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Abstract

Production lot sizing models are often used to decide the best lot size to minimize operation cost,

inventory cost, and setup cost. Cellular manufacturing analyses mainly address how machines

should be grouped and parts be produced. In this paper, a mathematical programming model is

developed following an integrated approach for cell configuration and lot sizing in a dynamic

manufacturing environment. The model development also considers the impact of lot sizes on

product quality. Solution of the mathematical model is to minimize both production and quality

related costs. The proposed model, with nonlinear terms and integer variables, cannot be solved

for real size problems efficiently due to its NP-complexity. To solve the model for practical

purposes, a linear programming embedded genetic algorithm was developed. The algorithm

searches over the integer variables and for each integer solution visited the corresponding val-

ues of the continuous variables are determined by solving a linear programming subproblem

using the simplex algorithm. Numerical examples showed that the proposed method is efficient

and effective in searching for near optimal solutions.

Keywords: Genetic Algorithm, Cellular Manufacturing, Production Planning, Product Qua-

lity

1. Introduction

Various manufacturing production planning and inventory control problems have been stud-

ied extensively by many researchers. Different models and methods developed to solve these

∗For correspondence: mychen@me.concordia.ca, Tel: (514) 848-2424 Ext. 3134; Fax: (514) 848-3175
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problems can be found in widely used textbooks of production engineering or manufactur-

ing systems (Riggs 1981, Singh 1996). Inventory control models from simple EOQ to more

complicated MRP, Kanban and CONWIP models have been developed and widely used in to-

day’s manufacturing industries. Mathematical programming is also a powerful tool for solving

complicated production planning problems, when product structures with multi-item and multi-

levels are considered. A review paper on mathematical programming models for Kanban and

MRP systems is given in Price et al. (1994). Other mathematical programming models for

MRP- or Kanban-based production planning have also been developed as shown in Bard and

Golany (1991), Bitran and Chang (1987), Price et al. (1995), Herer and Shalom (2000), Clark

(2003), Berretta and Rodrigues (2004), Grubbström and Huynh (2006). Many of the mathemat-

ical models and solution methods were developed to solve problems in general manufacturing

or service industries and can be widely applied. Prominent manufacturing features such as pro-

duction flexibility and manufacturing cell formation were often not considered in developing

production planning models (Chen 2001). On the other hand, manufacturing systems analyses

tend to study more specific system characters such as job sequencing and scheduling, alternative

process plans, as well as different ways of forming cells and material handling (e.g. Burbridge

(1989), Chen and Cheng (1995), Jamal (1993)). As pointed out in Arvindh and Irani (1994),

an integrated approach should be pursued in manufacturing system analysis, since different as-

pects of a system are interrelated in many ways. In addition, a comprehensive model consisting

of different aspects of the system can help one to understand the problem better. Integrated

system approach can minimize the possibility of certain important aspects of the system being

overlooked, while other issues are being studied.

One aspect of cellular manufacturing system that may be interrelated with production plan-

ning can be dynamic system reconfiguration. In most research articles, cell formation has been

considered under static conditions in which cells are formed for a single time period with known

and constant product mix and demand. In contrast, in a more realistic dynamic situation, a

multi-period planning horizon is considered, where the product mix and demand in each period

is different. This occurs in seasonally or monthly production. As a result, the cell configuration

in one period may not be optimal in another period. To address this problem, several authors

recently proposed models and solution procedures by considering dynamic cell reconfigura-

tions over multiple time periods (e.g. Chen (1998), Wicks and Reasor (1999), Mungwattana

(2000), Tavakkoli-Moghaddam et al. (2005b,a), Balakrishnan and Cheng (2005), Defersha and

Chen (2006), Saidi-Mehrabad and Safaei (2006)). These methods assume that the production

quantity is equal to demand in each planning period. In reality, however, production quantity

may not equal the demand as it may be satisfied from inventory or by subcontracting. Thus
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production quantity should be determined from production planning decisions in order to de-

termine the number and type of machines to be installed in the system. However, in order to

determine the production quantities in each planning period the number and type of machines to

be installed in manufacturing cells should in turn be known because of capacity consideration.

Thus dynamic cell formation problem and the production planning are interrelated and may

not be solved sequentially. Moreover, production quantity of an item may also depend on the

production quantity of other items because of assembly requirements. Thus product structure

(bill-of-materials) should be considered. Several researchers (Garvin (1988), Porteus (1986),

Kim and Hong (1999), Jaber and Bonney (2003)) also showed that there is a relationship be-

tween product quality (defect rate) and production run length (lot size) and this issue should

also be considered in production planning.

Based on the above discussion, we propose a mathematical programming model for an in-

tegrated dynamic cell formation and a multi-item multi-level capacitated lot sizing problem

considering the impact of lot size on product quality. This model is an extension of the model

discussed in Chen (2001) where product structure (bill-of-materials), machine capacity, work-

load balancing, alternative routings and impacts of lot sizes on product quality were not taken

into account. However, integrated models of this type may impose computational difficulties

and may not be solvable using off-the-shelf optimization software even for small size prob-

lems. Thus, efficient heuristic methods are required to solve the proposed model for problems

of larger sizes. In this paper, we develop a heuristic method based on genetic algorithm to solve

the proposed model. The algorithm searches over the integer variables and uses the simplex

algorithm in ILOG CPLEX (ILOG Inc. 2003) to solve a linear programming subproblem and

determined the corresponding valuers of the continuous variables for each solution point vis-

ited. Finally, the general branch and cut algorithm in ILOG CPLEX is used as a post-optimizer

to further improve the solution found by the genetic algorithm. The remainder of this paper

is organized as follows. In Section 2, we discuss the impact of run length on product quality

and present a detailed description of the proposed dynamic cell formation and lot sizing model.

The components of the LP embedded genetic algorithm are presented in Section 3. Numerical

examples are in Section 4 to illustrate the model and computational efficiency of the algorithm.

Discussion and conclusion are given in Section 5.

2. Model Development

In this section, first we discuss the impact of run length on product quality as found in

literature. Following this discussion, the problem description and the mathematical formulation
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for an integrated dynamic cell formation and MRP lot sizing model is presented. The model

incorporates the impact of run length on product quality. The choice of MRP as the production

planning technique in the integrated model follows the recent report in Hyer and Wemmerlöv

(2002) which stated most CMS users employ MRP in their production planning activities.

