

Jobshop lot streaming with routing flexibility,
sequence-dependent setups, machine release dates

and lag time

Published in 2012 in the International Journal of

Production Research Vol. 50, 2331 -2352

Please cite this article as:

Defersha, F. M., and Chen, M., (2012). Job shop lot

streaming with routing flexibility, sequence-dependent

setups, machine release dates and lag time. International

Journal of Production Research, Vol. 50, 2331-2352.

The online version can be found at the following link:

http://dx.doi.org/10.1080/00207543.2011.574952

http://dx.doi.org/10.1080/00207543.2011.574952

Job-Shop Lot Streaming with Routing Flexibility, Sequence Dependent Setups,
Machine Release Dates and Lag Time

Fantahun M. Defersha and Mingyuan Chen∗

Department of Mechanical and Industrial Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, Canada, H3G 1M8

Abstract

Lot streaming is a technique of splitting production lots into smaller sublots in a multi-stage man-
ufacturing systems so that operations of a given lot can be overlapped. This technique can reduce
manufacturing makespan and is one effective tool for time-based manufacturing strategy. Research
on lot streaming models and solution procedures in flexible job-shops has been limited. Flexible
job-shop scheduling problem is an extension of the classical job-shop scheduling problem by allowing
an operation to be assigned to one of a set of eligible machines during scheduling. In this paper we
develop a lot streaming model for a flexible job-shop environment. The model considers several prag-
matic issues such as sequence dependent setup time, attached or detached nature of setups, machine
release date and lag time. In order to efficiently solve the developed model, an island-model parallel
genetic algorithm is proposed. Numerical examples are presented to demonstrate the features of the
proposed model and compare computation performance of the parallel genetic algorithm over the
sequential one. The results are very encouraging.

Keywords: Lot Streaming, Flexible Job-shop Scheduling; Sequence Dependent Setup; Machine Re-
lease Date; Lag Time; Parallel Genetic Algorithm

1. Introduction

Lot streaming (LS) is a technique in which a production lot is split into smaller sublots such that

each sublot is treated individually and transferred to the next processing stage upon its completion

[3, 18]. Different sublots of the same job can thus be processed simultaneously at different stages. As

a result of such operation overlapping, production can be significantly accelerated. This technique has

been used to implement the time-based strategy in todays global competition [15]. Many world-class

manufacturing companies (e.g., Dell and Toyota) have adopted this strategy to quickly produce and

deliver goods to their customers [6, 7]. The concept was first formally introduced in literature by

Reiter [48] in 1966. Since then a considerable number of articles have been published on LS where the

researcher mainly focus on flowshop [see for example 46, 4, 28, 3, 55, 36, 31, 37, 19, 8, 41, 5, 54, 24, 40].

Research on job-shop scheduling problems (JSP) with lot streaming, however, is quite limited. Jacobs

and Bragg [32] studied a LS problem in job shops and considered the before-arrival (detached) type

of setups. Smunt et al. [53] considered LS problems in stochastic flowshops and job-shops. They used

simulation and showed that lot splitting substantially improves mean and standard flow time over no
∗For correspondence: mychen@encs.concordia.ca, Tel: (514) 848-2424 Ext. 3134; Fax: (514) 848-3175

1

lot splitting. Dauzere-Peres and Lasserre [21, 22] proposed an iterative procedure for LS in a job-

shop which solves a linear programming sub-problem to determine sublot-sizes for a fixed sequence and

searches for different sequences using a heuristic algorism. Jeong et al. [33] developed a lot splitting

heuristic for JSP in a dynamic environment. Some heuristics are applied to determine the split lots

and the sublot sizes and then schedule sublots with a modified shifting bottleneck procedure. Low

et al. [38] demonstrated the benefits of lot splitting in job-shops. A disjunctive graph was first used to

describe the addressed scheduling problem, and an integer programming model was then constructed

to obtain an optimal solution for small size problems. Chan et al. [11] proposed a genetic algorithm to

determine the number of equal sized sublots for each lot and the processing sequence of these sublots

in a job-shop environment. In their subsequent works, the authors extended their JSP-LS studies by

considering unequal sized sublots in Chan et al. [12, 13] and assembly operations in Chan et al. [14].

Buscher and Shen [9] proposed a three phase algorithm for JSP-LS. The algorithm incorporates the

predetermination of sublot sizes, the determination of schedules based on Tabu search and the variation

of sublot sizes. Edis and Ornek [23] applied simulation to study LS problems in a stochastic job shop

with equal and discrete sublots. The work presented in our this paper extends the job-shop lot streaming

literature reviewed above by considering (1) routing flexibility, (2) sequence dependent setup time, (3)

attached/detached setups, (4) machine release dates, and (5) lag time.

