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Machine cell formation using a mathematical model and
a genetic algorithm based heuristic

FANTAHUN M. DEFERSHA† and MINGYUAN CHEN †‡

This paper presents a comprehensive mathematical model and a genetic algo-
rithm based heuristic for the formation of part families and machine cells in
the design of cellular manufacturing systems. The model incorporates dynamic
cell configuration, alternative routings, sequence of operations, multiple units of
identical machines, machine capacity, workload balancing among cells, operation
cost, subcontracting cost, tool consumption cost, setup cost and other practical
constraints. To solve this model efficiently, a two-phase genetic algorithm based
heuristic was developed. In the first phase, independent cells are formed which
are relatively simple to generate. In the second phase, the solution found during
the first phase is gradually improved to generate cells optimizing inter cell
movement and other cost terms of the model. A number of numerical examples
of different sizes are presented to demonstrate the computational efficiency of
the heuristic developed.

Keywords: Cellular Manufacturing, Dynamic Cell Configuration, Alternate
Routings, Workload Balancing, Integer Programming, Genetic Algorithm

1. Introduction

Cellular manufacturing involves processing a collection of similar parts (part families)

on a dedicated cluster of machines (machine cells) (Singh, 1993). By grouping similar parts

(same set-up, or processing, or routing, etc.), one can take advantage of their similarities in

design and manufacturing. Similarly, by grouping machines together into relatively indepen-

dent cells, inter-cell movement and material handling costs can be reduced. Furthermore,

reductions in set-up time, manufacturing lead time, design variety, work-in-process inven-

tory and labor can be achieved (Wemmerlöv U. and Johnson, 1997; Sule, 1994; Singh, 1996).

Better supervision and improved quality are also among the reported advantages of the

implementation of cellular manufacturing. In the last three decades, research in cellular
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manufacturing has been extensive and literature in this area is abundant. Comprehensive

summaries and taxonomies of studies devoted to part-machine grouping problems are pre-

sented by various researchers (e.g., Wemmerlöve and Hayer (1986), Kusiak (1987), Vakharia

and Slim (1994) and Selim et. al. (1998)). Typically, there are two types of methods devel-

oped for solving this problem: the binary machine-part matrix method and the clustering

method. The binary machine-part matrix method was first developed by King (1980) and

King and Nakornchai (1982) and is the most cited research work in cellular manufacturing.

The clustering method is based on similarity coefficients of the parts which was first explored

in McAuley (1972).

A number of factors are typically considered in manufacturing cell formation and part

family identification problem. These factors include dynamic cell reconfiguration, sequence

of operations, alternate part routings, operation time and cost, subcontracting cost, machine

capacity, setup cost, tool consumption, workload balancing, cell size limits, machine separa-

tion constraints, among others. In recent years, machine cell formation methods addressing

subsets of these factors were developed by several researchers separately. Some of these meth-

ods include Caux et. al. (1990), Chen (1998), Mungwattana (2000), Suresh et. al. (1999)

and Wicks and Reasor (1999). In this paper, a mathematical programming model incorpo-

rating a majority of these factors is proposed. In practice, exact solutions of combinatorial

optimization problems of larger sizes are often difficult to compute. Machine cell formation is

a typical example of such problems. In the present study, heuristic method based on genetic

algorithm is developed and employed to find optimal or near optimal solutions of the cell for-

mation problem. Genetic algorithm (GA) introduced in 1970s by J. Holland (Holland, 1975)

has gained increasing popularity in solving many combinatorial optimization problems. A

number of works are also published reposting the development and use of genetic algorithm

to solve the part family machine cell formation problem. Recent works include Wicks and

Reasor (1999), Dimopoulos and Mort (2001), Gonçalves and Resendeb (2004), Solimanpury

et. al. (2004), Rogers and Kulkarni (2005) among others. The distinguishing future of the

genetic algorithm presented in this paper is that it is for solving a mathematical model ad-

dressing simultaneously several pragmatic issues in the design of a CMS. In general, genetic

algorithm starts with an initial population of solutions. Genetic operators are applied to this

population; offsprings are created from parents. The new population is constituted in select-
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ing the best individuals. This process continues until a certain stoping criterion is met. The

genetic algorithm presented in this paper follows this general procedure and has a number

of problem specific genetic operators, heuristics and two searching phases. The remainder

of this paper is organized as follows. Section 2 provides the problem description and the

proposed mathematical model. Detailed discussion of the solution procedure developed is

presented in Section 3. Section 4 presents three numerical examples to illustrate the heuristic

solution procedure, and to evaluate the effectiveness and efficiency of the developed method.

Finally discussion and conclusions are presented in Section 5.

2. The Proposed Mathematical Model

2.1. Problem Description

Consider a manufacturing system consisting of a number of machines. Each machine has

a number of tools available. A part may require several operations in sequence. An operation

of a part can be processed by a machine if the required tool is available on that machine. If a

tool is available on more than one machine type then those types of machines are considered

as alternative routings for processing that part. In addition, we consider the manufacturing

system in a number of time periods t, where t = 1, 2, ..., T . One time period could be a

month, a season, or a year. Each machine has a limited capacity expressed in hours during

each period and can have one or more identical copies to meet capacity requirements. We

assume that the demand for the parts varies with t in a deterministic manner and is known.

To group machines into relatively independent cells, a mixed integer programming model is

formulated. The notations used are presented below.

Indexes:

t - Time index, t = 1, 2, ..., T ,

i - Part index, i = 1, 2, ..., I,

j - Index of operations of part i, j = 1, 2, ..., Ji,

k - Machine index, k = 1, 2, ..., K,

g - Tool index, g = 1, 2, ..., G,

l - Cell index, l = 1, 2, ..., L.
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Input Data:

di(t) - Demand for part i in time period t,

Vi - Unit cost to move part i between cells,

Bi - Batch size of part type i,

Φi - Cost of subcontracting part i,

λjig - A binary number indicating whether operation j of part i requires

tool g or not,

δgk - A binary number indicating whether tool g is available on machine

k or not,

hjik - Processing time of operation j of part i on type k machine in minutes,

wjik - Tool consumption cost of operation j of part i per unit of part i on machine

type k,

µjik - Setup cost for operation j of part i on type k machine,

Pk - Procurement cost of type k machine,

Hk - Maintenance and other overhead cost of type k machine,

Ok - Operation cost per hour of type k machine,

Ck - Capacity of one unit of type k machine,

LBl - Minimum number of machines in cell l,

UBl - Maximum number of machines in cell l,

I+
k - Cost of installing one unit of type k machine,

I−k - Cost of removing one unit of type k machine,

q - 0 ≤ q ≤ 1; a factor describing that the work load of a cell can be as low as

q × 100% from the average work load per cell,

M∞ - Large positive number,

S - Set of machine pairs that cannot be placed in the same cell.

