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Abstract

Instead of using expensive multiprocessor supercomputers, parallel computing can be
implemented on a cluster of inexpensive personal computers. Commercial accesses to high
performance parallel computing are also available on the pay-per-use basis. However, there
are a limited report on the use of parallel computing in production research. In this pa-
per, we present a dynamic cell formation problem in manufacturing systems solved by a
parallel genetic algorithm approach. This method improves our previous work on the use
of sequential genetic algorithm. Six parallel genetic algorithms for the dynamic cell for-
mation problem were developed and tested. The parallel genetic algorithms are all based
on the island model using migration of individuals but are differentiated by their connec-
tion topologies. The performance of the parallel genetic algorithm approach was evaluated
against a sequential genetic algorithm as well as the off-shelf optimization software. The re-
sults are very encouraging. The considered dynamic manufacturing cell formation problem
incorporates several design factors. They include dynamic cell configuration, alternative
routings, sequence of operations, multiple units of identical machines, machine capacity,
workload balancing, production cost and other practical constraints.

Keyword: Cellular Manufacturing, Integer Programming, Genetic Algorithm, Parallel Com-
puting.

1 Introduction

In order to be successful in today’s competitive manufacturing environment, managers must
look for new approaches to facilities planning. Gupta and Seifoddini (1990) pointed out that one
third of manufacturing companies in the US undergo major reconfiguration of production facili-
ties every two years. The importance of good layout planning can also be seen from the fact that
annually over 250 billion dollars are spent in the US alone on layouts that require planning and
re-planning (Tompkins et al., 2003). Further, between 20% and 50% of the total costs within

manufacturing are related to material handling. Effective and innovative facilities planning can
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reduce these costs by 10-30% (Tompkins et al., 2003). One effective approach to facilities plan-
ning is cellular manufacturing (CM). It is a production approach aimed at increasing production
efficiency and system flexibility by utilizing the process similarities of the parts. It involves
grouping similar parts into part families and the corresponding machines into machine cells.
This results in the organization of production systems into relatively self-contained groups of
machines such that each group undertakes an efficient production of a family of parts. Such de-
composition of the plant operations into subsystems often lead to reduced paper work, reduced
production lead time, reduced work-in-process, reduced labor, better supervisory control, re-
duced tooling, reduced setup time, reduced delivery time, reduced rework and scrap materials,
and improved quality (Wemmerlov and Johnson, 1997). In the last three decades, research
in CM has been extensive and literature in this area is abundant. Comprehensive summaries
and taxonomies of studies devoted to part-machine grouping problems were presented in Wem-
merlov and Hyer (1986), Kusiak (1987), Selim et al. (1998), and Mansouri et al. (2000). In most
of the articles reviewed by these authors and those published in recent years, the cell formation
problem has been considered under static conditions in which cells are formed for a single time
period where product mix and demand are constant. In today’s dynamic business environment,
shorter time periods should be considered where the product mix and demand may vary from
period to period. As a result, the best cell formation for one period may not be efficient for sub-
sequent periods. A possible technique to counteract this problem is dynamic reconfiguration.
To this end, there is a growing interest of research in developing models and solution procedures
for dynamic cell reconfigurations over multiple time periods. Chen (1998) developed a mathe-
matical model for dynamic reconfiguration in CM and proposed a decomposition approach to
solve the model. The decomposed subproblems can be solved with less computational efforts,
and dynamic programming is then employed to find a solution of the original problem. Bal-
akrishnan and Cheng (2005) developed a dynamic programming approach to the multi-period
CM reconfiguration problem similar to that for the general dynamic facility layout presented in
Rosenblatt (1986). The method may be computationally prohibitive since for better results it
requires large number of alternative static cell formations for each period. Defersha and Chen
(2006a) developed a comprehensive model that incorporates several design factors in addition
to dynamic cell configuration. These factors include alternative routings, lot splitting, sequence
of operations, cell size limits, machine adjacency constraints, among others. The proposed
model was solved using an off-the-shelf optimization package for small size problems. Later
the authors developed a genetic algorithm to solve the comprehensive model efficiently Defer-
sha and Chen (2006b). The use of genetic algorithm, simulated annealing and Tabu search for

dynamic reconfiguration in CM were also reported in Wicks and Reasor (1999), Mungwattana
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(2000), Tavakkoli-Moghaddam et al. (2005b), Tavakkoli-Moghaddam et al. (2005a), and Jeon
and Leep (2006).