2.1. Impact of Run Length on Product Quality

Product quality has not been considered in most lot sizing models. At the same time, several

managers pointed to a connection between run length and defect rates (Garvin 1988). Long runs

often provide a stable environment–the opportunity to master required skills through repetition

(Disruptive philosophy). As operators become familiar with the production process, defect rates

normally fall, and eventually diminish to a minimum when technical limits are reached and op-

portunities for learning are exhausted. Garvin (1988) pointed out that this observation was

strongly supported by statistical analysis and concluded that the differences in run length alone

explained 50-70% of the variation in defect rates. Contrary to this observation, Porteus (1986),

Huge and Anderson (1988), Li and Cheng (1994), Schonberger and Knod (1994), Kim and

Hong (1999), and Jaber and Bonney (2003) showed that product quality is positively affected

by reduced lot-sizes (JIT philosophy). Among them, Porteus (1986) and Kim and Hong (1999)

modeled the situation where a production process deteriorates with a certain probability from

an initially in-control state to an out-of-control state during the production. Huge and Anderson

(1988) stated that without even working on quality improvement, defect rates improve propor-

tionally with the reduction in lot sizes. Prompt identification of defects is the major reason

frequently given for justifying this positive relationship between short run length and product

quality. Smaller lots get used up sooner; hence defective parts are identified earlier (Schon-

berger and Knod 1994). This reduces scrap and rework and allows sources of problems to be

quickly identified and corrected. Thus there is an incentive to produce smaller lots, and have a

smaller fraction of defective units.

Urban (1998) proposed a simple relation between lot size x and defect rate υ given by the

equation υ = α + β/x where α and β are determined using linear regression from historical

data. In his model, the number of defective items in a lot size of x is given by υx which is

equal to αx+β. The constant α is in [0, 1). The other constant β is negative for JIT philosophy

and positive for disruptive philosophy. The relationships of υ versus x for the two different

philosophies are plotted in Figure 1. This equation can be used to represent the influence of

run length on product quality in a production planning model under the JIT philosophy or the

disruptive philosophy. In this paper, we use Urban’s approach to incorporate the impact of

run length on product quality in the integrated dynamic cell formation and lot sizing model
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presented in the following sections.

(a) Disruptive philosophy (b) JIT philosophy

Figure 1. The impact of lot size on product quality (Urban (1998))

2.2. Problem Description

Consider a manufacturing system consisting of a number of machines to process different

parts. A production lot of a part may be split into sub-lots to be processed along different

alternative routes. In each route several operations are performed on different machines in a

given sequence. In addition, we consider the manufacturing system in a number of time periods.

One time period could be a month, a season, or a year. Each machine has a limited capacity

expressed in hours during each time period. Machines can have one or more identical copies

to meet capacity requirements and reduce/eliminate inter-cell movement. Bill-of-material of

finished products is given. The independent demands for the parts vary from period to period

in a deterministic manner. In planning the production, the production volume of a part in a

given period should be derived from (1) the number of finished parts in storage, (2) the level of

its independent demand, (3) the level of subcontracting, (4) defect allowance, (5) the level of

inventory at the beginning of the planning period and those to be carried over to the next period,

and (6) the quantities of the parent parts in the products structure. The defect allowances are to

be calculated following the JIT or disruptive philosophy. To determine manufacturing cells, we

assume that the machines will be grouped into separate cells with minimum inter-cell movement

of the parts and the subsequent system reconfiguration should be planned. In planning the

production and (re)configuring the system, it is also required that (1) the workload of the cells

should be balanced, (2) machine capacities should not be exceeded (3) machines that cannot

be located in the same cell should be separated, (4) machines that cannot be separated should

be co-located, and (5) the number of machines in each cell should be with the lower and upper

limits. The overall objective is to minimize the system costs due to machine procurement,
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inter-cell materials handling, machine operation, system reconfiguration, part subcontracting,

setup, inventory holding, and replacement of defective parts for the entire planning horizon.

The notations used in the model are presented below.

Model Parameters:

T - Number of planning period indexed by t = 1, 2, · · · , T
I - Number of part type indexed by i = 1, 2, · · · , I

Ri - Number of route of part i indexed by r = 1, 2, · · · , Ri

Jri - Number of operations of part i in route r indexed by j = 1, 2, · · · , Jri

K - Number of machine types index by k = 1, 2, · · · , K
L - Number of cell indexed by l = 1, 2, · · · , L

di(t) - Demand for part i in time period t

Γi - The set of immediate successor items to item i

aii′ - The number of item i needed by one unit of item i′, where i′ ∈ Γ(i)

mjri - Index of the machine type used to process operation j of part i along route r

λjri - Processing time in minutes of operation j of part i along route r

Sri - Cost to set up route r of part i

Wi - Replacement cost of one defective item of type i

Hi - Unit inventory carrying cost per period for item i

Pk - Procurement cost of type k machine,
Ok - Operation cost per hour of type k machine
Ck - Per period capacity of one unit of type k machine
R+

k - Cost of installing one unit of type k machine,
R−

k - Cost of removing one unit of type k machine,
Vi - Unit cost to move part i between cells,
Θ - A set of machine pairs {(ka, kb)/ka, kb ∈ {1, · · · , K}, ka 6= kb, and ka cannot

be placed in the same cell with kb}
Ω - A set of machine pairs {(kc, kd)/kc, kd ∈ {1, · · · , K}, kc 6= kd, and kc should

be placed in the same cell with kd}
LBl - Minimum number of machines in cell l

UBl - Maximum number of machines in cell l

q - Inter-cell workload balancing factor
M - Large positive number,

Model Variables:
General Integer

Nkl(t) - Number of type k machines in cell l during period t

y+
kl(t) - Number of type k machines added to cell l at the beginning of period t

y−kl(t) - Number of type k machines removed from cell l at the beginning of period t
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Binary

rkl(t) -

{
1, if type k machines are to be assigned to cell l during time period t

0, otherwise.

zri(t) -

{
1, if route r of part i is set up for production during time period t

0, otherwise.

ηjril(t) -


1, if jth operation in route r of part i is processed in cell l during time

period t

0, otherwise.

Continuous

xri(t) - The production sub-lot size of item i along route r in period t

x̄i(t) - The quantity of item i subcontracted in period t

Ii(t) - Inventory level of product i at the beginning of time period t

dfri(t) - Defect allowance of part type i along its rth route in period t

eri(t) - Auxiliary variable

2.3. Objective Function and Constraints

Following the problem description and notations given in the previous section, the integrated

mathematical model for cellular manufacturing system design and production planning is pre-

sented below.