Decision Variables:

General Integer:

Nkl(t) - Number of type k machines assigned to cell l at the beginning of period t,

y+
kl(t) - Number of type k machines added to cell l at the beginning of period t,

y−kl(t) - Number of type k machines removed from cell l at the beginning of period t.
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Continuous:

ηjikl(t) - The proportion of the total demand of part i with its jth operation performed

by type k machine in cell l during period t,

η̄i(t) - The proportion of the total demand of part i to be subcontracted in time

period t.

Auxiliary Binary Integer Variables:

rkl(t) =

{
1, if type k machines are assigned to cell l during time period t,
0, otherwise.

pjil(t) =

{
1, if operation j of part i is processed in cell l during period t,
0, otherwise.

2.2. Objective Function and Constraints

Following the problem description and notations given in Section 2.1, the comprehensive

mixed integer programming model for cellular manufacturing system design is presented be-

low.

Objective:

Minimize Z =

T∑
t=1

L∑
l=1

K∑
k=1

Nkl(t) · Hk +
T∑

t=1

K∑
k=1

Pk ·
(

L∑
l=1

Nkl(t) −
L∑

l=1

Nkl(t − 1)

)

+
1

2

T∑
t=1

L∑
l=1

I∑
i=1

Ji−1∑
j=1

(
di(t) · Vi

∣∣∣∣∣
K∑

k=1

ηi,j+1,kl(t) −
K∑

k=1

ηijkl(t)

∣∣∣∣∣
)

+
T∑

t=1

L∑
l=1

K∑
k=1

I∑
i=1

Ji∑
j=1

di(t) · ηijkl(t) · hijk(t) · Ok +
T∑

t=1

L∑
l=1

K∑
k=1

I∑
i=1

Ji∑
j=1

di(t) · ηijkl(t) · wijk

+
T∑

t=1

L∑
l=1

K∑
k=1

I∑
i=1

Ji∑
j=1

di(t) · ηijkl(t)

Bi

· µijk +
T∑

t=1

L∑
l=1

K∑
k=1

(
I+
k · y+

kl(t) + I−k · y−kl(t)
)

+
T∑

t=1

I∑
i=1

Φi · di(t) · η̄i(t) (1)
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Subject to:

di(t) ·
L∑

l=1

K∑
k=1

ηijkl(t) = di(t)(1 − η̄i(t)) (2)

ηijkl(t) ≤ λjig × δgk (3)

K∑
k=1

ηjikl(t) = pjil(t) (4)

L∑
l=1

pjil(t) = 1 (5)

Ck · Nkl(t) −
I∑

i=1

Ji∑
j=1

di(t) · ηijkl(t) · hjik ≥ 0 (6)

L∑
l=1

Nkl(t) −
L∑

l=1

Nkl(t − 1) ≥ 0 (7)

K∑
k=1

I∑
i=1

Ji∑
j=1

di(t) · ηijkl(t) · hijk ≥
q

L

L∑
l=1

K∑
k=1

I∑
i=1

Ji∑
j=1

di(t) · ηijkl(t) · hijk (8)

LBl ≤
K∑

k=1

Nkl(t) ≤ UBl (9)

Nkl(t) = Nkl(t − 1) + y+
kl(t) − y−kl(t) (10)

Nkl(t) ≤ M∞ · rkl(t) (11)

rkl(t) ≤ Nkl(t) (12)

rk1l(t) + rk2l(t) ≤ 1,
(
k1, k2

)
∈ S (13)

0 ≤ ηijkl(t) ≤ 1 (14)

0 ≤ η̄i(t) ≤ 1 (15)

y+
kl(t), y−kl(t), Nkl(t) are general integers and

rkl(t) is binary (16)

Model Objective Function: The objective function given in Eq. (1) comprises several

cost terms. The first term is machine maintenance and overhead costs. The second term is

machine procurement cost at the beginning of each period. available from the a new system.

In this cost term, Nkl(t) stands for the number of type k machines assigned to cell l at the

begining of period t, with Nkl(0) = 0,∀k. The third term of the objective function repre-

sents the inter-cell material handling cost. The forth, fifth, six and the seventh terms stand
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for machine operating cost, tool consumption cost, setup cost and machine relocation cost,

respectively. The last term is the cost of subcontracting parts.

Model Constraints: The constraint in Eq. (2) ensures that if a part is not subcontracted,

each operation of the part is assigned to a machine. Eq. (3) permits the assignment of an

operation to a machine if and only if a tool required by the operation is available on that

particular machine. Eqs. (4) and (5) allow the processing of operation j of part i in at most

one cell in time period t. Eq. (6) guarantees that machine capacities are not exceeded. Eq.

(7) implies that the number of type k machines used any period is greater than or equal to

that of the previous period. This means that the model is not going to remove extra ma-

chines of any type if that type of machines happen to be in excess in a certain time period.

The presence of extra machines in the system increases system flexibility and reliability by

providing alternative routes during machine breakdown. Eq. (8) enforces workload balance

among cells. Eq. (9) specifies the lower and upper bounds of cell sizes. Eq. (10) states

that the number of type k machines in the current period in a particular cell is equal to the

number of machines in the previous period, adding the number of machines being moved in

and subtracting the number of machines being moved out of the cell. Eqs. (11) and (12) set

the value of rkl(t) equal to 1 if at least one unit of type k machine is placed in cell l during

period t or 0 otherwise. Eq. (13) ensures that machine pairs included in S are not placed in

the same cell. Eqs. (14) and (15) limit the values of ηijkl(t) and η̄i(t), respectively, within

[0, 1]. Eq. (16) is the integrality constraint.

3. The Genetic Algorithm Based Heuristic

The genetic algorithm developed in this work is tailored in accordance with the nature

of the cell formation problem. This includes the development of solution representation,

fitness evaluation, genetic operators and heuristic techniques that are specific to the model

presented in the previous section.
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3.1. The Chromosomal Encoding of a Solution

The chromosomal encoding of a solution is the first task in applying a genetic algorithm.

In this research we developed a chromosomal representation of a solution which can satisfy

some of the constraints of the model. Figure 1 illustrates a chromosome structure for a

particular problem with two planning period and 11 part types. The variable η̄i(t) takes a

value in [0, 1] denoting the proposition of the total demand of part i subcontracted during

period t. The variable cj takes a value in {1, 2, ...L} representing the cell in which operation

j is performed. The xj’s assume values in [0, 1] and are used to calculate the proportions of

the production volume among alternative routings. Operations without alternative routings

do not have x’s associated with them. In the chromosome structure, parts which do not have

demand in a given period are not included in the segment of the chromosome representing

the product mix for that particular period. For example parts 2, 5 and 10 shown in figure 1

do not appear in the first half of the chromosome since there is no such demand in period

1. The detailed representation of part 6 is shown in this figure. This part is assumed to

have nine operations and the 2nd, 8th and 9th operations have two alternative routings each.

The 4th operation has three alternative routings and the remaining operations have only one

route each.