These search methods are generally able to find good solutions in reasonable amount of
computing time. However, as they are applied to larger and complex problems, there is an in-
crease in CPU time and computer memory to find adequate solutions. Moreover, in such large
and complex problems, there can be a higher probability of for the search process being trapped
in local optima. In such situations, the most promising choice is to use parallel implementations
of the algorithms. We notice that in addition to using expensive multiprocessor supercom-
puters, parallel computing can be implemented on cluster of less expensive personal computers
connected through a low cost network and using public domain software. Access to high perfor-
mance parallel computing is nowadays available on pay-per-use basis, a business model called
Utility Computing. In 1990, Baxter (Baxter, 1990) reported that commercial on-demand access
to parallel computing is available at several government and private sector installations in US.
In its November 2005 press release, IBM reported that it started commercial access to high
performance computing in which clients worldwide can have on-demand access to over 5,200
CPUs (http://www-03.ibm.com/press/us/en/pressrelease/7949.wss). Tsunamic Technology Inc
(http://www.clusterondemand.com/), Sun Microsystems Inc (http://www.network.com/), and
3Tetra (http://www.3tera.com/) are also examples of commercial access providers to parallel
computing. Moreover, several universities and research institutes owe parallel computing fa-
cilities. Despite such availabilities of access to parallel computing, there are limited reports
on the use of parallel computing in production research. For instance, out of the 178 papers
reviewed in Chaudhry and Luo (2005) on the application of genetic algorithms in production
and operations management, only 3 of them reported the use of parallel computing.

In this paper, we present a parallel genetic algorithm (PGA) for the design of dynamic cel-
lular manufacturing systems which improves our previous work in Defersha and Chen (2006b)
where a sequential genetic algorithm for solving the same problem was developed. To our
knowledge, the use of PGA for static cell formation problem was reported only in Balakrish-
nan and Jog (1995) and has not been used for solving dynamic cell formation problems. As
discussed in the literature, most mathematical models for static cell formation problem are NP-
hard. Mathematical models for multiple period problems can be even more complex than their
counterpart single period models due to the combinatorial nature of integer programming. To
this end, powerful methods have to be developed to solve dynamic cell formation problems. In
this paper, 6 parallel genetic algorithms are developed and tested. The parallel genetic algo-
rithms are based on the island model using migration of individuals and differentiated by their

connection topologies. The performance of the parallel genetic algorithm approach is evaluated



against a sequential genetic algorithm and a off-shelf optimization software. The results were
very encouraging. The rest of this paper is organized as follows. Section 2 contains the problem
description and its genetic representation. In section 3 we present a brief taxonomy of parallel
genetic algorithms and the basic features of the class of PGA used to solve the dynamic CMS
design problem. The important control parameters of this class of PGA are explained in Section
4. Numerical examples and computational results are in Section 5. Summary and conclusions

are given in Section 6

2 Mathematical Model and Genetic Representation

As discussed before, the main objective of this work is to present a parallel genetic algorithm
approach for dynamic CMS design. The CMS design problem is same as that addressed in our
previous work (Defersha and Chen, 2006b) where problem and solution details were discussed.
However, in order to provide a better comprehension of this paper, we describe the problem

below and present its mathematical model and genetic representation.

2.1 Problem descriptions

Consider a manufacturing system consisting of a number of machines to process different
parts. Each machine has a number of tools available on it and a part may require some or all of
the tools on a given machine. A part may require several operations in a given sequence. An
operation of a part can be processed by a machine if the required tool is available on that ma-
chine. If the tool is available on more than one machine type then the machines are considered
as alternative routings for processing the part. The manufacturing system is considered for a
number of time periods. One time period could be a month, a season, or a year. Each machine
has a limited capacity expressed in hours during each time period. Machines can be duplicated
to meet capacity requirements and to reduce or eliminate inter-cell movement. If additional
machines are required in a given time period, the machines can be procured with certain limit.
Assume that the demands for the part vary with time in a deterministic manner. Machines are to
be grouped into relatively independent cells for each period with minimum inter-cell movement
of the parts. In grouping the machines, it is also required that the workload of the cells should
be balanced. Machines that cannot be located in a same cell due to technical and environmental
requirements should be separated. To address this multiple time period cell formation problem,
a mixed integer programming model is formulated. The objective of the model is to minimize
machine maintenance and overhead cost, machine procurement cost, inter-cell travel cost, ma-

chine operation and setup cost, tool consumption cost, and system re-configuration cost for the



entire planning time horizon. The notations used in the model are presented below.