Routing Flexibility: The presence of alternative routings is typical in many discrete multi-batch

production environments. Routing flexibility increases the number of ways in which one can assign

operations to machines in order to come up with a better schedule. Flexible job-shop scheduling

problem (FJSP) is an extension of the classical JSP by considering routing flexibility during scheduling

to achieve a better schedule. Recent studies in FJSP without LS can be found in Chen et al. [17], Saidi

and Fattahi [52], Gao et al. [25], Pezzella et al. [45], Xing et al. [56], and Gao et al. [26]. In this paper,

we propose a model and solution procedure for FJSP with lot streaming (FJSP-LS).

Sequence Dependent Setup: In many real-life situations, a setup operation is often required

between operations and it strongly depends on the immediate preceding operation on the same machine

[20, 2]. Panwalkar et al. [44] noticed that significant portion of jobs required sequence dependent setups

in job scheduling. Flow shop problems with sequence-dependent setups are extensively covered in the

current literature [see for example 30, 35, 43, 47, 49, 51]. However, as pointed in Manikas and Chang

[39], research on job-shops scheduling with sequence-dependent setups has been limited. In this paper,

sequence dependent setup time is considered in FJSP-LS. As lot streaming increases the number of

setup incidences, the optimization of the sequence to minimize the setup time becomes more important.

Attached/Detached Nature of Setup: In addition to sequence dependence, an important feature

of setups is their state of being attached or detached. A setup of a particular operation is attached

(non-anticipatory) if it is assumed that setting up the machine for this operation can be performed when

the job arrives at the machine. When a setup is performed prior to the arrival of the job, the setup

is called detached (or anticipatory). In this case the setup time can overlap with the processing time

of the preceding operation if these two consecutive operations are not assigned to the same machine.

In most papers in the literature, authors assumed attached setup. In the proposed model, setup of

2

each operation can be treated as either attached or detached depending on the actual manufacturing

requirements.

Machine Release Date: The proposed model also considers machine release date. It is the

time at which a machine will complete processing products from previous schedule and be available

for processing products of the current schedule. This is a common situation in industry as production

environments are seldom found empty and one may have to consider ongoing operations from previous

schedule [50]. In this research we noticed that when routing flexibility is considered in scheduling,

machine release date becomes very important as the selection of an alternative machine can be affected

by its release date. This is because, the machine to be released soon may represent a better choice than

the one to be released in a latter time.

Lag Time: It is a requirement for delaying the starting time of an operation from the completion

time of the previous operation of a sublot. Such time lag may occur when, for example, drying or

cooling of products are performed before further operations can take place. In the proposed model, lag

time has been incorporated.

Solving classical JSP is known to be NP-hard [27]. The introduction of sequence dependent setup

time, routing flexibility and lot splitting complicates the already difficult classical JSP. In order to

efficiently solve the FJSP-LS mathematical model proposed in this paper, we developed a parallel

genetic algorithm (PGA) that runs on a high performance parallel computing platform. The algorithm

is based on the island model parallelization technique of a genetic algorithm (GA). From early days of

its development, the GA’s potential for parallelization has been noted. Several authors have applied

parallel genetic algorithms in diverse domains while research on using PGAs for JSP has not been

seen. This paper contributes to the literature by providing a comprehensive model for FJSP-LS and

reporting the use of parallel computing in solving this type of difficult problems. The rest of this paper

is organized as follows. In Section 2, we present the MILP model for FJSP-LS. The PGA is detailed

in Section 3. Numerical examples are give in Section 4. Discussion and conclusions are presented in

Section 5.

2. Mathematical Formulation

In this section we present a mixed integer linear programming model for FJSP-LS. The model formalizes

the problem studied and can be used to solve small size problems using branch and bound algorithm.

Solutions from such small size problems can be used to validate correctness of the developed heuristic

solution method.

2.1. Problem Description and Notations

Consider a job-shop consisting of M machines where certain machines are same or have some common

functionalities. The system is processing a set of jobs from previous schedules and each machine m

has a release date Dm at which time it will be available for current schedule. Consider also a set of J

independent jobs to be currently scheduled in the system. The batch size of job j is given by Bj and this

3

batch is to be split into Sj number of unequal consistent sublots (transfer batches). A decision variable

bs,j is used to denote the size of sublot s of job j. Each sublot of job j is to undergo Oj number of

operations in a fixed sequence where each operation can be processed by one of several eligible machines.