Figure 1. A chromosome structure for a two-planning period problem

3.2. Decoding a Chromosome

The decision variables η̄i(t) and ηjikl(t) are determined by decoding a chromosome under

consideration. The value of η̄i(t) is directly read from the chromosome. For an operation with

n alternative routings along machines k1, k2, · · · , kn, the values of ηjik1l(t), ηjik2l(t), · · · ηjiknl(t)

are determined using the sets of equations given in figure 2. In this set of equations the values
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of xj1, xj2, · · · , xj,n−1 are obtained from the chromosome and xjn is set to 1. The subscript

l takes the value cj which is also obtained from the chromosome.

ηjik1l(t) = (1 − η̄i(t)) × xj1,

ηjik2l(t) = (1 − η̄i(t)) × (1 − xj1) × xj2,

ηjik3l(t) = (1 − η̄i(t)) × (1 − xj1) × (1 − xj2) × xj3,
...

...

ηjiknl(t) = (1 − η̄i(t)) × (1 − xj1) × (1 − xj2) × · · · × (1 − xj,n−2) × xj,n−1 × xjn,

&

ηjikl(t) = 0 ; k 6∈ {k1, k2, · · · kn−1}, l 6= cj

Figure 2. Equations required for decoding a chromosome

As an example, for an operation with three alternative routings along machines k1, k2

and k3, the values ηjik1l(t), ηjik2l(t) and ηjik3l(t) are determined using the first three equations

for xj3 = 1 while xj1 and xj2 are obtained from the chromosome. Here, it can be seen that:

L∑
l=1

K∑
k=1

ηjikl(t) = ηjik1, cj(t) + ηjik2, cj(t) + ηjik3, cj(t)

= (1 − η̄i(t)) × xj1 + (1 − η̄i(t)) × (1 − xj1) × xj2

+ (1 − η̄i(t)) × (1 − xj1) × (1 − xj2)

= 1 − η̄i(t)

This ensures the constraint in Eq. (2). From figure 2, ηjikl(t) = 0 for all k 6∈ {k1, k2, k3}.

This ensures the constraint in Eq. (3) which restricts the assignment of an operation to

those machines that can process the operation. Moreover, ηjikl(t) = 0 for l 6= cj. This is

in agreement with the constraints in Eqs. (4) and (5) which limit the assignment of an

operation to only one cell. From the above discussion it can be seen that the chromosomal

encoding enables a randomly generated solution satisfying the constraints in Eqs. (2)–(5) of

the model presented in Section 2.

3.3. The Fitness Function

The purpose of the fitness function is to measure the fitness of candidate solutions in the

population with respect to the objective and constraint functions of the model. It is given by
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Eq. (17) as the sum of the objective function and the penalty terms of constraint violations.

Workload balancing and cell size constraints are enforced by such penalty terms. The factors

fwb and fcs are used for scaling the penalty terms corresponding to these constraints. The

minimum allowable and the actual work performed in a cell in time period t are Wmin(t) and

Wl(t) and computed by Eqs. (18) and (19), respectively.

F = Model Objective Function + fwb ·
T∑

t=1

L∑
l=1

max {0, Wmin(t) − Wl(t)}

+ fcs ·
T∑

t=1

L∑
l=1

max

{
0,

K∑
k=1

Nkl(t) − LBl ,
K∑

k=1

Nkl(t) − UBl

}
(17)

Wmin(t) =
q

L

L∑
l=1

K∑
k=1

I∑
i=1

Ji∑
j=1

di(t) × ηijkl(t) × hijk (18)

Wl(t) =
K∑

k=1

I∑
i=1

Ji∑
j=1

di(t) × ηijkl(t) × hijk (19)

For solutions of a given generation, the most promising ones are those with the minimum

F . However, genetic algorithm works with maximization function. Hence, the raw fitness

scores need to be transformed so that the minimum raw fitness will correspond to the max-

imum transformed fitness. This is achieved using Eq. (20) where Fmax and Fmin are the

maximum and the minimum values of the raw fitness F in the current population.

F̃ =



1 ; if Fmax = Fmin

Fmax−F
Fmax−Fmin

; if Fmax−F
Fmax−Fmin

> β

β ; otherwise.

(20)

The value of β is to be chosen in [0, 1) and is used to control the discriminating power

of the transformed fitness function among the less and the high ranking individuals in the

population. For higher value of β, individuals with lower ranking also get higher value of

the transformed fitness and higher probability of being selected for the next generation.

This makes the transformed fitness function less discriminating and may help to maintain

population diversity and intensify the exploration of the solution space. On the other hand,

low values of β makes the transformed fitness function more discriminating against lower

ranked individuals. Consequently, this may reduce the population diversity and intensify
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the exploitation of the solution space around the high ranking solutions only. In solving the

problems presented in this research, we have found that the values of β in the range from 0.1

to 0.3 can provide satisfactory results by making a balanced trade-off between exploration

and exploitation.

3.4. Genetic Operators

Genetic operators make the population to evolve by creating promising candidate solu-

tions to replace those less promising ones. These operators are generally classified as selec-

tion, crossover, and mutation operators.

Selection Operator: The selection operator selects, with replacement, individuals having

the potential to replace the current population according to the transformed fitness func-

tion F̃ . This selection operator may be implemented by simulating a biased roulette wheel

where each individual chromosome in the current population has a roulette wheel slot sized

in proportion to its transformed fitness (Goldberg, 1989). Once the mating pool is formed,

individuals are randomly paired and crossover operator will be applied to each pair with

certain probability.

Crossover Operators: The crossover operators produce children by exchanging informa-

tion contained in the parents. The genetic algorithm used to solve the proposed model

employs the standard single-point crossover operator. This operator randomly generates

a single crossover point along the length of the chromosome. The crossover point divides

each of the parent chromosomes into two segments. Children are then created by exchang-

ing the right-hand-side segments of the parents. The algorithm also incorporates three

problem specific crossover operators: the period-swap, part-swamp and operations-swamp

crossover operators. The period-swap crossover operator randomly selects a period in the

planning horizon and exchanges the subcontracting and operations assignment information of

all the parts for the selected period between the parents. The part-swap (operation-swamp)

crossover operator randomly selects a part (an operation) in the length of the chromosome

and exchanges all the information about this part (operation) between the parents.
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Mutation Operators: Selection and crossover do not introduce new genetic material into

the population pool. This task is performed by the mutation operators acting at the gene

level to alter information contained in the gene. Mutation operators are critical to the success

of genetic algorithms since they diversify search directions and avoid premature convergence

to local optima. Hong et. al. (1990) suggested that each problem, even each stage of the

genetic process in a single problem, may require appropriately defined multiple mutation

operators for best results. In this research, we developed six different mutation operators.

These are part-level cell mutator, operation-level cell mutator, subcontract mutator, alter-

native route mutator, subcontract degenerator, and alternative route degenerator.