Indexes:
t Timeindex,t=1,2,...,T,
¢ Parttypeindex,i=1,2,.... 1,
J  Index of operations of parti, 7 = 1,2, ..., J;,
k  Machine type index, k = 1,2, ..., K,
g Toolindex,g=1,2,...,G,

[ Cellindex, [ =1,2,..., L.

Input Data
d;(t) Demand for part i in time period ¢,
Vi Unit cost to move part 7 between cells,
B; Batch size of part type 7,
®; Cost of subcontracting part 7,
Ajig A dataequal to 1 if operation j of part ¢ requires tool g; 0 otherwise,
dgr A data equal to 1 if tool g is available on machine; O otherwise,
hji — Processing time of operation j of part ¢ on type & machine in minutes,
wjir, ~ Tool consumption cost of operation j of part ¢ on machine type k,
i Setup cost for operation j of part ¢ on type k machine,
P, Procurement cost of type £ machine,
H,,  Maintenance and other overhead cost of type k£ machine,
Oy Operation cost per hour of type k machine,
C)  Capacity of one unit of type k£ machine,

LB, Minimum number of machines in cell [,



UB;, Maximum number of machines in cell [,
I} Cost of installing one unit of type k£ machine,
I,,  Cost of removing one unit of type £ machine,

g 0 < q < 1;afactor describing that the work load of a cell can be as low as ¢ x 100%

from the average work load per cell,
M*®  Large positive number,

S Set of machine pairs that cannot be placed in the same cell.

Decision Variables:

General Integer:
Nyi(t)  Number of type k& machines assigned to cell [ at the beginning of period ¢,
y;(t)  Number of type k machines added to cell [ at the beginning of period ¢,

Y (t)  Number of type & machines removed from cell [ at the beginning of period ¢.

Continuous:

n;it(t)  The proportion of the total demand of part ¢ with its j** operation performed by type

k machine in cell [ during period ¢,

n;(t)  The proportion of the total demand of part i to be subcontracted in time period ¢.

Auxiliary Binary Integer Variables:

) = 1, if type k machines are assigned to cell [ during time period ¢,
"kl 1 0, otherwise.

a8 = 1, if operation j of part ¢ is processed in cell [ during period ¢,
Pii ~ | 0, otherwise.



2.2 Objective Function and Constraints

Following the problem description and notations given in Section 2.1, the comprehensive

mixed integer programming model for dynamic cellular manufacturing system design is pre-

sented below.
Objective:

Minimize
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Nia(t) = Nt — 1) + y(t) — y(t) (10)

Nia(t) < M - ry(t) (11)
ra(t) < Ni(t) (12)
rn(t) + riat) < 1, (', 4%) € 5 (13)
0 <mijm(t) <1 (14)
0<m(t) <1 (15)
(1), ya(t), Ny(t) are general integers and

71(t) is binary (16)

Model Objective Function: The objective function given in Eq. (1) comprises several cost
terms. The first term is machine maintenance and overhead costs. The second term is machine
procurement cost at the beginning of each period. In this cost term, /Ny, (t) stands for the number
of type k machines assigned to cell [ at the beginning of period ¢, with Ny;(0) = 0,Vk. The
third term of the objective function represents the inter-cell material handling cost. The forth,
fifth, six and the seventh terms stand for machine operating cost, tool consumption cost, setup

cost and machine relocation cost, respectively. The last term is the cost of subcontracting parts.

