousa and M.
G. C. Resende, editors, Metaheuristics: Computer Decision Making, Combinatorial Optimization
Book Series. Kluwer Academic Publishers, p. 545574.

Pedroso, J. P., 2005. Tabu search for mixed integer programming. In: In C. Rego and B. Alidaee,
editors, Metaheuristic Optimization via Memory and Evolution. Springer-Verlag, Berlin, Germany,
pp. 247–261.

Potts, C. and Baker, K., 1989. Flow shop scheduling with lot streaming. Operations Research Letter,
8, 297–303.

Puchinger, J. and Raidl, G. R., 2005. Combining metaheuristics and exact algorithms in combinato-
rial optimization: A survey and classification. In: Artificial intelligence and knowledge engineering
applications: a bioinspired approach. Springer, pp. 41–53.

Raidl, G. R., 2006. A unified view on hybrid metaheuristics. In: Hybrid Metaheuristics. Springer,
pp. 1–12.

Raidl, G. R. and Puchinger, J., 2008. Cobining (integer) linear programming techniques and meta-
heuristics for combinatorial optimization. In: Blum, C. and Blesa Aguilera, M. J., and Roli, A.
and Samples, M. (Eds): Hybrid Metaheuristics-An Emerging Approach to Optimization. Springer-
Verlag, Berlin, Germany, pp. 31–62.

Reis, L. F. R., Walters, G. A., Savic, D., and Chaudhry, F. H., 2005. Multi-reservoir operation plan-
ning using hybrid genetic algorithm and linear programming (GA-LP): An alternative stochastic
approach. Water Resources Managment, 19, 831–848.

Reiter, S., 1966. A system for managing job shop production. Journal of Business, 34, 371–393.

Rezazadeh, H., Mahini, R., and Zarei, M., 2011. Solving a dynamic virtual cell formation problem
by linear programming embedded particle swarm optimization algorithm. Applied Soft Computing,
11, 3160–3169.

Shafigh, F., Defersha, F. M., and Moussa, S. E., 2016. A linear programming embedded simulated
annealing in the design of distributed layout with production planning and systems reconfiguration.
International Journal of Advanced Manufacturing Techonolgy, DOI 10.1007/s00170-016-8813-
z.

27

http://astarte.csr.unibo.it/matheuristics2006/
http://astarte.csr.unibo.it/matheuristics2006/

Talbi, E.-G., 2002. A taxonomy of hybrid metaheuristics. Journal of heuristics, 8 (5), 541–564.

Talbi, E. G. (Ed.), 2013. Hybrid Metaheuristics. Studies in Computational Intelligence. Springer-
Verlag, Berlin, Germany.

Teghem, J., Pirlot, M., and Antoniadis, C., 1995. Embedding of linear programming in a simu-
lated annealing algorithm for solving a mixed integer production planning problem. Journal of
Computational and Applied Mathematics, 64, 91–102.

Urdaneta, A. J., Gómez, J. F., Sorrentino, E., Flores, L., and Diaz, R., 1999. A hybrid genetic
algorithm for optimal reactive power planning based upon successive linear programming. IEEE
Transactions on Power Systems, 14 (4).

Zhang, H. and Gen, M., 2005. Multistage-based genetic algorithm for flexible job-shop scheduling
problem. Journal of Complexity International, 11, 223–232.

28

APPENDIX

Appendix A. Complete pseudocode for Approach-1

Input: For the solution under consideration decode the values of the integer variables xr,m,o,s,j , yr,m,o,j , γs,j ,
zr,m for all (r,m, o, s, j)

1

2 ADD-Objective Minimize Eq. (31): Objective = cmax;
3

4 for {m← 1 to M} for {j ← 1 to J} for {s← 1 to Sj} for {o← 1 to Oj} do
5 if {γs,j = 1} then
6 ADD-Constraint Eq. (32): cmax ≥ co,s,j,m
7 end

8 end
9

10 for {m← 1 to M} for {r ← 1 to Rm} for {j ← 1 to J} for {s← 1 to Sj} for {o← 1 to Oj} do
11 if {xr,m,o,s,j = 1 AND γs,j = 1} then
12 ADD-Constraint Eq. (33): ĉr,m = co,s,j,m
13 end

14 end
15

16 for {m← 1 to M} for {j ← 1 to J} for {s← 1 to Sj} for {o← 1 to Oj} do
17 if {x1,m,o,s,j = 1 and γs,j = 1} then
18 ADD-Constraint Eq. (34): ĉ1,m − bs,j · To,j,m − S∗o,j,m ≥ Dm
19 end

20 end
21

22 for {m← 1 to M} for {r ← 2 to Rm} for {j ← 1 to J} for {s← 1 to Sj} for {o← 1 to Oj} for {j′ ← 1
to J} for {o′ ← 1 to Oj′} do

23 if {yr−1,m,o′,j′ + xr,m,o,s,j = 2 and γs,j = 1} then
24 ADD-Constraint Eq. (35): ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ≥ ĉr−1,m