The part-level cell mutator performs cell mutation. This operator randomly alters the

cj’s of all the operations of a part to other identical values in {1, 2, · · ·L}. It is applied during

the first phase of the genetic search where the quest is to find the best configuration with

independent cells. Similarly, operation-level cell mutator alters the value of cj’s. However,

this operator is applied for each operation independently and may result in different values of

cj’s of the operations of a part. Hence, it may result in inter-cell movements. For this reason,

this operator is applied in the second phase of the genetic search where the attempt is to

optimize the cost of inter-cell movement along other cost terms of the model. Moreover, this

operator is applied at a lower mutation rate than part-level cell mutator to avoid unnecessary

perturbations. Subcontract mutator randomly steps up or down the variable η̄i with a step-

amount. This operator also takes care of the constraint in Eq. (13) of the model. Alternative

route mutator randomly steps up or down the the variable xj’s for all the operations having

alternative routings with a step-amount while keeping these values in [0, 1]. Since both η̄i

and xj’s are kept in [0, 1], the variable ηjikl will also be kept in the same interval (see figure

2) to ensure the constraint in Eq. (12) of the model. All the mutation operators discussed

above are applied with small probabilities.

The subcontract and alternative route degenerators are non-probabilistic mutation op-

erators. The subcontract degenerator sets the value of η̄i = 0 if its current value is less

than a degeneration limit, d1. It also sets η̄i = 1 if its current value is greater than 1 − d1.

The alternative routing degenerator sets a value of xj = 0 or 1 based on the magnitude

of flow along the alternative routes of an operation. For an operation j of part i with two

alternative routings, the operator sets xj1 = 0 if its current value time (1 − η̄i) is less than
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a degeneration limit, d2. It also sets xj1 = 1 if its current value times (1 − η̄i) is greater

than 1 − d2. The purpose of developing and applying these two operators is to speed up

convergence by quickly degenerating insignificantly small values of the continuous decision

variables.

3.5. Repair Heuristic

The Repair Heuristic is run for each individual chromosome representing a solution which

violates the machine separation constraint. This heuristic is required because the machine

separation constraint becomes difficult to satisfy by the penalty method. The Repair Heuris-

tic first arbitrarily forms a certain number of mutually exclusive sets of machines taken from

S such that the machines in a given set can be placed in the same cell. Once these sets of

machines are identified, a certain number of cells will be associated with each set. A cell

will be associated with at most one set of machines while a set can be associated with more

than one cell. Finally, for a chromosome under repair, operations that require a machine in a

given set are arbitrarily assigned to one of the cells associated with that particular set. This

guarantees the fulfillment of machine separation constraint. The heuristic has randomness

behavior making it compatible with the genetic search.

3.6. Machine Assignment Heuristic

The continuous variables ηjikl(t) and η̄i(t) are determined by decoding a chromosome. The

corresponding integer variables Nkl(t), y+
kl(t) and y−kl(t) are determined using the Machine

Assignment Heuristic. The heuristic was applied for each individual chromosome so that

the corresponding value of the fitness function can be evaluated. Once the values of the

continuous variables ηjikl(t) and η̄i(t) are known, the minimum number of each type of

machines Mkl(t) to satisfy capacity requirement in each cell during each period is determined

by the following equation:

Mkl(t) =

⌈∑I
i=1

∑Ji
j=1 (di(t) · ηjikl(t) · hjik)

Ck

⌉
(21)

where dxe returns the smallest integer greater or equal to x.

After this step, the heuristic sets the number of machines, Nkl(1), in each cell for period 1

equal to Mkl(1). The number of machines of each type installed in the various cells for t > 1
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are determined as follows. Let Mkl(t) and M̃k(t) represent the minimum number of type k

machines required in cell l and in the system respectively and Ñk(t) represents the actual

number of type k machines installed in the system during period t. If Ñk(t−1) ≤ M̃k(t), then

the heuristic sets Nkl(t) = Mkl(t). If Ñk(t− 1) > M̃k(t) , then heuristic assigns those type k

machines to the various cells to satisfy the required minimum number of machines in period

t and leaves the extra machines in the cells in which they were perviously installed. This

process of determining the number of machines of each type installed in each cell for t > 1 is

illustrated using the pseudocode given in Appendix I with an example. From that example,

one can see that the number of machines N5,l(t) is greater than or equal to the required

number of machines M5,l(t). Hence, the machine capacity constraint, Eq. (6), is satisfied.

At the same time, we have Ñ5(t
′) ≥ Ñ5(t) for t′ > t. This guarantees the fulfilment of the

constraint in Eq. (7) of the model. Once the decision variables Nkl(t) are determined using

the machine assignment heuristics, the configuration decision variables y+
kl(t) and y−kl(t) can

be determined using Eqs. (22) and (23) respectively. This last step satisfies the constraint

in Eq. (10) of the proposed model.

y+
kl(t) =


Nkl(t), if t = 1,

max{0, Nkl(t) − Nkl(t − 1)}, if t > 1.

(22)

y−kl(t) =


0, if t = 1,

max{0, Nkl(t − 1) − Nkl(t)}, if t > 1.

(23)

3.7. Constraints Handling

Michalewicz (1994) stated that the central problem in the application of genetic algo-

rithms is constraint handling. He proposed different approaches to handle constraints such

as rejection of infeasible solutions (death penalty), penalty methods and repair algorithms.

In this study, the latter two and other approaches were used to handle constraint violations.

Constraints in Eqs. (8) and (9) are handled using the penalty method. This method adds

penalty quantities if corresponding constraints are not satisfied. A problem specific Repair

Heuristic is developed to handle the constraints in Eqs. (11)–(13). Constraints in Eqs.
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(2)–(5) are handled by the use of the chromosomal structure to generate solutions satisfying

these constraints. The Machine Assignment Heuristic handles constraints in Eqs. (6), (7)

and (10). Constraints in Eqs. (14) and (15) are handled by genetic operators which assign

values in [0, 1] to η̄i(t) and xj’s. The integrality constraint given by Eq. (16) is handled by

the Machine Assignment Heuristic and the Repair Heuristic.

3.8. The Two-Phase Genetic Algorithm

Generating independent cells is computationally simpler than generating cells which op-

timize inter-cell movements and other cost terms of the objective function. With this con-

sideration, the search process was divided into two phases. In the first phase, the algorithm

attempts to quickly find the best configuration with independent cells. To perform this task,

the algorithm applies genetic operators which do not produce solutions having inter-cell

movement. These include all the operators other than the single-point crossover and the

operation-level cell mutator. Inter-cell movement can occur during the first phase only as

a result of the Repair Heuristic. In the second phase, the algorithm finds the configuration

with the best inter-cell movements based on the solution found in the first phase. All the

genetic operators other than the part-level cell mutator are applied during the second phase.

In addition to running in two phases, the proposed genetic algorithm has a procedure called

population rejuvenation. This procedure reduces and focusses the search domain around the

best solution found if this value does not improve in a given number of successive generations.