Model Constraints: The constraint in Eq. (2) ensures that if a part is not subcontracted, each
operation of the part is assigned to a machine. Eq. (3) permits the assignment of an operation to
a machine if and only if a tool required by the operation is available on that particular machine.
Eqgs. (4) and (5) allow the processing of operation j of part ¢ in at most one cell in time period
t. Eq. (6) guarantees that machine capacities are not exceeded. Eq. (7) implies that the number
of type k machines used any period is greater than or equal to that of the previous period. This
means that the model is not going to remove extra machines of any type if that type of machines
happen to be in excess in a certain time period. The presence of extra machines in the sys-
tem increases system flexibility and reliability by providing alternative routes during machine
breakdown. Eq. (8) enforces workload balance among cells. Eq. (9) specifies the lower and
upper bounds of cell sizes. Eq. (10) states that the number of type k£ machines in the current
period in a particular cell is equal to the number of machines in the previous period, adding the
number of machines being moved in and subtracting the number of machines being moved out
of the cell. Egs. (11) and (12) set the value of ry,(¢) equal to 1 if at least one unit of type k
machine is placed in cell [ during period ¢ or 0 otherwise. Eq. (13) ensures that machine pairs
included in S are not placed in the same cell. Eqs. (14) and (15) limit the values of 7;;;(t) and
7;(t), respectively, within [0, 1]. Eq. (16) is the integrality constraint.
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Period 1 Period 2
Part 1 ‘Part 3 \ Part4‘Part 6 \ Part 7‘Part 8 \ Part 9‘Part 11 Part2‘Part3 \ Part4‘Part 5 \ Part 7 \ Part 8 \ Part 9 \ Part 10

Details for Part 6

/r—] l Opr.1 Opr.2 Opr.3 Opr.4 Opr.5|Opr.6| Opr.7 Opr.8 Opr.9
6( ) K ‘xz,1 C3 | Cq ‘X4,1‘X4,2 Cs |Cs | C7 | Cg | X31|Co | Xo

Figure 1: A chromosome structure for a two-planning period problem

2.3 The Chromosomal Encoding of a Solution

The chromosomal encoding of a solution is the first task in applying a genetic algorithm. In
this research we developed a chromosomal representation of a solution which can satisfy some
of the constraints of the model. Figure 1 illustrates a chromosome structure for a particular
problem with two planning period and 11 part types. The variable 7;(¢) takes a value in [0,
1] denoting the proposition of the total demand of part ¢ subcontracted during period ¢. The
variable c; takes a value in {1, 2, ...L} representing the cell in which operation j is performed.
The x;’s assume values in [0, 1] and are used to calculate the proportions of the production
volume among alternative routings. Operations without alternative routings do not have x’s
associated with them. In the chromosome structure, parts which do not have demand in a given
period are not included in the segment of the chromosome representing the product mix for that
particular period. For example parts 2, 5 and 10 shown in figure 1 do not appear in the first
half of the chromosome since there is no such demand in period 1. The detailed representation
of part 6 is shown in this figure. This part is assumed to have nine operations and the 2"¢, 8
and 9" operations have two alternative routings each. The 4" operation has three alternative

routings and the remaining operations have only one route each.

2.4 Decoding a Chromosome

The decision variables 7;(¢) and 7, (t) are determined by decoding a chromosome under
consideration. The value of 7;(t) is directly read from the chromosome. For an operation with n
alternative routings along machines k', k2, - - - k™, the values of 7;;1,(¢), njik2i(t), - - - njigna (£)
are determined using the sets of equations given in figure 2. In this set of equations the values
of xj1, xjo, - -+, %j,—1 are obtained from the chromosome and z, is set to 1. The subscript
takes the value c; which is also obtained from the chromosome. As it was stated in Defersha
and Chen (2006b), the chromosomal encoding and the decoding processes enable a randomly

generated solution satisfying the constraints in Eqgs. (2)—(5) of the mathematical model.



N (t) = (1 —=mi(t)) x zj1,
mina(t) = (L=n:(t)) x (1 —x51) X 250,
Njiwn(t) = (1 —=m(t)) x (1 —251) X (1 —252) X 23,
Mgt () = (1= 7)) x (1= ajn) X (1= 2j0) X - X (1 = 2jn2)
XTjn-1 X Tjn,
&
nim(t) = 0; kg{k“E - k") 1 #¢

Figure 2: Equations required for decoding a chromosome

The continuous variables are determined by decoding a solution point under consideration
as stated above. The corresponding integer variables Ny (t), y;,(t) and y;;(t) are determined
using a problem specific heuristic discussed in Defersha and Chen (2006b). In that paper the
genetic operators, constraint handling techniques, the steps and other several features of the

sequential genetic algorithm were presented in details.