To,j,m is unit processing time for an operation o of a sublot of job j on machine m. An operation o of a

sublot of job j can be started on machine m after lag time Lo,j and after the setup is performed. The

setup time for an operation o of job type j on machine m depends on the preceding operations and is

denoted by So,j,m,o′,j′ , where operation o′ of a sublot of job j′ is the preceding operation on machine m.

If operation o of sublot s of job j is the first operation to be processed on machine m, the setup time

is simply represented as S∗
o,j,m. The setup time So,j,m,o′,j′ (or S∗

o,j,m) for operation o of a sublot of job

j can be overlapped with the processing time of operation o − 1 of the same sublot if it is a detached

setup and machine m is available for setup. The problem is to determine the size of each sublot, to

assign the operation of each sublot to one of the eligible machines and to determine the sequence and

starting time of the assigned operations on each machine. The objective is to minimize the makespan

of the schedule. We next introduce some additional notations and then present a mixed integer linear

programming (MILP) formulation for FJSP-LS.

Additional Parameters:

Rm Maximum number of production runs of machine m where production runs are indexed by

r or u = 1, 2,, Rm; Each of these production runs can be assigned to at most one sublot.

Thus the assignment of the operations to production runs of a given machine determines the

sequence of the sublots on that machine;

Po,j,m A binary data equal to 1 if operation o of a sublot job j can be processed on machine m, 0

otherwise;

Ao,j A binary data equal to 1 if setup of operation o of a sublot of job j is attached (non-

anticipatory), or 0 if this setup is detached (anticipatory);

Ω Large positive number.

Variables:

Continuous Variables:

cmax Makespan of the schedule

co,s,j,m Completion time of operation o of sublot s of job j on machine m;

ĉr,m Completion time of the rth run of machine m;

bs,j Size of sublot s of job j

Binary Integer Variables:

4

xr,m,o,s,j A binary variable which takes the value 1 if the rth run on machine m is for operation o of

sublot s of job j, 0 otherwise;

yr,m,o,j A binary variable which takes the value 1 if the rth run on machine m is for operation o of

any one of the sublots of job j, 0 otherwise;

γs,j A binary variable that takes the value 1 if sublot s of job j is non-zero (bs,j ≥ 1), 0 otherwise,

zr,m A binary variable that takes the value 1 if the rth potential run of machine m has been

assigned to an operation, 0 otherwise;

2.2. MILP Model for FJSP-LS

Following the problem description and using the notations given above, the MILP mathematical model

for the FJSP-LS is presented below.

Minimize:

Objective = cmax (1)

Subject to:

cmax ≥ co,s,j,m ; ∀(o, s, j,m) (2)

ĉr,m ≥ co,s,j,m + Ω · xr,m,o,s,j − Ω ; ∀(r, m, o, s, j) (3)

ĉr,m ≤ co,s,j,m − Ω · xr,m,o,s,j + Ω ; ∀(r, m, o, s, j) (4)

ĉ1,m − bs,j · To,j,m − S∗
o,j,m − Ω · x1,m,o,s,j + Ω ≥ Dm ; ∀(m, o, s, j) (5)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ − Ω · (yr−1,m,o′,j′ + xr,m,o,s,j) + 2Ω ≥ ĉr−1,m ;

∀(r, m, o, s, j, o′, j′)|(r > 1) (6)

ĉ1,m − bs,j · To,j,m − S∗
o,j,m ·Ao,j − Ω · (x1,m,o,s,j + xr′,m′,o−1,s,j) + 2Ω ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, s, j)|{
(
(1,m) 6= (r′,m′)

)
∧ (o > 1)} (7)

ĉr,m − bs,j · To,j,m − So,j,m,o′,j′ ·Ao,j − Ω · (yr−1,m,o′,j′ + xr,m,o,s,j + xr′,m′,o−1,s,j) + 3Ω ≥ ĉr′,m′ + Lo,j ;

∀(r, m, r′,m′, o, s, j, o′, j′)|{(r > 1) ∧ (o > 1) ∧ (r, m) 6= (r′,m′) ∧ (o, j) 6= (o′, j′)} (8)

yr,m,o,j ≤ Po,j,m ; ∀(r, m, o, j) (9)

yr,m,o,j =
Sj∑

s=1

xr,m,o,s,j ; ∀(r, m, o, j) (10)

M∑
m=1

Rm∑
r=1

xr,m,o,s,j = γs,j ; ∀(o, s, j) (11)

bs,j ≤ Bj · γs,j ; ∀(s, j) (12)

γs,j ≤ bs,j ; ∀(s, j) (13)

5

Sj∑
s=1

bs,j = Bj ; ∀(j) (14)