After a given number of successive generations without any improvement of the incumbent

solution, we consider that the genetic algorithm has detected the promising area. A certain

number of individuals of the current population will be replaced by the duplicates of the

best individual so far found. Hence, the population diversity will be reduced and centered

around the best solution. This process rejuvenates the population which might have been

deteriorated by a large number of applications of the mutation operators.

The steps of the genetic algorithm based heuristic will be presented next. Additional

symbols will be used in presenting the algorithm. These symbols and notations are explained

below.

ρ - Generation counter, ρ = 1, 2, ..., ρmax,
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ρmax - Maximum number of generations,

PP (ρ) - Parents population of generation ρ,

CP (ρ) - The current children population which makes up PP (ρ + 1),

BI - Best feasible individual so far found,

Phase - The current phase of the search which equals to 1 for the first

phase or 2 for the second phase

ρphase - Generation at which the value of Phase should be set equal to

2 if it were not previously set to this value by other conditions,

ϕ - Number of successive generations counted without any

improvement of the best individual so far found,

ϕmax - Maximum value of ϕ at which point population rejuvenation is

to be performed,

$ - Number of successive population rejuvenations counted without

any improvement of the best individual so far found,

$max1 - Maximum value of $ at which point the second phase is to be

entered if Phase was equal to 1,

$max2 - Maximum value of $ in the second phase at which point the

search will be terminated.

The following notations are used in presenting step 3, the Repair Heuristic

S ′ - Set of machines (unpaired) included in S,

p, q - counter variables,

Spq - Set of machines from which qth machine of the pth set is to be arbitrarily,

taken,

kpq - qth machine of the pth set arbitrarily taken from Spq

∆ - A function that takes a set of machines Spq \ {kpq} and machine kpq as the first

and second arguments respectively and returns a set of machine Sp, q+1, taken

from its first argument, that can be placed in the same cell with machine

type kpq,

Υp - The pth set of machines taken from S ′ that can be placed in the same cell.

Using the above notations, the steps of the proposed genetic algorithm based heuristic
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are listed below. These steps were coded using C++ programming language and run on a

Pentium-4 (2.4 GH, 768 MB Ram) personal computer.

Step 1. Initialize the counters ρ, ϕ, $ and Phase such that ρ = ϕ = $ = 0 and Phase

= 1. Initialize the Best-Individual BI so far found with a null value.

Step 2. Randomly generate initial parent-population PP (0) such that each individual

represents a solution having independent cells (i.e. the cj’s of all the operations

of a given part are set equal),

Step 3. Apply the Repair Heuristic (Steps 3a to 3g) for each individual chromosome vio-

lating machine separation constraint.

Step 3a. Set p = 1 and q = 1 and S1,1 = S ′.

Step 3b. Arbitrarily take machine kpq from Spq.

Step 3c. Determined Sp, q+1 = ∆(Spq \ {kpq}, kpq)

Step 3d. If Sp, q+1 6= ∅, set q = q + 1 and go to step 2; otherwise go to step 5.

Step 3e. Υp = {kp,1, kp,2, . . . kpq} forms the pth set of machines arbitrarily taken from S ′

that can be placed in the same cell. Set Sp+1,1 = Sp,1 \ Υp. If Sp+1,1 6= ∅, set

p = p + 1 and q = 1 and go to step 3b; otherwise go to step 3f.

Step 3f. At this step p equal to the number of sets of machines taken from S which can

be placed in the same cell. Randomly and evenly associate the cells with the p

sets identified such that a cell is associated with at most one set and each set is

associated with minimum of L mod p cells.

Step 3g. For a chromosome under repair, assign operations that require a machine in a

given set to one of the cells associated with that particular set.

Step 4. For each chromosome, using the Machine Assignment Heuristic (Step 4a to 4e),

determine the number of machines of each type assigned to the various cells during

each period.

Step 4a. Decode a chromosome under consideration and determine the values ηjikl(t).
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Step 4b. Calculate the minimum number of each type of machines Mkl(t) required in each

cell during each planning period using Eq. (21).

Step 4c. Set the number of machines of each type installed in each cell during period-1

equal to the minimum required, i.e. Nkl(t) = Mkl(t) for t = 1.

Step 4d. By implementing the pseudocode given in figure A-I determine Nkl(t) for t > 1.

Step 4e. Determine the decision variables y+
kl(t) and y−kl(t) using the Eqs. (22) and (23)

respectively.

Step 5. For each individual, determine F̃ . If an improvement has been obtained update

the previous BI by the current BI, set ϕ = $ = 0; otherwise increase ϕ by one.

Step 6. If ϕ = ϕmax, rejuvenate the population by replacing k% of the population by the

duplicates of previous BI and reset ϕ = 0 and increase $ by one.

Step 7. If $ = $max1 and Phase = 1 set Phase = 2 and ϕ = $ = 0.

Step 8. Select individuals from the current parent-population to become parents of the

next generation according to their fitness value.

Step 9. Randomly mate parent-population and create children-population CP (ρ) by ap-

plying genetic operators valid to the current phase of the search.

Step 10. Replace the current parent-population PP (ρ) by the children-population CP (ρ)

and form the new parent-population PP (ρ + 1). Increase the generation counter,

ρ = ρ + 1. If ρ = ρphase and Phase = 1, then set Phase = 2.

Step 11. If the termination criterion has not been met, go to step 3. Termination criterion

is ρ = ρmax, or $ = $max2 for phase = 2.

4. Numerical Examples

A number of numerical examples were developed to evaluate the computational efficiency

of the solution procedure developed. These examples were solved using the heuristic devel-

oped. The heuristic solutions were compared with those generated by LINGO, a general
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purpose optimization package. In this section, we present three numerical examples in de-

tail. Example 1 demonstrates the computational efficiency of the proposed genetic algorithm

and illustrates the effects of some of its features on its performance. A reasonably large prob-

lem is considered and its global optimum solution is not reached using LINGO even after

long computational time. Hence, the quality of the solution generated by the proposed

method is not compared with the global optimum. In Examples 2 and 3, we further eval-

uate the computational performance of the proposed method using two problem instances

whose global optimum solutions can be found. In Example 2, an instance of a small problem

solved to optimality using LINGO is considered. In Example 3, we present an instance of

a large problem whose data has been systematically generated so that the problem can be

decomposed into several subproblems. Each subproblem can be solved to optimality using

LINGO and the aggregate solution represents the global optimum of the large problem.

4.1. Example 1

The problem presented in this example consists of 10 different types of machines and

25 part types. The machines are to be grouped into three relatively independent cells.

For this numerical example, the model presented in Section 2 has a total of 6,438 variables

having potentially non-zero values. 2,100 of these variables were integers. The corresponding

number of functional constraints is 6,723. In this and in the following numerical examples,

the variables which can be fixed to zero were not counted as we have eliminated them from

the LINGO formulations using spares set definition. The data and the solution details of

this and the next two examples can be obtained from the authors upon request.

4.1.1. Computational Performance

The performance of the heuristic developed was evaluated against the results from LINGO.