3 Parallel Genetic Algorithms

Sequential GAs (SGAs) have been shown to be very successful in many applications of
different domains. However certain problems exist in some of the applications. One problem
is that the fitness evaluation can be a very time-consuming process in particular, if the fitness
value is to be determined by numerical simulations, for example. In other applications, the size
of population needs to be very large and considerable size of computer memory is required to
store the individuals. In addition, the SGAs search process may be trapped in a sub-optimal
region of the search space as they search within a single population. These problems of the
SGAs can be addressed with some form of parallel computation. Genetic algorithms can be
parallelized in different ways. The detailed taxonomy can be found in Nowostawski and Poli
(1999) and Cantd-Paz (2000). In those papers, we can recognize three major types of PGAs:
(1) single-population master-slave PGAs, (2) multiple-population PGAs, and (3) fine-grained
PGA:s.

The master-slave PGA uses a single global population and the fitness evaluation is done
by different processors as shown in Fig. 3-a. Furthermore, crossover and mutation operations
may also be done in parallel. The nature of GA is not changed because the selection operation

is done globally with the whole population using the master computer. This parallelism can
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Master

Slaves

(a) Master-slave (b) Island model (c) Fine-grain

Figure 3: Classification of PGA m (a) and (b), each circle represent a processing element. In (c), each circle represent an
individual in the population where preferable there is one processing element per each individual.

be very useful when the fitness evaluation is a time consuming process. The second approach
of parallelizing GAs is an island-model PGA which uses multiple populations maintained by
different processors (see Fig. 3-b). The subpopulations exchange individuals occasionally. This
exchange of individuals is called migration. This class of PGAs are also called “coarse-grained”
or “distributed” PGAs, because the communication to computation ratio is low, and they are
often implemented on distributed memory computers or network of workstations. The third
type of PGAs are fine-grained PGAs. They consist of a single spatially structured population
(see Fig. 3-c). The population structure is usually a two dimensional rectangular grid, and there
is one individual per grid point. Ideally, there should be one processor for each individual, so the
evaluation of fitness is performed simultaneously for all the individuals. Selection and mating
are restricted to a small neighborhood around each individual. The neighborhoods overlap,
so that eventually the good traits of superior individuals can spread to the entire population.
Fine grained PGAs are well suited for massively parallel SIMD computers, which execute the
same single instruction on all processors. A comprehensive theoretical study of parallel genetic
algorithm can be found in Cantd-Paz (2000).

In this research, we follow the island model PGAs for the design of dynamic cellular man-
ufacturing systems. This class of PGAs has an appealing trait in that it often reduces the com-
putational effort to solve the same problem as compared to SGAs, even on a single processor
computer (Gordon and Whitley, 1993). This characteristic makes a difference with respect to
other search algorithms in that island-model PGAs are not simple parallel versions of sequential
algorithms. Thus they represent a new class of algorithms that search the solution space differ-
ently (Nowostawski and Poli, 1999). The reason for this can be found in the most significant
characteristics of this class of parallelization (Alba and Troya, 2000): (1) their decentralized
search, which allows speciation (different subpopulations evolve towards different solutions),
(2) the larger diversity levels (many search regions are sought at the same time), and (3) ex-

ploitation inside these subpopulations, i.e., refining the better partial solutions found in each
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subpopulations. In addition to these interesting characteristics, this class of PGAs can easily
be implemented using public domain libraries such as MPI (Message Passing Interface) on a
cluster of inexpensive computers connected by a slow network. These characteristics are the
main motivating factors to consider island-model PGAs for designing dynamic cellular manu-
facturing systems. The psudocodes for SGA and island-model PGA are given in Fig. 4. The
two psudocodes are essentially the same except for the communication routines of island-model
PGA. Hence, the effort to convert SGA to island-model PGA is minimum. The complete algo-
rithm of an island-model PGA consists of multiple copies of its sub-algorithm being executed in
parallel where subpopulations exchange individuals periodically. This exchange of individuals

is regulated by migration control parameters presented in the next section.

Initialize population Initialize subpopulation

Repeat g = 1,23, .... Repeat g = 1,2,3, ....
Evaluate solutions in the population Evaluate solutions in the subpopulation
Perform competitive selection Perform competitive selection

If it is time to communicate {
Select migrants
Send migrants to destinations
Receive migrants from sources

}

Apply genetic operators Apply genetic operators
Until convergence criterion satisfied Until convergence criterion satisfied
(a) SGA (b) Island-model PGA sub-algorithm

Figure 4: Psudocode for sequential and island-model parallel genetic algorithms.