Minimize:

Z =
K∑

k=1

Pk ·

(
L∑

l=1

Nkl(T )−
L∑

l=1

Nkl(0)

)

+
1

2

T∑
t=1

L∑
l=1

I∑
i=1

Ri∑
r=1

Jri−1∑
j=1

Vi · xri(t) |ηj+1,ril(t)− ηjril(t)|

+
T∑

t=1

I∑
i=1

Ri∑
r=1

Jri∑
j=1

xri(t) · λjri ·Omjri

+
T∑

t=1

L∑
l=1

K∑
k=1

(
R+

k · y+
kl(t) + R−

k · y−kl(t)
)

+
T∑

t=1

I∑
i=1

Φi · x̄i(t)

+
T∑

t=1

I∑
i=1

Ri∑
r=1

Sri · zri(t)
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+
T∑

t=1

I∑
i=1

Hi · Ii(t)

+
T∑

t=1

I∑
i=1

Wi ·
Ri∑

r=1

dfri(t) (1)

Subject to:

L∑
l=1

ηjril(t) = zri(t) ; ∀(j, r, i, t) (2)

xri(t) ≤ M · zri(t) ; ∀(r, i, t) (3)

Ii(t− 1) +

Ri∑
r=1

xri(t) + x̄i(t)−
Ri∑

r=1

dfri(t)− Ii(t)

= di(t) +
∑

i′ ∈ Γi

aii′ ·

(
Ri′∑
r=1

xri′(t) + x̄i′(t)−
Ri′∑
r=1

dfri′(t)

)
; ∀(i, t) (4)

dfri(t) = αri · xri + βri · zri(t) ; ∀(r, i, t) (5)∑
∀(j,r,i)|mjri=k

xi(t) · ηjril(t) · λjii ≤ Ck ·Nkl(t) ; ∀(k, l, t) (6)

L∑
l=1

Nkl(t)−
L∑

l=1

Nkl(t− 1) ≥ 0 ; ∀(k, t) (7)

I∑
i=1

Ri∑
r=1

Jri∑
j=1

xri(t) · ηjril(t) · λjri ≥

q

L

L∑
l=1

I∑
i=1

Ri∑
r=1

Jri∑
j=1

xri(t) · ηjril(t) · λjri ; ∀(l, t) (8)

Nkl(t) = Nkl(t− 1) + y+
kl(t)− y−kl(t) ; ∀(k, l, t) (9)

LBl ≤
K∑

k=1

Nkl(t) ≤ UBl ; ∀(l, t) (10)

Nkl(t) ≤ M∞ · rkl(t) ; ∀(k, l, t) (11)

rkl(t) ≤ Nkl(t) ; ∀(k, l, t) (12)

rkal(t) + rkbl(t) ≤ 1 ;
(
ka, kb

)
∈ Θ,

∀(l, t) (13)

rkcl(t)− rkdl(t) = 0 ;
(
kc, kd

)
∈ Ω,

∀(l, t) (14)

y+
kl(t), y−kl(t), Nkl(t) ∈ {0, 1, 2, · · ·} ; ∀(k, l, t) (15)

ηjril(t), zri(t), rkl(t) ∈ {0, 1} ; ∀(j, r, i, l, t) (16)
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Model Objective Function: The objective function given in Eq. (1) comprises several cost

terms. The first term is machine procurement cost in the entire planning horizon. In this cost

term, Nkl(0) stands for the number of type k machines available in the current job shop system.

Nkl(0) = 0,∀k in the case of setting up a new system. The second term of the objective func-

tion represents the inter-cell material handling cost. The third, forth, and fifth terms stand for

machine operating cost, machine (re)configuration cost and subcontracting cost. The last three

terms are machine setup cost, inventory holding cost and replacement costs of defective parts.

Model Constraints: The constraint in Eq. (2) ensures that if a production route of a part is

setup, an operation in that route will be assigned to a cell. Eq. (3) ensures that setup is per-

formed (i.e. zr,i(t) = 1) whenever there is production in period t (i.e. xr,i(t) > 0). Eq. (4) is

inventory balance constraint. It states that the beginning inventories together with the produc-

tion and subcontracted quantities of each item in each period less the defect allowance and the

inventory at the end of the period should meet the external demand and the dependent demand

generated by its non-defective successor items. The constraint in Eq. (5) is required to deter-

mine the number of defective items under the disruptive philosophy. If the JIT philosophy is

perused, the constraint in Eq. (5) will be replaced by the constraint in Eq. (17). In using the

equation proposed in Urban (1998), the defective rate is zero for a production run length below

certain value under JIT philosophy (see figure 1-b). In such cases, the right hand side of Eq.

(17) will be negative and the constraint can be satisfied by assigning zero to dri(t) and a positive

value to the auxiliary variable eri(t).

dfri(t)− eri(t) = αri · xri + βri · zri(t); ∀(r, i, t) (17)

Capacity limitations of the machines are expressed in Eq. (6). Eq. (7) implies that the number of

type k machines used in any time period is greater than or equal to that in the previous period.

This means that the model is not going to remove extra machines of any type if that type of

machines happen to be in excess in a certain time period. The presence of extra machines

in the system increases system flexibility and reliability by providing alternative routes during

machine breakdown. Eq. (8) enforces workload balance among cells. In this constraint, factor

q ∈ [0, 1) is used to determine the extent of the workload balance. If q is chosen close to unity,

the allowable workload of each cell will be close to the average workload. This makes the

workloads of the cells more or less equal. Eq. (9) states that the number of type k machines in

the current period in a particular cell is equal to the number of machines in the previous period,

adding the number of machines being moved in, and subtracting the number of machines being

moved out of the cell. Eq. (10) specifies the lower and upper bounds of cell sizes. Eqs. (11)
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and (12) set the value of rkl(t) equal to 1 if at least one unit of type k machine is placed in cell l

during period t or 0 otherwise. Eq. (13) ensures that machine pairs included in Θ are not placed

in the same cell. Eq. (14) is to ensure that machine pairs included in Ω should be placed in the

same cell. Eqs. (15) and (16) are integrality constraint.

2.4. Linearizing the Model

The model presented above is a nonlinear programming model due to the nonlinear terms

in the second term of the objective function, the capacity constraint (Eq. (6)) and the workload

balancing constraint (Eq. (8)). These terms may be linearized in order to (a) solve the model

using the general branch and cut algorithm for small size problems and (b) use such exact

algorithm as a post-optimizer where the final good solution found by a heuristic method is used

as the starting incumbent solution. The nonlinear term xri(t) |ηj+1,ril(t)− ηjril(t)| in the second

term of the objective function can be linearized in two steps. In the first step, we introduce a

binary variable ajril(t) and replace xri(t) |ηj+1,ril(t)− ηjril(t)| by the quadratic term xri(t) ·
ajril(t) with the additional constraints given in Eqs. (18)–(20). In the second step, we replace

xri(t) · ajril(t) by a continuous variable bjril(t) with additional constraints given in Eqs. (21)-

(23). Similarly, the quadratic terms xi(t) · ηjril(t) in the capacity and the workload balancing

constraints can be replaced by another continuous variable cjril(t) with the added constraints

given in Eqs. (24)-(26).