To find solutions using LINGO, the absolute value term of the objective function in the in-

teger programming model was linearized. An absolute value term of the form |x− y| can be

replaced by a non-linear term p + n with the added constraints x = y + p − n, p ≤ M∞ · b

and n ≤ M∞ · (1 − b), where p and n are non-negative real variables, b is a binary variable

and M∞ is a large positive number. As can be seen from table 1, the lower bound and the

best objective function value found by LINGO after 5 hours of computation were 1.69346
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Table 1. Comparison of the proposed GA with LINGO

Time Lower Bound Objective value using
hr:min:sec determined by LINGO LINGO the proposed GA
00:00:15 - × 1.933360
00:00:30 1.69274 × 1.785400
00:01:00 1.69274 × 1.781189
00:02:00 1.69274 × 1.779745
00:06:00 1.69274 1.86962 1.776739
00:08:00 1.69275 1.86962 1.762127
00:10:00 1.69277 1.86962 1.761973
00:12:00 1.69282 1.81068 1.761863
00:16:00 1.69282 1.81068 1.761793
00:20:00 1.69309 1.81068 1.761793
00:30:00 1.69311 1.77401 1.761793
01:00:00 1.69323 1.76934 ∗
03:00:00 1.69344 1.76934 ∗
05:00:00 1.69346 1.76865 ∗
10:00:00 1.69353 1.76865 ∗
15:00:00 1.69366 1.76865 ∗
20:30:00 1.69377 1.76865 ∗
× - Feasible solution was not found
∗ - A termination criterion was met.
Note: Values are in Millions.

and 1.76865 respectively. From this table and figure 3, it can be seen that the heuristic

developed was able to determine a solution having an objective function value equal to 96%

of the lower bound in less than 20 minutes. The figure also shows that the average of the

objective function values of the feasible solutions varies from generation to generation and is

far from the best objective function value found. This indicates that the genetic algorithm

has maintained diversity of the population in performing a global search. In addition to

maintaining the population diversity, the genetic algorithm has converged to an acceptable

solution very quickly. This was achieved by using those problem specific procedures as sys-

tematically dividing search phases, population rejuvenation, constraint handling and other

related genetic operators. As shown in figures 4 and 5, dividing the search into phases, popu-

lations rejuvenating and using the degenerator operators enable the genetic algorithm to find

near optimal solutions very quickly. The values of the various parameters of the GA used

for this computation are given in table 6 under Test 1. The experiment was repeated under

other 12 parameter settings given in table 6 under the Tests 2 though 13. The convergence

graphs of the GA for these tests are given figure 6. From this figure it can be seen that the

GA was able to converge to an acceptable solution for several parameter settings. We were

also able to find several other parameter settings for which the genetic algorithm performs
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Figure 3. A 15-minutes convergence history of the proposed GA.
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Figure 4. The effect of dividing the search into phases

very well. This can be an indication for the relative robustness of the proposed method.

4.2. Example 2

In this example we present a smaller problem instance consisting of generating 3 manu-

facturing cells out of 5 different types of machines for processing 12 part types in 2 planning

periods. For this problem, the mathematical model has a total of 1,473 potentially non-

zero variables; 486 of these variables are integers. The number of functional constraints is

1,494. The problem was solved to optimality using LINGO with 9 hours and 20 minutes of

computation on a Pentium-4 personal computer. The genetic algorithm developed was able

to find solutions that are 99.5% of the global optimum or better in less than five minutes
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Figure 5. The effects of population rejuvenation and degenerator operators

for a number of combinations of parameter settings. At a particular parameter setting, a

solution close to 99.94% of the global optimum was determined in less than two minutes.

The optimal and sub-optimal cell formations found using LINGO and the genetic algorithm

respectively are given in table 2. The corresponding objective function values along the time

taken to reach these values are also shown in this table. As can be seen from this table,

the cell compositions of the two solutions are similar. The assignment of the parts to the

various routes and alternative routings of the two solutions are also found to be very close

to each other. Several other small size problems were considered and solved very close to

global optimum using the proposed method within very short times of computation. From

this and other small examples, it can be seen that the proposed genetic algorithm has the

ability to find solutions very close to the global optimum within very short computational

times for small size problems.

4.3. Example 3

This section demonstrates the computational performance of the proposed method using

a large problem instance whose global optimum solution has been systematically determined.

The problem consists of 3 manufacturing cells, 30 different machine types, 90 part types and

5 planning periods. For this problem, the mathematical model has a total of 33,403 poten-

tially non-zero variables; 11,100 of these variables are integers. The number of functional

constraints is 31,484. Our computational experience showed that for problems of such size,
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parameter settings given in table 6

the mixed integer programming model developed for the dynamic cell formation problem

cannot be optimally solved using LINGO on a personal computer even after several days of

computation. For this reason, the data of this large problem were systematically generated

so that the problem can be decomposed into subproblems corresponding to each planning

period. Each subproblem represents a single period cell formation problem of the period

to which can be solved to optimality using LINGO. The aggregate solution represents the

global optimum of the large problem. The requirements on the data set to enable such

decomposition are:

• Parts that have demand in a given time period do not have demand in the other

periods,

• Machines required to process parts in a given time period are not required for processing

parts in the other periods,

• There is no separation requirement between machines used in different periods and
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Table 2. Cell formation for the small problem using LINGO and the genetic algorithm

LINGO GA
Machine compositions Machine compositions

Descriptions period-1 period-2 period-1 period-2

Cell-1 1(1), 3(1) 1(1), 3(1), 5(1) 1(1), 2(1), 3(1) 1(1), 2(1), 5(1)
Cell-2 3(1), 4(1), 5(1) 3(1), 4(1), 5(1) 3(1), 4(1), 5(1) 3(1), 4(1), 5(1)
Cell-3 2(2), 3(1) 2(2), 3(1) 2(1), 3(1) 2(2), 3(1)

Objective value 371659.00 372017.00
Solution status Optimal Suboptimal
Computational time 09:20:00 00:04:00

Note: The numbers in closed bracket indicate the number of machines of each type.

• The lower and the upper bounds of the cell sizes are low and high enough, respectively,

so that the number of machines installed in a given period will not affect the placement

of machines in the subsequent periods.

The last requirement is equivalent to relaxing the cell size constraint. In some mathemat-

ical models, relaxing the cell size constraint leads to the generation of a single cell containing

all the machines. However, in the mathematical model presented in Section 2, the workload

balancing constraint tends to prevent the generation of either very dense or very spares cells.

Hence, the decomposed subproblems can represent a cell formation problem where a speci-

fied number of cells are to be generated. The solutions of each subproblem and the aggregate

solution will consist balanced machine cells of comparable sizes.