4 Control Parameters of Island-Model PGA

The island model PGA consists of several subpopulations which exchange individuals oc-
casionally. This migration of individuals from one subpopulation to another is controlled by
two parameters. The first is the topology that defines the connection among the subpopulations.

The second parameter is the migration operator.

12
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(e) Fully connected (f) Randomly connected

Figure 5: Connection topologies. The doted lines represent one-way communications

4.1 Connection Topology

Topology defines the connection among the subpopulations. In this paper we considers six

different island model PGAs differentiated by their connection topologies as shown in Figure

13



0 1 2 3 4 5 6 0 1 2 3 4 5 6
0 6 0 0 0 0 1 0 11 1 0 1 O
11 O 1 0 0 1 O 1 1 1 0 1 1 1
21 O 1 0 0 O 2l 0 1 1 1 0 1
3 1 0 1 0 1 0 3 11 1 1 0 1
4 0 0 0 1 0 O 4 1 1 1 O 1 1
51 0 0 0 O 0 51 0 1 0 1 1
6/ 0 0 0 0 0 1 6/ 1 1 1 1 1 O

(a) Generated for p = 0.2 (b) Generated for p = 0.8

Figure 6: Communication matrices and the corresponding topologies for different values p.

5. The first distinguishing property of a topology is the number of neighbors of each subpopu-
lation. Unidirectional ring shown in Figure 5-a is a sparse topology as each subpopulation has
only one neighbor. On the other hand, the fully connected topology shown in Figure 5-¢ is the
densest topology. The second distinguishing feature of a topology is the migration route. The
topologies in Figures 5-a to 5-e use fixed migration routes where the communication routes are
known by each processor at the beginning of the computation and remain unchanged for the
entire computation. The topology shown in Figure 5-f employs randomly generated migration
routes for each communication epoch. In this topology, one of the processors will be designated
to coordinate the communication in addition to evolving its subpopulation. This processor will
randomly generate a communication matrix and broadcast it to other processors before each
communication epoch. The communication matrix is a square matrix and its size equals to the
number of processors. The entry a; ; of this matrix is binary number equal to 1 if migrants are
sent from processor ¢ subpopulation to that in processor j. The value of a; ; is determined using
Eq. 17 where “rand()” is a random number generator and p € [0, 1] is a parameter controlling
the density of communication topology. Figure 6 shows examples of communication matrices
and their corresponding topologies. As can be seen from this figure, random topologies gener-
ated using lower values of p are sparser than those generated using higher values. The number

of neighbors of a given subpopulation may change from epoch to epoch.
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- _ ) 1 rand() < pandi # j
%ij = { 0 otherwise a7

4.2 Migration Operator

The migration operator controls the migration of individuals. This operator is composed
of a number of attributes including: (1) the number of individuals undergoing migration, (2)
the frequency of migration in numbers of generations and (3) the migration policy directing the
type of individuals (best, according to fitness, random, etc.) from the source subpopulation to
migrate to another subpopulation. It also direct the type of individuals (worst, random, etc.) to
be replaced. The incoming individuals are combined with a subpopulation after selection and

before the crossover and mutation operators are applied in the destination subpopulation.

5 Empirical Studies

The developed island-model PGAs were coded in C++ programming language using MPI
message-passing library for communication. The codes were tested in a parallel computation
environment composed of more than 800 computers each having one P4 processor (3.2 GHz,

2GB RAM). The test problems were run using up to 16 processors.

5.1 Performance Improvement through Parallelization

In order to demonstrate the performance improvement achieved through parallelization, we
used the same example problem solved using the sequential genetic algorithm in our previous
work in Defersha and Chen (2006b). In this research, the test problem was rerun using 1,
2,4, 8, 12, and 16 processors applying the fully connected topology. Each processor uses
separately seeded random number generator for the subpopulations in exploring different parts
of the search space. Migration was taking place every 150 generations (migration frequency)
and the number of migrants (the migration rate, MR) was determined in such a way that the total
number of migrants joining a given subpopulation is about equal to 10% of its size. To meet this
requirement in a fully connected topology, where each subpopulation receives M migrants from
other subpopulations, M was determined such that (N —1) xMR = 0.1 x P where N is the total
number of subpopulations (or processors) and P is subpopulation size. Migrants were selected
randomly from the source subpopulation and the individuals in a destination subpopulation were