ηj+1,ril(t)− ηjril(t) ≤ ajril(t) ; ∀(j, r, i, l, t) (18)

−ηj+1,ril(t) + ηjril(t) ≤ ajril(t) ; ∀(j, r, i, l, t) (19)

ajril(t) ∈ {0, 1} ; ∀(j, r, i, l, t) (20)

bjril(t) ≥ xri(t) + M · ajril(t)−M ; ∀(j, r, i, l, t) (21)

bjril(t) ≤ xri(t) ; ∀(j, r, i, l, t) (22)

bjril(t) ≤ M · ajril(t) ; ∀(j, r, i, l, t) (23)

cjril(t) ≥ xri(t) + M · ηjril(t)−M ; ∀(j, r, i, l, t) (24)

cjril(t) ≤ xri(t) ; ∀(j, r, i, l, t) (25)

cjril(t) ≤ M · ηjril(t) ; ∀(j, r, i, l, t) (26)
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3. Linear Programming Embedded Genetic Algorithm

In order to efficiently solve the model presented in the previous section for large data set,

we develop a linear programming embedded genetic algorithm (LPEGA). For a given solution

point, the values of the integer variables are obtained by decoding the solution representation

and using a problem specific heuristic. To compute the corresponding values of the continuous

variables and the value of the objective function, a LP sub-subproblem is solved using the

simplex algorithm in ILOG CPLEX (ILOG Inc. 2003). The main idea of embedding a simplex

algorithm in a meta-heuristic is similar to that presented in Teghem et al. (1995). The advantage

of embedding an LP subproblem in the genetic algorithm can be explained as follows. For

a given integer solution, there may be infinite combinations of the values for the continuous

variables. However, by solving the LP subproblem, values that optimally correspond to the

integer solution can be obtained easily. It is also important to note that, the solution of the LP

subproblem satisfies several constraints having continuous variables which otherwise may be

difficult to satisfy by using genetic search alone.

Figure 2. Solution representation

3.1. Chromosomal Encoding of a Solution

The chromosomal encoding of a solution is the first task in applying a genetic algorithm.

The solution encoding of the proposed model involves the integer decision variables Nkl(t),

ηjril(t), and zri(t) enabling a randomly generated solution satisfy the constraint in (2). The

constraints in (7), (9), (11), (12), and (13) are being taken care by a repair heuristic. Figure 2

illustrates a chromosome structure assuming 6 part types (P1 to P6) are to be precessed in 3 cells

(C1, C2 and C3) during T planning period. A segment corresponding to a given time period has

two sub-segments: the first sub-segment, labelled “cells”, represents the machine configurations

and the second sub-segment, labelled “parts”, represents the operation assignment of the parts

to various cells. In this figure, C1 in the cells sub-segment and P1 in the parts sub-segment of
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period 1 are shown in details. The gene Nkl in the chromosome takes a positive integer value. It

is the number of type k machines installed in cell Cl in the period corresponding to its location

in the chromosome structure. In the details for P1, we assume that part type 1 has two alternative

routes labelled R1,1 and R2,1 with three and two operations respectively. The gene Zr takes an

integer value in {0, 1} to show whether route r is to be setup for production. The gene Cjri

takes the value in {1, · · · , L} and represents the index of the cell in which operation j in route

r of part i is to be processed.

3.2. Decoding a Chromosome

The values of decision variables Nkl(t) and zri(t) are directly read from the chromosome,

whereas the decision variable ηjril is determined using Eq. (27). From this equation, it can be

seen that the constraint in Eq. (2) can be satisfied by any randomly generated solution as shown

in Eq. (28).

ηjril(t) =


zri(t) ; If the subscritp l = Cjri

0 ; otherwise.

(27)

L∑
l=1

ηjril =

 ∑
∀l 6=Cjri

ηjril

+ ηjri,cjri
= 0 + zri(t) = zri(t) (28)

3.3. Machine Assignment Repair Heuristics

The machine configuration decision Nkl(t) directly obtained from the chromosome can be

regarded as a preliminary value as the constraint in Eq. (7) and the machine separation con-

straint in Eq. (13) may be violated. A chromosome violating these constraints is repaired using

machine assignment repair heuristic. Violation of the constraint in Eq. (7) can be repaired as

follows. The heuristic first defines a new variable Mkl(t) and set it equal to the preliminary val-

ues Nkl(t) as obtained directly from the chromosome. After this step, the heuristic recalculates

Nkl(t) as follows. First, it sets the number of machines, Nkl(1), in each cell for period 1 equal to

Mkl(1). The number of machines of each type installed in various cells for t > 1 are determined

recursively as follows. Let M̃k(t) and Ñk(t) be equal to
∑L

l=1 Mkl(t) and
∑L

l=1 Nkl(t), respec-

tively. If Ñk(t − 1) ≤ M̃k(t), then the heuristic sets Nkl(t) = Mkl(t). If Ñk(t − 1) > M̃k(t),

then the heuristic first assigns those type k machines to the various cells to the level equal to

Mkl(t) and leaves the extra machines in the cells in which they were perviously installed.

The next repair is to correct the violation of the machine separation constraint given in

Eq. (13) which is difficult to satisfy by using a penalty method. In order to perform this
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repairing operation, the heuristic first arbitrarily forms a certain number of mutually exclusive

sets of machines taken from Θ such that the machines in a given set can be placed in the same

cell. Once these sets of machines are identified, a certain number of cells will be associated

with each set. A cell will be associated with at most one set of machines while the set of

machines can be associated with more than one cell. Finally, for a chromosome under repair,

move out the machines in a given set from the cells that are not associated to this set and

arbitrarily redistribute these machines among the cells associated to this particular set. This

guarantees the fulfillment of the machine separation constraint. The heuristic has randomness

behavior making it compatible with the genetic search. Once the decision variables Nkl(t)

are determined by decoding a chromosome and using the machine assignment heuristics, the

configuration decision variables y+
kl(t) and y−kl(t) can be determined using Eqs. (29) and (30)

respectively. This last step satisfies the constraint in Eq. (9) of the model.

y+
kl(t) =


Nkl(t), if t = 1,

max{0, Nkl(t)−Nkl(t− 1)}, if t > 1.

(29)

y−kl(t) =


0, if t = 1,

max{0, Nkl(t− 1)−Nkl(t)}, if t > 1.

(30)

3.4. A Linear Programming Subproblem

The values of all the integer decision variables are obtained by decoding a chromosome

and using the repair heuristic as explained in the previous two sections. This integer solution

satisfies all the constraints involving only the integer variables, except the cell size and machine

collocation constraints which are being taken care by the penalty method. The corresponding

values of the continuous variables xri(t), x̄i(t), Ii(t) and dfri(t) are determined by solving a

linear programming subproblem given below. This LP subproblem is to minimize the sum of

the inter-cell movement cost, operation cost, inventory holding cost and replacement cost of

defective parts, subject to the constraints in Eqs. (3)–(6) and (8). In this LP subproblem, these

constraints are renumbered as Eqs. (32)–(36).