J∑
j=1

Sj∑
s=1

Oj∑
o=1

xr,m,o,s,j = zr,m ; ∀(r, m) (15)

zr+1,m ≤ zr,m ; ∀(r, m) (16)

xr′,m,o′,s,j ≤ 1− xr,m,o,s,j ; ∀(r, r′,m, o, o′, s, j)|{(o′ > o) ∧ (r′ < r)} (17)

xr′,m,o′,s,j ≤ 1− xr,m,o,s,j ; ∀(r, r′,m, o, o′, s, j)|{(o′ < o) ∧ (r′ > r)} (18)

xr,m,o,s,j , yr,m,o,j , γs,j and zr,m are binary (19)

The objective function in Eq. (1) is to minimize the makespan of the schedule. Constraint in Eq.

(2), along with the objective function, determines the makespan. The constraints in Eqs. (3) and (4)

together state that the completion time of the oth operation of sublot s of job j is equal to the completion

time of the rth run of machine m if this production run is assigned to that particular operation. The

staring time of the setup for the first run (r = 1) of machine m is given by ĉ1,m− bs,j ·To,j,m−S∗o,j,m if

the oth operation of sublot s of job j is assigned to this first run. This starting time cannot be less than

the release date of machine Dm as enforced by the constraint in Eq. (5). The constraint in Eq. (6) is

to enforce the requirement that the setup of any production run r > 1 of a given machine cannot be

started before the completion time of run r − 1 of that machine. The constraint in Eq. (7) states that

for any pair of machines (m,m′), the setup (if Ao,j = 1) or the actual processing (if Ao,j = 0) of the first

run on machine m cannot be started before the completion time of run r′ of machine m′ plus lag time

Lo,j . This constraint is applied if first run of machine m is assigned to operation o of sublot s of job j

and run r′ of machine m′ is assigned to operation o−1 of this same sublot. The constraint in Eq. (8) is

similar to that in Eq. (7) except that Eq. (8) is for run r > 1 of machine m. In this case, the sequence

dependent setup time has to be considered by taking into account the operation that was processed in

run r− 1 of machine m. The constraint in Eq. (9) states that a production run r of machine m can be

assigned to operation o of any one of sublots of job j if this operation can be performed on this machine.

Constraint 10 depicts the logical relation between the binary variable yr,m,o,j and xr,m,o,s,j . If the size

of sublot s of job j is positive (γs,j = 1), an operation o of this sublot must be assigned to exactly one

production run of one machine (Eq. 11). However, if the size of this sublot is zero, it should not be

assigned to any production run. The constraint in Eq. (12) forces the binary variable γs,j to take the

value 1 if the sublot size bs,j is greater than zero. If the sublot size bs,j = 0, the binary variable γs,j

is forced to take the value 0 by the constraint in Eq. (13). The constraint in Eq. (14) states that the

sum of the sizes of the sublots of job j equals the batch size of this job. Each production run of a given

machine can be assigned to at most one operation (Eq. 15), and production run r + 1 can be assigned

to an operation if and only if run r of that machine is already assigned (Eq. 16). The constraints given

in Eqs. (17) and (18) are used speed up the branch and bound procedure in solving small size problems.

These constraint sets are not required to model the problem as the relations have been imposed by the

constraints in Eqs. (7) and (8). The constraint in Eq. (17) accounts for the fact that if an operation

6

o of sublot s job j is assigned to a production run r of machine m, any upcoming operation o′ of this

sublot cannot be assigned to any earlier run r′ of machine m. The constraint in Eq. (18) is a mirror

image of constraint Eq. (17). It states that if an operation of a sublot of a given job is assigned to a

production run of a machine, any earlier operation of that sublot cannot be assigned to any upcoming

production run of that machine. Integral requirements on the variable xr,m,o,s,j , yr,m,o,j , γs,j and zr,m

are given Eq. (19).

3. Genetic Algorithm

Solving the classical JSP is known to be NP-hard [27] and so is solving the FJSP-LS model presented

in the previous section. In order to efficiently solve this model, we developed an island-model Parallel

Genetic Algorithm (PGA) that runs on a high performance parallel computing platform. The various

elements of this algorithm are presented in the following subsections.