replaced randomly by the incoming migrants. A run was terminated after 120,000 generations.
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Table 1 shows a comparison of results from LINGO optimization software, SGA and a 16-
processor island-model PGA. The genetic algorithms were run for 25 repetitions by varying
the genetic parameters defined and explained in Defersha and Chen (2006b). The first five
test runs were used as the basis of the comparison shown in Table 1. Under test 1, it can be
seen that the solution found in 5 minutes using SAG and in just 30 seconds using PGA were
better the solution found in more than 25 hours using LINGO. Under tests 1, 2, 4, and 5, the
solutions found in 1 minute using PGA were better than those found in more than 1 hour using
SGA. In test 3, the PGA took only 3 minutes to find a better solution than that found in more
than 1% hours using SGA. In Figure 7, we further demonstrate the performance improvement
achieved through parallelization by varying the number of processors. In Figures 7-a and 7-b
are the convergence graphs from SGA and from the 16-processor PGA for the 25 repetitions.
Figure 7-c shows the average convergence for these repetitions as we increase the number of
processors. In Figure 7-a, we can see that there are several test repetitions that the SGA did not
perform very well. From Figure 7-b, it is possible to see that the results from the 16-processor
PGA converge very well for almost all of the genetic parameter settings. Figure 7-c shows
that the average convergence curve improves as we increase the number of processors used in
the computation. From these observations, it is quite clear that the parallel genetic algorithm
is by far more efficient and robust than sequential implementation in solving the dynamic cell

formation model.

5.2 Topology, Migration and Convergence

As discussed in the previous section, performance of the island model PGA is affected by
connection topology, migration policy, migration frequency, and migration rate. We present an
empirical study on the impact of these parameters on the convergence of island PGA approach

in solving the dynamic cell formation problem.

5.2.1 Topology

Intuitively, if a topology is densely connected, good solutions will spread fast to the subpop-
ulations and may quickly take over the population. On the other hand, if the topology is sparsely
connected, the subpopulations will be more isolated from each other and the full advantage of
parallel computing may not be achieved. Figure 8 shows the convergence graphs of several
island model PGAs with different connection topologies. Each curve represents an average
convergence from 25 repetitions using different settings of genetic parameters and a particular
connection topology. From this figure it can be seen that the randomly connected topology with

p = 0.5 outperforms the other topologies. The parameter p devised in this research controls the
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Figure 7: Convergence graphs of SGA and PGA using different number processors

density of the connectivity of the subpopulations. Lower values of p result in loosely connected
topologies while higher values result in densely connected topology. Looking into Figure 8, it
can be seen that the convergence graph of the randomly connected topology with p = 0.2 closely
approximates that of the unidirectional ring which is the most sparse topology. With p = 0.8,
it closely approximates that of the fully connected topology. Thus, the randomly connected
topology with its control parameter p can alleviate the difficult problem of choosing a suitable
topology out of several known topologies. Moreover, this topology has a randomness behavior

which may be compatible with the random nature of genetic algorithm search processes.

5.2.2 Migration Policy

The migration policy determines which individuals migrate from the source subpopulation
and which are replaced by migrants in the destination subpopulation. In this empirical study

we consider three different migration policies: (1) random-replace-random, (2) best-replace-
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Figure 8: Average convergence graphs of 12-processor island model PGAs with different con-
nection topologies

random, and (3) best-replace-worst. Figure 9 shows the convergence graphs of an island-model
PGA for 12 repetitions using different genetic parameter settings and the three different mi-
gration policies. From these convergence graphs it can be seen that the island-model PGA is
less robust to the genetic parameter settings when employing the first migration policy than the
latter two policies. This can be seen from the fact that the individual convergence curves for
the 12 repetitions in Figures 9-a are less alike to each other compared to those shown in Figures
9-b and 9-c. From Figure 9-d, we can see that the best-replace-worst migration policy slightly
outperforms the other two migration policies. Hence, it may be considered as the first choice of

migration policy in solving the dynamic cell formation model presented in Section 2.