Minimize

ZLP =
1

2

T∑
t=1

L∑
l=1

I∑
i=1

Ri∑
r=1

Jri−1∑
j=1

Vi · xri(t) |ηj+1,ril(t)− ηjril(t)|

13



+
T∑

t=1

I∑
i=1

Ri∑
r=1

Jri∑
j=1

xri(t) · λjri ·Omjri

+
T∑

t=1

I∑
i=1

Φi · x̄i(t)

+
T∑

t=1

I∑
i=1

Hi · Ii(t)

+
T∑

t=1

I∑
i=1

Wi ·
Ri∑

r=1

dfri(t) (31)

Subject to:

xri(t) ≤ M · zri(t) ; ∀(r, i, t) (32)

Ii(t− 1) +

Ri∑
r=1

xri(t) + x̄i(t)−
Ri∑

r=1

dfri(t)− Ii(t)

= di(t) +
∑

i′ ∈ Γi

aii′ ·

(
Ri′∑
r=1

xri′(t) + x̄i′(t)−
Ri′∑
r=1

dfri′(t)

)
; ∀(i, t)) (33)

dfri(t) = αri · xri + βri · zri(t) ; ∀(r, i, t) (34)∑
∀(j,r,i)|mjri=k

xi(t) · ηjril(t) · λjii ≤ Ck ·Nkl(t) ; ∀(k, l, t) (35)

I∑
i=1

Ri∑
r=1

Jri∑
j=1

xri(t) · ηjril(t) · λjri ≥

q

L

L∑
l=1

I∑
i=1

Ri∑
r=1

Jri∑
j=1

xri(t) · ηjril(t) · λjri ; ∀(l, t) (36)

3.5. The Fitness Function

The purpose of the fitness function is to measure the fitness of the candidate solutions in

the population with respect to the objective and constraint functions of the model. For a given

solution, its fitness is given by Eq. (37) as the sum of the objective function of the model (Eq.

(1)) and the penalty terms of constraint violations. The value of the model objective function is

the sum of the objective function of the LP subproblem, machine procurement cost, and system

reconfiguration cost. The penalty terms are to enforce the cell size and machine collocation

constraints. The factors fcs and fmc are used for scaling these penalty terms. Finally, for a

minimization problem, the raw fitness score F needs to be transformed so that the minimum

raw fitness will correspond to the maximum transformed fitness. This is achieved by using the

14



equation in Eq. (38) where F̃ is the transformed fitness function.

F = Model Objective Function

+ fcs ·
T∑

t=1

L∑
l=1

max

{
0,

K∑
k=1

Nkl(t)− LBl ,
K∑

k=1

Nkl(t)− UBl

}

+ fmc ·
T∑

t=1

L∑
l=1

 ∑
∀(kc,kd)∈Ω

|rkcl(t)− rkdl(t)|

 (37)

F̃ =



1 ; if Fmax = Fmin

Fmax−F
Fmax−Fmin

; if Fmax−F
Fmax−Fmin

> 0.1

0.1 ; otherwise.

(38)

3.6. Genetic Operators

Genetic operators evolve the population in creating promising candidate solutions to replace

the less promising ones. These operators are generally classified as selection, crossover, and

mutation operators. In the proposed genetic algorithm, the selection operator is implemented

by simulating a biased roulette wheel (Goldberg 1989). Hong et al. (2000) suggested that each

problem, even each stage of the genetic process in a single problem, may require appropriately

defined multiple genetic operators for best results. In this section we present several crossover

and mutation operators that are specific to solving the proposed model.

Crossover Operators: The crossover operators produce children by exchanging information

contained in the parents. In this section we present several crossover operators tailored to the

structure of the solution representation shown in Figure 2. These are:

• Single point crossover,

• Period swamp crossover,

• All-cell swamp crossover,

• All-part swamp crossover,

• Single-cell swamp crossover,

• Single-part swamp crossover and

• Route swamp crossover

15



Single-point crossover operator is a standard crossover operator used in most genetic al-

gorithms. It randomly generates a single crossover point along the length of the chromosome

and swamps the right-hand-side segments of the parents. The period-swap crossover opera-

tor randomly selects a period in the planning horizon and exchanges the segments of the parent

chromosomes corresponding to that period. All-cell swap crossover operator randomly selects a

cells sub-segment and exchanges this sub-segment between the parents. All-part swap crossover

operator works similarly to exchange the parts sub-segment. Single-cell swap crossover opera-

tor randomly selects a single cell along the length of the chromosome and exchanges machine

assignment information of this cell between parents. Single-part swap crossover operator works

similarly to exchange the information about the various production routes of this part between

parents. Route swamp crossover randomly selects a production route of a part along the length

of the chromosome and exchanges the operations-cell assignment of this route between parents.

Mutation Operators: The mutation operators act on a single chromosome to alter the infor-

mation contained in the genes. These operators are usually applied under certain probabilities

much less than the crossover probabilities. In this section we present five mutation operators

used in the genetic algorithm. These are:

• Machine mutator,

• Setup mutator,

• Part level cell mutator,

• Route level cell mutator,

• Operation level cell mutator,

Machine mutator applied along the entire length of a chromosome to step up or down the num-

ber of the machine of each type installed in each cell during each period. The setup mutator

is applied to each of the zri(t) in the chromosome to switch its value between 0 and 1. The

part-level cell mutator randomly alters the cjri’s of all the operations in all the routes of a part

to other identical values in {1, 2, · · ·L}. The route-level cell mutator randomly alters the cjri’s

of all the operations of a given route of a given part to other identical values in {1, 2, · · ·L}.

The part- and route-level mutation operators are applied during the first phase of the genetic

search where the quest is to find the best configuration with independent cells. Operation-level

cell mutator alters the value of each of cjri’s of the operations of the parts in various route.

However, this operator is applied for each operation independently and may result in different

values of cjri’s of the operations of a part. Hence, it may result in inter-cell movements. For this

reason, this operator is applied in the second phase of the genetic search where the attempt is

16



to optimize the cost of inter-cell movement along other cost terms of the model. Moreover, this

operator is applied at a lower mutation rate than part-level cell mutator to avoid unnecessary

perturbations.

3.7. Two Search Phases

Generating independent cells is simpler than generating cells which optimize inter-cell

movements and other cost terms of the objective function. Moreover, the best configuration

with independent cells could be a neighborhood solution to the best configuration with optimal

inter-cell movements as generating relatively independent cells is one of the design objectives.

With this consideration, the search process was divided into two phases. In the first phase, the

algorithm attempts to quickly find the best configuration with independent cells. To perform this

task, the algorithm applies all the genetic operators except the single-point crossover and the

operation-level cell mutator as these operators may result in solutions with inter-cell movement.