3.1. Solution Representation

A Genetic algorithm processes population of individuals, each representing a solution of the problem

to be solved. In solving FJSP using genetic algorithm, Chen et al. [16], Kacem [34], Pezzella et al. [45],

Gao et al. [26] used solution representations encoding both assignment and sequencing of operations

on the various machines. Similar representations can be used in solving the proposed FJSP-LS if each

sublot is considered as a job and the representations are augmented to encode the size and the number

of sublots of each job. In order to illustrate such a solution representation, let us consider a small

example problem processing three jobs in a four-machine flexible job shop. The number of operations,

maximum number of sublots for each job, and the set of eligible machines for each operation are given

in Table 1. By considering each sublot as a job and using the technique proposed in Kacem [34], a

typical feasible operation to machine assignment and sequencing is encoded in a chromosome as shown

in Figure 1. In this chromosome, each gene is represented by a quadruple (j, s, o, m) denoting the

assignment of the oth operation of sublot s of job j to machine m. The sequence of the genes in the

chromosome represents the sequences of the operations in the machines. For example, by reading the

chromosome from left to right, the assignment and sequencing of operations on machine-1 can be decoded

as (j1, s3, o1)→(j3, s2, o3)→(j3, s3, o3). This information is obtained from the genes at locations 10,

22 and 23 on the chromosome where m = 1. The assignment of operations to the other machines and

their sequences is given in Table 2 as decoded from the chromosome. In this chromosome, for a given j

and s, the gene (j, s, o,m) always lies to the right of all the other genes (j, s, o′,m′) having o′ < o.

Table 1: An example small flexible job-shop problem
Set of eligible machines

No. of Max No. of for operation
Job Operations Sublots o1 o2 o3
j1 3 3 {m1, m2} {m3} {m2, m4}
j2 2 2 {m3, m4} {m2}
j3 3 3 {m3} {m2, m4} {m1, m3}

7

Figure 1: Representation of the assignment of operations to machines and their sequencing

Table 2: Operation assignment and sequencing decoded from Figure 1
Operation assigned to production run

Machine r1 r2 r3 r4 r5 r6 r7 r8

m1 (j1, s3, o1) (j3, s2, o3) (j3, s3, o3)

m2 (j1, s2, o1) (j3, s1, o2) (j1, s1, o1) (j3, s3, o2) (j2, s1, o2) (j2, s2, o2) (j1, s2, o3)

m3 (j3, s2, o1) (j2, s1, o1) (j3, s1, o1) (j3, s3, o1) (j1, s2, o2) (j1, s1, o2) (j3, s1, o3) (j1, s3, o2)

m4 (j2, s2, o1) (j3, s2, o2) (j1, s1, o3) (j1, s3, o3)

The chromosome in Figure 1 encodes only the assignment and sequencing of the operations of the

sublots. For solving the proposed FJSP-LS model, it is augmented to encode the number of sublots of

each job and their sizes. To accomplish this encoding process, a left hand side segment (LHS-Segment)

has been added to this chromosome as shown in Figure 2. In this segment, the gene αs,j takes a random

value in the interval [0, 1]. For a chromosome under consideration the size of the sth sublot of job j

is computed using Eq. (20). From this equation, it can be seen that certain sublots may have a size

of zero if their corresponding genes have the value zero. Thus, the maximum and the actual number

of sublots for each job and their sizes are encoded in the LHS-Segment. The right hand-side segment

(RHS-Segment) is essentially the same as the chromosome shown in Figure 1.

Figure 2: Solution representation used in solving the proposed FJSP-LS using GA

8

bs,j =


αs,jPSj

s=1 αs,j

×Bj ; if
∑Sj

s=1 αs,j > 0

Bj/Sj ; otherwise

(20)

3.2. Genetic Operators

Genetic operators make the population evolve by creating promising candidate solutions to replace the

less-promising ones. These operators are generally categorized as selection, crossover, and mutation

operators.

3.2.1 Selection Operator

A simple way to simulate the natural selection process in a GA is through tournament selection. In

the proposed GA, we use a k-way tournament selection operator. In this operator, k individuals are

randomly selected and the one presenting the highest fitness (smallest makespan) is declared the winner

and a copy of this individual is added to the mating pool to form the next generation. Then, the k

individuals in the tournament are placed back to the current population and the process is repeated.

This continues until the number of individuals added to the mating pool is equal to the population size.