For this large problem, part types 1-18 have demand only in period 1. These parts require

tools that are available in machine types 1 to 6. These machines are not required by parts

having demand in the other periods. Hence, the first subproblem consists of part types

1-18 and machine types 1 to 6. The other subproblems can be identified in similar ways

and are indicated in table 3. These subproblems are optimally solved using LINGO and the

corresponding machine holding cost, objective function values and the elapsed computational

times are also given in table 3. The value of objective function in the aggregate solution

is determined by summing up the objective function values of each subproblem and the

machine holding costs of each subproblem for the subsequent periods as follows:

Agregated objective function value =
5∑

t=1

Ot +
5∑

t=1

Ht · (5 − t)
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Table 3. Subproblems and globally optimum solutions information

Sub- No of Variables Machine Global Time
Problem Parts Machines Real Integer Holding Cost Optimum to Global

1 1 to 18 1 to 6 960 474 17800.00 742641.00 10:42:00
2 19 to 36 7 to 12 926 450 10000.00 652886.00 08:54:00
3 37 to 54 13 to 18 857 426 14150.00 698569.00 11:26:00
4 55 to 72 19 to 24 881 432 14100.00 728689.00 14:27:00
5 72 to 90 25 to 30 887 438 13450.00 747132.00 12:31:00

Total NA NA NA NA 143600.00† 3713517.00‡ NA
†143600.00 = 17800.00 × 4 + 10000.00 × 3 + 14500.00 × 2 + 14100.00
‡3713517.00 = 742641.00 + 652886.00 + 698569.00 + 728689.00 + 747132.00 + 143600.00

where Ot and Ht are the objective function value and the machine holding cost of subproblem

t, respectively. The addition of the machine holding cost is valid since the model does not

remove the machine procured in a given period, even if it happens to become an excess

machine in the following time periods. This calculation procedure is indicated in table 3

and the calculated value is equal to 3713517.00. This value represents the objective function

value of the global optimum solution of this problem. Solutions closer to the global optimum

were generated in less than 20 minutes for various combinations of parameter settings using

the proposed heuristic method without decomposing the problem. Some typical values of

the objective function of the heuristic solutions are 3722220.00, 3734490.00, 3737080.00,

3737570.00, 3740310.00 and 3751450.00. These values are as close as 99.77, 99.44, 99.37,

99.35, 99.28 and 98.98%, respectively, to the global optimum.

It is obvious that the systematically generated data of this numerical example may not

represent an actual dynamic cellular environment. However, the size of the problem and

the computational difficulty of the proposed mathematical model do represent those realistic

problems in practice. The computational results of the example problem clearly demonstrate

the effectiveness and efficiency of the proposed method.

5. Discussions and Conclusions

In this research, we proposed a comprehensive mathematical programming model and

an efficient genetic algorithm based heuristic method to generate manufacturing cells over

multiple time periods. The model attempts to minimize machine investment cost, inter-cell

material handling cost, operating cost, subcontracting cost, tool consumption cost, setup cost
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and system reconfiguration cost in an integrated manner. The model also addresses many

pragmatic issues such as alternative routings, sequence of operations, identical machines,

workload balancing and machine separation requirement. For small size problems, off-shelf

optimization software may be used to solve this formulation. For solving large size problems,

branch and bound based general search algorithm employed by such software cannot give

optimal or near optimal solutions within acceptable computational times on widely available

platforms such as a personal computer. To this end, we propose an efficient heuristic based

on genetic algorithm. The algorithm incorporates several problem specific genetic operators

and constraint handling techniques. The proposed heuristic was evaluated by comparing its

computational results and those available from optimization software. The results obtained

by using the heuristic method were very encouraging. Our future work includes extending

the model and solution method for the selection of material handling equipments, equipment

layout and formation of maintenance and inspection policies. We also plan to develop pro-

cedures for production planning and control in cellular manufacturing systems. Since the

solution method is based on a genetic search procedure, the impact of the parameter settings

on the performance of the algorithm will be further investigated.
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A. Appendix

A-I. Psudocode and Illustrative Example for the Machine Assignment
Heuristic

Declare new integer variable called Buffer and Add
FOR1 k = 1 to K

FOR2 t = 1 to T − 1
Ñk(t) = 0
M̃k(t + 1) = 0
FOR3 l = 1 to L

Ñk(t) = Ñk(t) + Nkl(t)
M̃k(t + 1) = M̃k(t + 1) + Mkl(t + 1)

END FOR3

IF1 M̃k(t + 1) < Ñk(t)
Buffer = Ñk(t) − M̃k(t + 1)
FOR4 l = 1 to L

IF2 Mkl(t + 1) < Nkl(t)
Add = min{Buffer, Nkl(t) − Mkl(t + 1)}
Nkl(t + 1) = Mkl(t + 1) + Add
Buffer = Buffer − Add

END IF2

ELSE2

Nkl(t + 1) = Mkl(t + 1)
END ELSE2

END FOR4

END IF1

ELSE1

FOR5 l = 1 to L
Nkl(t + 1) = Mkl(t + 1)

END FOR5 l = 1 to L
END ELSE1

END FOR2

END FOR1

To further illustrate, we present a simple example to place type 5 machines in a 4-cell

system for 4 time periods in Appendix A-I. To illustrate the machine assignment heuristic

presented in Section 3.6, here we present a simple example to place machines of type 5 in a

4-cell system for 4 time periods. Assume that a chromosome is decoded and the minimum

number of machines of type 5 required in each cell for each period are determined using

Eq. 21 as shown in table 4. For period 1, we have N5,l(1) = M5,l(1). Hence, N5,1(1) = 2,

N5,2(1) = 1, N5,3(1) = 3, N5,1(1) = 2 and N5,4(1) = 0. The following step by step application

of the pseudocode shown in figure A-I gives N5,l(t) for t > 1.
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Table 4. Minimum number of type 5 machine to meet capacity requirement

l M5,l(1) M5,l(2) M5,l(3) M5,l(4)
1 2 0 1 1
2 1 2 4 3
3 3 1 2 0
4 0 1 2 3

M̃5(t) 7 4 9 7

FOR1 : k = 5

FOR2 : t = 1

Initialize Ñ5(1) = 0 and M̃5(2) = 0

FOR3 : l = 1 to 4 (performing successive addition)

Ñ5(1) = 7 and M̃5(2) = 4

IF1 : The logical test M̃5(2) = 4 < Ñ5(1) = 7 is TRUE

Buffer = Ñ5(1) − M̃5(2) = 7 − 4 = 3

FOR4 : l = 1

IF2 : The logical test M5,1(2) = 0 < N5,1(1) = 2 is TRUE

Add = min{Buffer, N5,1(1) − M5,1(2))} = min{3, 2 − 0} = 2.

N5,1(2) = M5,1(2) + Add = 0 + 2 = 2

Buffer = Buffer − Add = 3 − 2 = 1

FOR4 : l = 2

IF2 : The logical test M5,2(2) = 2 < N5,2(1) = 1 is FALSE

ELSE2 : N5,2(2) = M5,2(2) = 2

FOR4 : l = 3

IF2 : The logical test M5,2(2) = 1 < N5,1(1) = 3 is TRUE

Add = min{Buffer, N5,2(1) − M5,2(2))} = min{1, 3 − 1} = 1.