In the second phase, the algorithm finds the configuration with the best inter-cell movements

based on the solution found in the first phase. To perform this task, the algorithm applies all the

genetic operators except the part-level and route-level cell mutation operators as these operators

only results in independent cells. The steps of LPEGA are represented in the flow chart given in

Figure 3 using the notations given below. The steps were coded in C++ and run on a Pentium-4

(2.93 GH, 512 MB Ram) PC computer. Simplex subroutines within ILOG CPLEX package

(ILOG Inc. 2003) was used to solve the embedded linear programming model.

PS Population size

p Index for individual in a given population

g Generation counter,

gmax Maximum number of generations,

Phase An indicator number which equals to 1 for the first phase or 2 for the second phase,

gphase Generation at which the value of Phase should be set equal to 2 if it were not

previously set to this value by other conditions,

b Number of successive generations counted without any improvement of the best

individual so far found,

bmax1 Maximum value of b at which point the second phase is to be entered if Phase was

equal to 1,

bmax2 Maximum value of b in the second phase at which point the search will terminate.
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StartSet g = 1,  p = 1,  and b = 0 ; Randomly generate initial populationof PS individuals with independent cells Obtain solution of LP Calculate the raw fitness. and then calculate the transformed fitnessIs p = PS?p =p + 1 NoRandomly form PS/2 pairs of parents Apply cross over to form PSchildrenApply mutation to each PS children and generate parents for the next generation Is the current best solution better than the one so far found ?Update the best individual so far foundIs g = gmax?Stop
b = b + 1

Is b = bmax2?YesYesNog = g + 1 and p = 1
Yes

Yes
No

Formulate and solve the corresponding LP
Constitute the parent population

Identify the current best individual
 b = 0Select PS individuals with replacement based on the transformed fitness Is b = bmax1? Is Phase = 1?Set Phase = 2YesNo YesNoNo

Is g = gphase?No Yes

Repair individual pusing repair heuristicDoes individual pviolates constrains ? NOYes Obtain the the decision variables
)(),(),( ttztN jrilrikl η

Figure 3. The steps of LPEGA
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Figure 4. Bill-of-Materials for 12 part types

4. Numerical Examples

4.1. Model Analysis

In this section we present a numerical example showing some of the basic features of the

proposed model and illustrating the need for an integrated approach in manufacturing system

analysis. The example problem consists of processing 12 part types using 6 types of machines

in 3 cells during 4 planning periods. The bill-of-materials describing assembly relationship of

the parts is given in Figure 4. In this figure, the numbers inside the rectangles are part indices

and those in the braces are the quantities of the lower level items required by one unit of their

immediate predecessor items. In Tables 1 and 2 are data for the part types. In Table 1 are unit

inventory holding, defective item replacement, inter-cell movement, and subcontracting costs.

This table also shows the independent demand of the parts in the four planning periods. Table

2 shows data pertaining to the various production routes of the parts. These are the data of

machine type and processing time required by each operation in each route, setup cost of each

route and the constants α and β for calculating the defect allowances. Table 3 contains the data

for the different machine types. The data includes machine procurement cost, unit capacity per

period, installing and uninstalling costs, operation costs, and the number of machines of each

type available at the beginning of the planning horizon.

With the data given in Figure 4 and Tables 1-3, the proposed model was solved using the

general branch and cut algorithm in ILOG CPLEX where the solution generated by the pro-

posed genetic algorithm was used as a starting incumbent solution. In solving the model, three

different cases were considered. These three cases were differentiated by considering (1) JIT

philosophy, (2) neither JIT nor disruptive philosophy and (3) disruptive philosophy, respec-

tively. Decisions regarding production route selection, production lot sizing, defect allowance,

inventory level, and the sequence by which the parts visit the cells are given in Tables 4 and 5 for
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Table 1. Data for the parts

Costs related to Independent
Inventory Replacing Inter-cell Sub- Demand in Period t

Part holding Defective Movement contracting 1 2 3 4
1 0.35 5 0.12 16 1500 1500 1400 200
2 0.35 10 0.13 24 1100 1400 1200 1300
3 0.35 10 0.12 24 1230 0 1350 1400
4 0.25 5 0.12 16 1200 1250 1400 1350
5 0.35 10 0.13 24 0 1800 1600 2400
6 0.50 10 0.12 24 1100 1500 1200 1600
7 0.35 10 0.13 24 0 1400 1600 300
8 0.35 5 0.12 24 0 1300 1600 2400
9 0.50 10 0.13 24 1100 1200 4000 1200

10 0.50 5 0.12 28 0 1200 1500 200
11 0.35 10 0.12 28 1200 1500 200 1520
12 0.35 10 0.12 28 2100 5000 1400 1300

Table 2. Data for the parts (Continued)
Disruptive- JIT-

Operation Data philosophy philosophy
Part Route (mjri, λjri) Si α β α β

1 1 (3, 3)-(6, 4) 1920 0.02 180 0.08 -120
2 1 (1, 4)-(3, 5)-(6, 5) 1900 0.03 210 0.12 -140

2 (1, 4)-(4, 5)-(3, 5) 1920 0.04 210 0.16 -140

3 1 (2, 2)-(5, 3)-(4, 3) 1400 0.03 150 0.12 -100
4 1 (3, 3)-(5, 4)-(2, 3) 1920 0.02 150 0.08 -100

5 1 (2, 4)-(6, 4) 1930 0.01 180 0.04 -120
6 1 (2, 3)-(3, 3)-(6, 2) 1770 0.02 180 0.08 -120

2 (2, 4)-(6, 4) 1700 0.02 210 0.08 -140
3 (2, 2)-(1, 3)-(4, 3) 1800 0.03 210 0.12 -140

7 1 (6, 4)-(2, 5) 1800 0.02 210 0.08 -140
2 (2, 3)-(5, 3)-(3, 3) 1820 0.02 240 0.08 -160

8 1 (1, 4)-(4, 4)-(2, 4) 1890 0.02 180 0.08 -120

9 1 (6, 3)-(3, 3) 1900 0.03 240 0.12 -160
10 1 (1, 4)-(4, 3)-(3, 4) 1930 0.03 180 0.12 -120

2 (3, 5)-(1, 4)-(4, 2) 1780 0.03 240 0.12 -160
11 1 (1, 3)-(4, 4)-(3, 3) 1920 0.02 240 0.08 -160

2 (5, 3)-(4, 6) 1940 0.03 240 0.12 -160
3 (1, 2)-(4, 3)-(5, 4) 1990 0.02 210 0.08 -140

12 1 (2, 2)-(6, 3) 1890 0.02 240 0.08 -160
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Table 3. Data for the machines

Machine Procurement Capacity Installation Uninstalling Operation No of machines
Type Cost (hrs) Cost cost Cors/hrs available at t = 0