3.2.2 Crossover Operator

Once the mating pool is generated using the selection operator, the individuals in the pool are randomly

paired to form parents for the next generation. Then for each pair, the algorithm arbitrarily selects one

of the available crossover operators and applies it with certain probability to create two child individuals

by exchanging information contained in the parents. The crossover operators are:

• Single Point Crossover-1 (SPC-1)

• Single Point Crossover-2 (SPC-2)

• Operation-to-Machine Assignment Crossover (OMAC)

• Job Level Operations Sequence Crossover (JLOSC)

• Sublot Level Operations Sequence Crossover (SLOSC)

The above five crossover operators are applied with probabilities equal to ρ1, ρ2, · · · , ρ5, respec-

tively. The crossover operator SPC-1 generates an arbitrary crossover point in the LHS-Segment and

swaps the part of this segment at the left of the crossover point. The crossover SPC-2 exchanges the

portion of the LHS-Segment of the parents at the right of an arbitrarily chosen crossover point. These

two crossover operators are illustrated in Figure 3. The crossover operators OMAC, JLOSC and SLOSC

are specific to the RHS-Segments of the parent chromosomes. These operators are adapted from Kacem

[34], where the authors did not consider lot streaming. They can be distinguished as assignment or

sequence crossover operators. An assignment crossover operator generates two offsprings by exchanging

the assignment of a subset of operations between two parents. OMAC is such an operator. From a

9

given pair of parent chromosomes, this operator creates two child chromosomes where each child chro-

mosome retain the order of the operations supplied by the other parent. The creation of child-1 by

this operator, retaining the order of the operations as obtained from parent-1, is illustrated in Figure

4. In step-1, operations from parent-1 are randomly selected. In step-2, all the genetic information of

parent-1 without the assignment properties of the chosen operations is copied to child-1. In the last

step, step-3, the assignment properties of the chosen operations are copied from parent-2 to complete

child-1. Child-2 is created in a similar way where step-1 begins from parent-2.

Sequencing crossover operators only exchange the sequencing property of the operations in the parent

chromosomes, i.e., the assignment of operations to machines is reserved in the offspring. JLOSC and

SLOSC are such operators. The creation of child-1 by JLOSC, preserving the operation-assignment

information of parent-1, is illustrated in Figure 5. In step-1, an operation is arbitrarily chosen from

parent-1. In step 2, all the operations of all the sublots of the job which the chosen operation belongs

to are copied to child-1. Step 3 is to complete the new individual with the remaining operations, in the

same order as they appear in parent-2 while their assignment properties are kept unchanged as they

were in parent-1. SLOSC is similar to JLOSC except step-2 of SLOSC is limited only to a single sublot

which the arbitrarily chosen operation belongs to.

Figure 3: Single Point Corssover operators SPC-1 and SPC-2

3.2.3 Mutation Operator

Crossover operators do not introduce new genetic material into the population pool. This task is

performed by the mutation operators acting on a single chromosome at the gene level to alter information

contained in the gene. These operators are usually applied on each child chromosome with small

probabilities. The six mutation operators used in the proposed PGA are:

• Sublot Step Mutation (SStM)

10

Figure 4: Operation assignment corssover operator.

Figure 5: Job level operation sequence corssover operator.

11

• Sublot Swap Mutation (SSwM)

• Sublot Size degenerator (SSD)

• Random Operation Assignment Mutation (ROAM)

• Intelligent Operations Assignment Mutation (IOAM)

• Operations Sequence Shift Mutation (OSSM)

The operator SStM is applied with small probability σ1 on each gene αs,j in the LHS-Segment to

step up or down the value of this gene with a step amount θ using equations αs,j = min{1, αs,j + θ}
and αs,j = max{0, αs,j − θ}, respectively. The step amount θ is calculated every time this operator is

applied on a given αs,j with the equation θ = θmax × rand() where θmax ∈ [0, 1] is a parameter and

rand() is random number generator in [0,1]. The operator SSwM is applied with small probability σ2

on each j in the LHS-Segment to swap the values of two arbitrarily selected genes αs,j and αs′,j . The

operator SSD is a non-probabilistic mutation operator to set the value of αs,j = 0 if αs,j/
∑Sj

s=1 αs,j is

less than a degeneration limit d. The parameter d is chosen to be close to 0. The reason is that very

small sublot sizes (less than d × 100% of the lot size) may not lead to acceptable solution because of

setup requirement for the sublots.

The mutation operators ROAM, IOAM and OSSM are specific to the RHS-Segment of the chromo-

somes. These operators are adapted from Kacem [34], and similar to the RHS-Segment specific crossover

operators discussed in the previous subsection, these mutation operators can also be distinguished as

assignment or sequence operators. Assignment mutation operators only change the assignment property

of the chromosome undergoing the mutation while the sequencing property is reserved. ROAM is an

assignment mutation operator applied with a small probability σ3 on each gene of the RHS-Segment

of each chromosome. Whenever it gets effected on a particular gene, it alters the assignment of the

operation represented by the gene to one of its alternative machines. The other assignment mutation

operator IOAM selects an operation on the machine with the maximum workload, and assign it to the

machine with the minimum workload, if compatible. This operator is effected on each chromosome

with a probability σ4. The shift mutation operator OSSM, applied with a probability σ5, selects an

operation from RHS-Segment of the chromosome and moves it into another position, taking care of the

precedence constraints for that operation.