N5,3(2) = M5,3(2) + Add = 1 + 1 = 2

Buffer = Buffer − Add = 1 − 1 = 0

FOR4 : l = 4

IF2 : The logical test M5,4(2) = 1 < N5,4(1) = 0 is FALSE

ELSE2 : N5,4(2) = M5,4(2) = 1

From the above steps
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N5,1(2) = 2, N5,2(2) = 2, N5,3(2) = 2 and N5,4(2) = 1

FOR2 : t = 2

Initialize Ñ5(1) = 0 and M̃5(2) = 0

FOR3 : l = 1 to 4 (performing successive addition)

Ñ5(2) = 7 and M̃5(3) = 9

IF1 : The logical test M̃5(3) = 9 < Ñ5(2) = 7 is FALSE

ELSE1 :

FOR5 : l = 1 to 4 (performing successive assignment operation)

N5,1(3) = M5,1(1) = 1, N5,2(3) = M5,1(2) = 4

N5,3(3) = M5,1(3) = 2, N5,4(3) = M5,1(4) = 2

Continuing the above computation for t = 3, we can determine N5,l(t) for t = 4. The

results of the above computations are summarized in table 5.

Table 5. Actual number of type 5 machines installed

l N5,l(1) N5,l(2) N5,l(3) N5,l(4)
1 2 2 1 1
2 1 2 4 4
3 3 2 2 1
4 0 1 2 3

Ñ5(t) 7 7 9 9

A-II. Parameter Settings for the 13 Test Runs of Example 1

32



T
ab

le
6.

V
al

u
es

of
th

e
p
ar

am
et

er
s

of
G

A
u
se

d
fo

r
13

te
st

ru
n
s

of
E

x
am

p
le

1

T
es

t
R

un
P
ar

am
et

er
N

am
e

1
2

3
4

5
6

7
8

9
10

11
12

13
P
op

ul
at

io
n

Si
ze

36
0

36
0

54
0

39
0

42
0

42
6

57
0

28
5

43
0

34
0

38
0

55
6

34
0

C
ro

ss
ov

er
pr

ob
ab

ili
ty

fo
r

P
er

io
d-

sw
am

p
cr

os
so

ve
r

0.
6

0.
6

0.
9

0.
85

0.
55

0.
45

0.
9

0.
74

0.
76

0.
65

0.
77

0.
72

0.
65

P
ar

t-
sw

am
p

cr
os

so
ve

r
0.

6
0.

6
0.

8
0.

75
0.

85
0.

82
0.

9
0.

82
0.

9
0.

55
0.

66
0.

76
0.

75
Si

ng
le

po
in

t
cr

os
so

ve
r

0.
4

0.
4

0.
5

0.
25

0.
35

0.
4

0.
35

0.
52

0.
56

0.
4

0.
35

0.
35

0.
4

O
pe

ra
ti

on
-s

w
am

p
cr

os
so

ve
r

0.
1

0.
1

0.
3

0.
15

0.
2

0.
3

0.
4

0.
32

0.
26

0.
1

0.
18

0.
18

0.
1

M
ut

at
io

n
P

ro
ba

bi
lit

y
fo

r
A

lt
er

na
ti

ve
ro

ut
e

m
ut

at
or

0.
05

0.
04

0.
03

0.
02

0.
00

3
0.

00
6

0.
01

5
0.

01
2

0.
01

6
0.

03
5

0.
03

5
0.

03
5

0.
03

5
Su

bc
on

tr
ac

t
m

ut
at

or
0.

00
4

0.
00

6
0.

02
0.

01
2

0.
03

0.
02

0.
01

5
0.

01
4

0.
01

8
0.

01
0.

01
0.

02
0.

01
P
ar

t-
le

ve
l
ce

ll
m

ut
at

or
0.

00
4

0.
00

6
0.

00
8

0.
01

0.
04

0.
00

7
0.

01
2

0.
01

5
0.

00
7

0.
00

6
0.

00
6

0.
00

5
0.

00
5

O
pe

ra
ti

on
-l
ev

el
ce

ll
m

ut
at

or
0.

00
04

0.
00

06
0.

00
2

0.
00

1
0.

00
2

0.
00

06
0.

00
3

0.
00

3
0.

00
05

0.
00

06
0.

00
06

0.
00

05
0.

00
06

D
eg

en
er

at
io

n
lim

it
d
1

0.
06

0.
06

0.
06

0.
04

0.
05

0.
05

0.
05

0.
07

0.
07

0.
05

0.
05

0.
05

0.
05

d
2

0.
06

0.
06

0.
06

0.
04

0.
04

0.
04

0.
04

0.
07

0.
07

0.
05

0.
05

0.
05

0.
05

St
ep

am
ou

nt
fo

r
Su

bc
on

tr
ac

t
m

ut
at

or
0.

15
0.

2
0.

05
0.

07
0.

07
0.

06
0.

05
0.

06
5

0.
07

2
0.

2
0.

06
0.

06
0.

15
A

lt
er

na
ti

ve
ro

ut
e

m
ut

at
or

0.
1

0.
06

0.
05

0.
1

0.
1

0.
08

0.
05

0.
06

5
0.

08
2

0.
06

0.
06

0.
06

0.
06

ϕ
m

a
x

15
15

10
10

8
12

12
8

10
12

14
12

12
$

m
a
x
1

10
0

10
0

12
0

12
0

20
0

22
0

22
0

19
5

21
2

10
0

10
0

10
0

10
0

M
M

M
M

M
M

M
M

P
en

al
ty

co
st

fa
ct

or
fo

r
W

or
kl

oa
d

ba
la

nc
in

g
,
f w

b
0.

00
1

0.
00

1
0.

00
05

0.
00

6
0.

00
2

0.
00

5
0.

00
5

0.
01

5
0.

00
8

0.
00

1
0.

00
1

0.
00

1
0.

00
1

C
el

l
si

ze
,
f c

s
10

00
10

00
80

0
85

0
90

0
10

00
10

00
11

50
10

00
10

00
10

20
10

20
10

00

33


	IJPR 2006.pdf
	1 Introduction
	2 The Proposed Mathematical Model
	2.1  Problem Description
	2.2 Objective Function and Constraints

	3 The Genetic Algorithm Based Heuristic
	3.1 The Chromosomal Encoding of a Solution
	3.2 Decoding a Chromosome
	3.3 The Fitness Function
	3.4 Genetic Operators
	3.5  Repair Heuristic
	3.6 Machine Assignment Heuristic 
	3.7 Constraints Handling
	3.8 The Two-Phase Genetic Algorithm

	4 Numerical Examples
	4.1 Example 1
	4.1.1 Computational Performance

	4.2 Example 2
	4.3 Example 3

	5 Discussions and Conclusions
	References
	A Appendix
	A-I  Psudocode and Illustrative Example for the Machine Assignment Heuristic
	A-II  Parameter Settings for the 13 Test Runs of Example 1