1 1100 430 60 60 8 3
2 1100 400 80 80 9 3
3 1000 420 80 80 7 3
4 1200 430 90 90 7 3
5 1100 430 60 60 8 3
6 1100 410 70 70 7 3

the the first two cases. Certain aspects of the solutions of the three cases are summarized in Fig-

ures 5, 6 and 7. From Table 4, one can see that the total number of setups
(∑I

i=1

∑Ri

r=1 zri(t)
)

is equal to 10 in the first period and equal to 11 in each of the remaining three periods. This

makes the total number of setups under JIT philosophy being equal to 43. In Figure 5a, it

can be seen that the total number of setups decreases as we shift from the first to the second

and then to the third case. This results in an increase in the average inventory level given by

(
∑T−1

t=1

∑I
i=1 Ii(t))/(T − 1) as shown in Figure 5b. A decrease in the number of setups from

43 in the first case to 35 in the second case is also reflected in Figure 6(a) by an increase in

the average run length from about 4,840 to 5,570. With the JIT approach, this increment of run

length causes an increment of the total number of defective items from about 13,080 to 15,830

as shown in Figure 6(b). In Figure 5(a), it can be seen that there are less number of setups

when the disruptive philosophy is in place. This reduced number of setups causes the average

run length to increase from about 5,570 to 8,180 and the average number of defects to fall from

12,180 to 9,700 as shown in Figure 7(a) and 7(b), respectively. Here, it is important to note that

12,180 is the total number of defective items in the second case that would have been calcu-

lated assuming disruptive philosophy. The last columns corresponding to each period in Tables

4 and 5 show the sequence by which the parts visit the manufacturing cells along the selected

routes. In these columns, it can be seen that the parts visit only one cell in most of the selected

routes. This reduces the inter-cell movement for the better performance of the system. The cell

formation and reconfiguration decisions for these three different cases are presented in Table

6. The required system reconfiguration to adapt to changes in product mix variations can be

seen in this table. For example, under the JIT philosophy, cell-1 has 2 units of type 2 machine

and 4 units of type 4 machine in the first period. In the second period, each of the quantities

of these machine types was increased by one unit in this cell. In this table, it is also possible

to see that the variations in the production planning decision among the three cases resulted in

the variations in the cell formation and configuration decision. As a simple comparison, the

total number of machines used in the system is equal to 25 under JIT philosophy and 30 under
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Number of setups
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Average Inventory
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13000
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(a) (b)

Figure 5. Number of setups and average inventory level when JIT, disruptive or neither philosophy
is considered

disruptive philosophy. The reason for requiring less number of machines under JIT philosophy

is the use of large number of setups. The use of large number of setups reduces the production

volume in each setup and distribute production more equally in each planning period, avoiding

peak production volumes that may require more machines. The number of machines used in

case 2 (when neither philosophies are considered) is 23, less than the number of machines used

in any other cases. The reason for this is that, when neither philosophies are considered, all the

parts produced have no defects, making the total production volume less. However, with such

number of machines it would be impossible to satisfy demand for the parts if the production

process is imperfect and produce defective items. The numerical example demonstrated that

the consideration of the impact of production run length on product quality may greatly affect

the production planning decisions. The change in production planning decisions in turn may

affect the cell formation and reconfiguration decisions and vice vera. Such inter-dependency

on the various design and operational issues signifies the need for an integrated approach in

manufacturing system analysis.

4000

4500

5000

5500

6000

Case 1 Case 2
12000

13000

14000

15000

16000
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Figure 6. (a) Average run length and (b) total number of defective as per the JIT philosophy when
this philosophy is applied (Case 1) and not applied (Case 2)
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Figure 7. (a) Average run length and (b) total number of defective as per the disruptive philosophy
when this philosophy is not applied (Case 2) and applied (Case 3)

4.2. Computation Performance

In addition to the example problem discussed above, several other example problems were

developed to evaluate the computational efficiency of the developed genetic algorithm. These

examples were solved using the developed heuristic. The heuristic solutions were compared

with those generated by ILOG CPLEX and lower bounds determined by optimally solving the

model after relaxing certain constraints. If the workload balancing constraint (Eq. 8), the cell

size constraint (Eq. 10) and the machine separation constraint (Eq. 13) are relaxed, an optimal

solution of the relaxed problem would have all the machines placed in one cell. Thus, relaxing

these three sets of constraints is equivalent to relaxing only Eq. (10) and Eq. (13) and setting

the number of cells to be generated equal to unity (i.e., L = 1). With such relaxation and

simplification, the proposed model can be rapidly solved using ILOG CPLEX for the example

problems considered. Moreover, the optimal values of the objective function of the relaxed

problems were observed to be well above the lower bounds determined by ILOG CPLEX after

several hours of computation in solving the original model. Here, we present the computational

results from two of the example problems: Problem 1 and Problem 2. The data for Problem 1

is presented in the previous section. With this data, after linearizing, the proposed model has

a total of 3,012 variable; 1,348 of them are binary and 216 are general integer variables. The

corresponding number of constraints is 5,960. Problem 2 consists of processing 25 part types

using 12 machine types in 3 cells during 4 planning periods. For this problem, the linearized

model has a total of 6,356 variables; 2,868 of them are binary and 432 are general integer

variables. The corresponding number of constraints is 12,700.

In Table 7 is the convergence history of ILOG CPLEX and LPEGA in solving Problems 1

and 2. As can be seen from Table 7, the lower bound and the best objective function value for

Problem 1 were 4.22568 and 4.66757, respectively, found by CPLEX after 46 hours of compu-

tation. At this point of the computation, the optimality gap was (4.66757−4.22568)/4.66757×
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Table 6. Machine cell formation and reconfiguration decision under three different cases

Case 1 Case 2 Case 3

No. of machine of type No. of machine of type Machine Type
Cell Period 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 1 0 2 0 0 0 4 1 3 3 1 3 0 0 1 2 1 1 2
2 0 3 0 0 0 5 2 2 3 1 0 0 3 2 0 3 1 0
3 0 3 1 0 0 5 2 0 3 1 0 0 3 3 2 3 3 0
4 0 4 1 0 0 5 1 0 3 1 0 0 3 3 2 3 3 0

2 1 2 0 3 2 1 0 2 2 0 2 0 0 3 0 0 2 2 0
2 1 2 2 2 2 0 1 2 2 2 3 0 0 4 0 0 2 3
3 2 1 2 2 1 0 1 3 2 2 3 0 0 2 2 0 2 3
4 2 0 2 2 1 0 2 3 2 2 3 0 0 2 2 0 2 3

3 1 1 2 2 1 2 0 0 0 2 0 0 4 0 4 3 0 3 3
2 2 1 3 1 1 0 0 1 0 0 0 4 0 0 5 0 3 3
3 1 2 2 1 2 0 0 2 0 0 0 4 0 1 2 0 1 3
4 1 2 2 1 2 0 0 2 0 0 0 4 0 1 2 0 1 3

Total* 25 23 30

* Total number of machines used in the system in the entire planning horizon=
∑L

l=1

∑K
k=1 Nk,l,4

100 = 9.47%. From this table, it can also be seen that starting form the first 45 seconds of

computation time, LPEGA found solutions better than those generated using CPLEX in 46 hrs.