3.3. Initial Population

In generating an initial population, we need to initialize both LHS- and RHS-Segments of each chro-

mosome. In this study, the LHS-Segment of each chromomere is randomly initialized. This provides

the sizes and numbers of the sublots of each job of the corresponding initial solution. Once the sizes

of the sublots are known, the processing times (sublot size × unit processing time) of each operation

on the various alternative machines can be computed. Using this processing time information and re-

garding each sublot as a job, the RHS-Segment of the chromosome (i.e., the operation assignment and

sequencing) can be initialized using the technique outlined in [45]. This technique takes into account

12

both the processing times and the workload of the machines, i.e., the sum of the processing times of

the operations assigned to each machine. The procedure proceeds in finding, for each operation, the

machine with the minimum workload.

3.4. Fitness Evaluation

The makespan of the schedule corresponding to a given chromosome is used as the fitness measurement

of this chromosome. In calculating the makespan, we take into account: (1) the dependance of setup

time on sequence, (2) the nature of the setup (attached or detached), (3) lag time requirement of certain

operations, (4) machine release dates, and (5) the possibility of the sizes of certain sublots of becoming

zero. The procedure is outlined below.

Step 1. Using the information obtained from the LHS-Segment of the chromosome and Eq. (20),

calculate the sizes of the sublots of the various jobs.

Step 2. Set l = 1

Step 3. Set the values of indices j, s, o and m as obtained from the gene at location l of the RHS-

Segment of the chromosome.

Step 4. If bs,j is greater than zero, then go to Step 5; otherwise go to Step 6.

Step 5. Calculate the completion time co,s,j,m

• If (1) operation o of sublot s of job j is the first operation assigned to machine m and

(2) o = 1, then:

co,s,j,m = Dm + S∗
o,j,m + bs,j · To,j,m.

• If (1) operation o of sublot s of job j is the first operation assigned to machine m, (2)

o > 1, and (3) operation o-1 is assigned to machine m′, then:

co,s,j,m = max{Dm +(1−Ao,j)×S∗
o,j,m; co−1,s,j,m′ +Lo,j}+ bs,j ×To,j,m +Ao,j ×S∗

o,j,m.

• If (1) operation o′ of sublot s′ of job j′ is the operation to be processed immediately

before operation o of job sublot s of j on machine m and (2) o = 1, then:

co,s,j,m = co′,s′,j′,m + So,j,m,o′,j′ + bs,j · To,j,m.

• If (1) operation o′ of sublot s′ of job j′ is the operation to be processed immediately

before operation o of sublot s of job j on machine m, (2) o > 1, and (3) operation o-1 is

assigned to machine m′, then:

co,s,j,m = max{co′,s′,j′,m + (1 − Ao,j) × So,j,m,o′,j′ ; co−1,s,j,m′ + Lo,j} + bs,j × To,j,m +

Ao,j × So,j,m,o′,j′ .

Step 6. If l is less than the total number of genes of the RHS-Segment of the chromosome, increase

its value by 1 and go to Step 3; otherwise go to Step 7

Step 7. Calculate the makespan of the schedule as cmax = max{co,s,j,m; ∀(o, s, j,m)} and set the

fitness of the solution to cmax.

13

The above procedure (in particular Step 5) is based on the property of the chromosomes that, for a

given j and s, the gene (j, s, o,m) always lies to the right of all the other genes (j, s, o′,m′) having o′ < o.

Because of this property of the chromosome, whenever the completion time of operation (j, s, o,m) on

machine m is to be calculated, the completion time of operation (j, s, o−1,m′) is already calculated and

available, regardless to which machine this preceding operation is assigned. Moreover, the completion

time of the operation (j′, s′, o′,m) to be processed on machine m immediately before operation (j, s, o,m)

is also calculated and available.

3.5. Parallelization of the GA

¿From early days of its development, the GAs potential for parallelization has been noticed with all its

attendant benefits of efficiency. GAs can be parallelized in different ways and detailed taxonomy can be

found in Nowostawski and Poli [42] and Cantú-Paz [10]. These studies show three major types of PGAs:

(1) single-population master-slave PGAs, (2) single-population fine-grained PGAs, and (3) multiple-

population island model PGAs. Figure 6 presents schematic representations of these parallelization

techniques.

(a) Master-Slave (b) Fine-Grain (c) Island-Model

Figure 6: Different parallelization schemes of genetic algorithm.