25 end

26 end
27

28 for {m← 1 to M} for {m′ ← 1 to M} for {r′ ← 1 to Rm′} for {j ← 1 to J} for {s← 1 to Sj} for
{o← 2 to Oj} do

29 if {(1,m) 6= (r′,m′) and x1,m,o,s,j + xr′,m′,o−1,s,j = 2 and γs,j = 1} then
30 ADD-Constraint Eq. (36): ĉ1,m − bs,j · To,j,m − S∗o,j,m ·Ao,j− ≥ ĉr′,m′ + Lo,j
31 end

32 end
33

34 for {m← 1 to M} for {r ← 2 to Rm} for {m′ ← 1 to M} for {r′ ← 1 to Rm′} for {j ← 1 to J} for
{s← 1 to Sj} for {o← 2 to Oj} for {j′ ← 1 to J} for {o′ ← 1 to Oj′} do

35 if {yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j = 3 and γs,j = 1} then
36 ADD-Constraint Eq. (37): ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j− ≥ ĉr′,m′ + Lo,j
37 end

38 end
39

40 for {j ← 1 to J} for {s← 1 to Sj} do
41 ADD-Constraint Eq. (38): bs,j ≤ Bj × γs,j
42 end
43

44 for {j ← 1 to J} do
45 ADD-Constraint Eq. (39):

∑
∀s|(γs,j=1) bs,j = Bj

46 end

29

Appendix B. Complete pseudocode for Approach-2

Input: For the solution under consideration decode the values of the integer variable γs,j .
Input: For each machine m, set its run counter RC[m] = 0.

1

2 ADD-Objective Minimize Eq. (31): Objective = cmax;
3

4 for {g ← 1 to TotalNumberOfProcesses} do
5 (j, s, o,m)← gene(g)
6 if {γs,j = 1} then
7 RC[m]← RC[m] + 1
8 r ← RC[m]
9 Machine[m].Run[r].JobIndex← j

10 Machine[m].Run[r].SublotIndex← s
11 Machine[m].Run[r].OperationsIndex← o
12 Job[j].Sublot[s].Operation[o].MachineIndex← m
13 Job[j].Sublot[s].Operation[o].RunIndex← r
14

15 ADD-Constraint Eq. (32): cmax ≥ co,s,j,m
16

17 ADD-Constraint Eq. (33): ĉr,m = co,s,j,m
18

19 if {r = 1} then
20 ADD-Constraint Eq. (34): ĉ1,m − bs,j · To,j,m − S∗o,j,m ≥ Dm
21 end
22

23 if {r > 1} then
24 j′ = Machine[m].Run[r − 1].JobIndex
25 o′ = Machine[m].Run[r − 1].OperationIndex
26 ADD-Constraint Eq. (35): ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ≥ ĉr−1,m

27 end
28

29 if {r = 1 and o > 1} then
30 m′ = Job[j].Sublot[s].Operation[o− 1].MachineIndex
31 r′ = Job[j].Sublot[s].Operation[o− 1].RunIndex
32 ADD-Constraint Eq. (36): ĉ1,m − bs,j · To,j,m − S∗o,j,m ·Ao,j− ≥ ĉr′,m′ + Lo,j
33 end
34

35 if {r > 1 and o > 1} then
36 m′ = Job[j].Sublot[s].Operation[o− 1].MachineIndex
37 r′ = Job[j].Sublot[s].Operation[o− 1].RunIndex
38 j′ = Machine[m].Run[r − 1].JobIndex
39 o′ = Machine[m].Run[r − 1].OperationIndex
40 ADD-Constraint Eq. (37): ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j− ≥ ĉr′,m′ + Lo,j
41 end

42 end

43 end
44

45 for {j ← 1 to J} for {s← 1 to Sj} do
46 ADD-Constraint Eq. (38): bs,j ≤ Bj × γs,j
47 end
48

49 for {j ← 1 to J} do
50 ADD-Constraint Eq. (39):

∑
∀s|(γs,j=1) bs,j = Bj

51 end

30

	Cover Page
	CAIE_Defersha_Movahed
	1 Introduction
	1.1 Classification of hybrid metaheuristics
	1.2 Hybridization of metaheuristics with LP
	1.3 LP-embedded vs LP-assisted metaheuristics
	1.4 The problem considered - lot streaming in flexible jobshop

	2 Mathematical formulation
	2.1 Problem description and notations
	2.2 MILP model for FJSP-LS

	3 Improved solution procedure
	3.1 Solution representation
	3.2 Evaluation Procedure
	3.3 Linear programming subproblem
	3.4 LP-subproblem implementation approaches
	3.5 Genetic operators
	3.6 Steps of the GAs

	4 Numerical illustrations
	4.1 Solution improvement using LP
	4.2 LP-implementation approach-1 vs approach-2
	4.3 LP-E-GA vs LP-A-GA
	4.4 Parallelization vs Hybridization
	4.5 Robustness of algorithms

	5 Discussion and conclusion
	6 Future research
	Acknowledgements
	References
	Appendix A Complete pseudocode for Approach-1
	Appendix B Complete pseudocode for Approach-2