The optimality gap of the final solution found using LPEGA with reference to the CPLEX lower

bound was 5.69%. An improved lower bound for Problem 1 was also determined by solving

the problem to optimality after relaxing the constraints in Eq. (10) and Eq. (13) and setting the

number of cells to 1. The improved lower bound was 4.33638 and the optimality gap of the fi-

nal solution found using LPEGA with reference to this improved lower bound was 3.22%. This

suggested that the optimality gap of the LPEGA solution with reference to an optimal solution

of the original problem is less than 3.22%. Encouraging results were also observed in solving

Problem 2. Starting form the first 20 seconds of computation time, LPEGA found solutions

better than those generated using CPLEX in 100 hrs. The lower bound and the best objective

function value found using CPLEX after 100 hrs of computation were 7.64544 and 9.60757,

respectively. The optimality gaps of the final solutions determined using CPLEX and LPEGA

with reference to the CPLEX lower bound were 20.4% and 6.48%, respectively. The improved

lower bound for Problem 2 was 7.96076. This implies that the optimality gap of the LPEGA

solution with reference to an optimal solution of the original problem was less than 2.62%.

The computational experiment on Problem 1 was repeated for 14 parameter settings given

in Table 8. The convergence graphs of LPEGA for these test runs are given in Figure 8. From
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this figure it can be seen that LPEGA was able to converge to an acceptable solution for several

parameter settings. In all of the test runs, solutions found using LPEGA in the first few hungered

of generations were better than those found using CPLEX after more than 46 hours. We were

also able to find several other parameter settings for which the genetic algorithm performs very

well. This is an indication of the relative robustness of the proposed method. The encouraging

results were obtained mainly due to (1) the solution approach of embedding a LP process into

a meta heuristic, (2) systematically dividing the search into two phases, (3) constraint handling

techniques and (4) the model specific genetic operators. For example, dividing the search into

the 2 phases greatly improves the convergence behavior of LPEGA as shown in Figures 9.

Table 7. Comparison of LPEGA with CPLEX using two example problems

Problem 1 Problem 2

CPLEX Objective CPLEX Objective
Time Lower Bound CPLEX LPEGA Time Lower Bound CPLEX LPEGA

00:00:02 4.22277 11.0157 6.89016 00:00:10 7.64214 28.6191 9.94213
00:00:04 4.22277 11.0157 5.40412 00:00:20 7.64214 28.6191 9.02501
00:00:09 4.22277 11.0157 4.90499 00:00:26 7.64214 28.0692 8.85474
00:00:24 4.22277 9.80000 4.74073 00:03:51 7.64214 28.0692 8.45511
00:00:45 4.22277 7.78200 4.63842 00:06:46 7.64214 15.6975 8.39693
00:01:54 4.22355 6.15200 4.58880 00:09:28 7.64215 12.5122 8.34907
00:05:19 4.22356 5.42330 4.53236 00:17:18 7.64215 12.0664 8.34561
00:07:37 4.22356 5.42330 4.49681 00:30:08 7.64215 10.8868 8.24639
00:10:24 4.22356 5.22184 4.49561 01:54:04 7.64215 10.4873 8.22151
00:31:18 4.22360 4.95993 4.48685 02:26:09 7.64217 10.1762 8.21806
00:31:25 4.22360 4.95993 4.48085 04:56:30 7.64236 10.1762 8.20888
01:12:13 4.22371 4.95733 4.48085 05:24:34 7.64244 10.1762 8.20469
01:37:13 4.22387 4.94089 ∗ 06:56:21 7.64260 10.1762 8.18498
02:05:45 4.22397 4.94089 ∗ 07:46:22 7.64264 10.1762 8.17949
05:05:41 4.22443 4.88142 ∗ 08:02:33 7.64265 10.1762 8.17490
06:32:32 4.22454 4.79367 ∗ 08:23:35 7.64267 10.1762 8.17490
09:39:14 4.22470 4.77058 ∗ 17:35:51 7.64337 10.1533 ∗
14:18:17 4.22494 4.76690 ∗ 20:32:36 7.64349 10.1497 ∗
14:44:19 4.22496 4.76394 ∗ 32:16:58 7.64399 9.82868 ∗
14:58:10 4.22498 4.71146 ∗ 36:22:09 7.64417 9.81213 ∗
15:04:39 4.22499 4.70108 ∗ 43:34:55 7.64443 9.75404 ∗
17:22:05 4.22513 4.68635 ∗ 50:54:01 7.64467 9.74824 ∗
18:13:55 4.22516 4.68337 ∗ 62:49:00 7.64498 9.71716 ∗
32:58:37 4.22555 4.66757 ∗ 83:08:22 7.64529 9.60757 ∗
46:16:26 4.22568 4.66757 ∗ 100:00:00 7.64544 9.60757 ∗
∗ A termination criterion was met.
Note: Values are in 100,000.

5. Discussion and Conclusion

As discussed in the first section of this paper, an integrated approach should be pursued

in manufacturing system analysis, since different aspects of a system are interrelated in many

ways. In addition, a comprehensive model consisting of different aspects of the system can help
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one to understand the problem better. In this paper, we developed a comprehensive mathemat-

ical model for integrated and dynamic manufacturing cell formation, considering a multi-item

and multi-level lot sizing aspects and the impact of lot size on product quality. The model

attempts to minimize production and quality related costs and incorporates a number of man-

ufacturing attributes and practical constraints. These include dynamic system configuration,

alternative routings, sequence of operations, machine capacity constraint, workload balancing,

cell size limit and machine proximity requirements. The proposed model is NP-hard and may

not be solved to optimality or near optimality using of-the-shelf optimization packages. To this

end, we developed a heuristic method based on genetic algorithm to solve the proposed model.

During the course of the search, the genetic algorithm interactively uses the simplex algorithm

to solve a linear programming subproblem corresponding to each integer solution visited in the

search process. Numerical examples were presented to demonstrate the need for an integrated

approach in manufacturing system analysis and to illustrate the computational efficiency of the

developed heuristic. Computational performance of the proposed heuristic search method is

very encouraging based the results of the testing problems. Our future research in this area

includes developing integrated methods in designing manufacturing systems and supply chain

networks considering product quality, product recovery and disposal policies.
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