5.2.3 Migration Frequency

This parameter of island-model PGA determines how often migrations occur. It is equal to
the number of generations elapsed between each communication epoch. In this empirical study,
we consider several settings of the migration frequency (MF) as shown in Figure 10. Each curve
represents the average convergence for 12 repetitions using different genetic parameter settings
and a particular MF value. As it can be seen from this figure, the average convergence graphs
are similar for a wide range of migration frequencies from 60 to 2000. It can also be seen that
for very small or very lager MF values, e.g., MF = 15 or 10000, the convergence behavior is
very poor. This is understandable since with very small MF, relatively better solutions may

spread quickly to other subpopulations and lead to premature convergence. As for very large
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Figure 9: Convergence graphs of a 12-processor island model PGA using different migrant
policies

MEF, the subpopulations will be too isolated to achieve the full advantage of parallel comput-
ing. Migration frequencies close to 300 generations can be recommended for solving problems

presented in Section 2.

5.2.4 Migration Rate

The migration rate (MR) controls how many individuals migrate from each subpopulation to
their respective destination subpopulations. In this empirical study, we consider several settings
of MR from 2 to 40. When MR=2, the number of migrants received by each subpopulation in
the fully connected 12-processor topology equals to 22 (2 x 11). When MR=40, this number
is 440. In Figure 11-a, each curve represents an average convergence graph for 12 repetitions
using different genetic parameter settings and a particular MF value. From this figure, it can be

seen that the island model PGA converges to almost identical values of the objective function for
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a wide rang of MR. Figure 11-b shows the average final solution quality obtained for different
values of MR. It can be seen that the solution quality varies without a clear trend as the migration

rate 1s increased. These results show that the island model PGA is less sensitive to the migration

rate in solving the dynamic cell formation problem presented in Section 2.

1.7700

1.7675 1 |

1.7650

1.7625

Objective (in millions)

1.7600 -

1.7575
0

100 200 300 400 500 600 700
Generation (in hundreds)

Objective (in millions)

1.7700

1.7675 A

1.7650 -

1.7625 -

1.7600 -

1.7575

MR-2

MR-3

o
—

MR-5
MR-8
MR-15
MR-20
MR-25

14
=
Message Rate (MR)

MR-30
MR-40

(a) Average Convergance

Figure 11: Average convergence graphs and final solutions using a 12-processor island model

PGA for different values of migration rate MR

21

(b) Average Final Solution




6 Summary and Conclusions

As it has been well established that most mathematical programming models for manufac-
turing cell formation problem in a single time period are NP-hard. Mathematical models for
multiple period cell formation problems are normally much more difficult to solve due to the
nature of combinatorial optimization. To this end, more powerful methods should be developed
to solve dynamic cell formation problems. Some researchers recently proposed search methods
based on genetic algorithm, Tabu search, simulated annealing, and other meta-heuristic search
methods to solve these and similar problems. These search methods are generally able to find
good solutions in reasonable amounts of computing time. However, as they are applied to larger
and more complex problems, there is substantial increase in CPU time and memory required
to find adequate problem solutions. Moreover, when these search methods are used to solv-
ing large and complex problems, there are higher probabilities that the search processes will
be trapped in local optima. In such situations, the most promising choice is the implementa-
tion of the algorithms on parallel computing systems. Nowadays, such facilities are becoming
more available to scientific computing as well as to industry applications while there have been
limited reports on the use of parallel computing in production research. In this paper, we de-
veloped and tested different island model parallel GAs for solving dynamic manufacturing cell
formation problems. We evaluated the performance of the parallel genetic algorithm against a
sequential GA and an off-shelf optimization package. The parallel algorithm approach demon-
strate substantial reductions of computing time and improves the search performances. The
results found show the importance of using parallel genetic algorithms in solving dynamic cell
formation problems where there are no reports on their use. We also evaluated the impacts
of several parameters of the PGA on its performance in solving the dynamic cell formation
model. These parameters include connection topology, migration policy, migration frequency
and migration rate. The PGA with randomly connected topology outperforms the other PGAs
having different topologies. This randomly connected topology proposed in this paper has a
parameter to control the degree of connectivity and reduces the difficulty in choosing a suitable
topology out of several known topologies. We plan to develop efficient parallel meta-heuristic
algorithms and to solve other in production and operation problems. They include scheduling,
facility layout, aggregate planning, inventory control, maintenance, supply chain management

and capacity planning.
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