In this research, we follow the island model PGAs to efficiently solve the proposed FJSP-LS model.

This class of PGAs has an appealing trait in that it often reduces the computational effort to solve the

same problem as compared to SGAs, even on a single processor computer [29]. This characteristic makes

a difference with respect to other search algorithms in that island-model PGAs are not simple parallel

versions of sequential algorithms. Thus they represent a new class of algorithms that search the solution

space differently [42]. The reason for this can be found in the most significant characteristics of this class

of parallelization [1]: (1) their decentralized search, which allows speciation (different subpopulations

evolve towards different solutions), (2) the larger diversity levels (many search regions are sought at the

same time), and (3) exploitation inside these subpopulations, i.e., refining the better solutions found

in each subpopulation. In addition to these interesting characteristics, this class of PGAs can easily

be implemented using public domain libraries such as MPI (Message Passing Interface) on a cluster

of inexpensive computers connected to a slow network. These characteristics are the main motivating

factors to consider island-model PGAs for solving the comprehensive model proposed in this paper.

14

This class of PGAs can be implemented in different connection topologies. In this paper we considers

three commonly used topologies shown in Figure 7. Each circle represents a processing element evolving

its own subpopulation.

(a) Ring (b) Mesh (c) Fully Connected

Figure 7: Common connection topologies of island model parallel genetic algorithm.

4. Numerical Example

In this section, we present several example problems and computational results to illustrate the features

of the proposed model and the performance improvement achieved using parallellization of the GA.

4.1. Model Illustration

A small instance of lot streaming problem consisting of processing three jobs in a four-machine flexible

job-shop is considered to illustrate the features of the developed model. The batch size of each job,

and for each operation the nature of setup (attached or detached), lag time, alternative machines and

corresponding processing times are given in Table 3. The sequence dependent setup time data are given

in Table 4. This small example problem was solved using the proposed algorithm for three different

cases. In case-1, it was assumed that there is no lot streaming while in case-2 it was assumed that each

job is to split into a maximum of three sublots. Case-3 is same as case-2 except the first machine is not

available for the first 800 minutes. The sizes of the various sublots and the Gantt charts of the resulting

schedules are given in Figure 8. Numerical values of the starting and the ending times of setups and

the operations are given in Table 5.

When lot streaming is not consisted, the makespan of this small problem is 2876 minutes as shown

in Figure 8-a. In case-2, the problem was solved again by letting the maximum number of sublots for

each job to be 3. A schedule with 2 sublots for each job and a makespan of 2290 minutes was obtained.

This is about 20% reduction of the makespan from that in case 1. In the literature, lot streaming

has been often touted to enable the overlapping of successive operations of a given job in a multistage

manufacturing systems. In this research, we observed that when routing flexibility is considered, lot

streaming can also enable the overlapping of identical operations, i.e., operation o of a given job j on one

machine with operation o of the same job on another alternative machine. The overlapping of successive

15

Table 3: Processing Data for Jobs

Alternative routes, (m, To,j,m)
j Bj o Ao,j Lo,j 1 2 3
1 540 1 na na (1, 3.00) (3, 2.90)

2 1 200 (1, 1.00) (2, 0.90)
3 0 0 (1, 0.60) (3, 0.70) (4, 0.60)

2 580 1 na na (3, 2.50) (4, 2.40)
2 1 0 (1, 0.60) (2, 0.70) (4, 0.60)

3 490 1 na na (1, 0.50) (4, 0.50)
2 1 180 (1, 0.50) (3, 0.40) (4, 0.40)
3 1 0 (1, 2.50) (3, 2.40) (4, 2.60)

na = not applicable

Table 4: Sequence Dependent Setup Time Data

j o m Setup time (S∗
o,j,m), · · · ,(j′, o′, So,j,m,o′,j′) · · ·

1 1 1 (150), (1,1,80), (1,2,160), (1,3,160), (2,2,270), (3,1,270), (3,2,240), (3,3,210)
3 (200), (1,1,80), (1,3,160), (2,1,210), (3,2,240), (3,3,210)

2 1 (50), (1,1,120), (1,2,60), (1,3,140), (2,2,150), (3,1,180), (3,2,240), (3,3,300)
2 (100), (1,2,80), (2,2,180)

3 1 (150), (1,1,120), (1,2,160), (1,3,60), (2,2,270), (3,1,270), (3,2,270), (3,3,210)
3 (150), (1,1,140), (1,3,60), (2,1,180), (3,2,210), (3,3,270)
4 (100), (1,3,60), (2,1,240), (2,2,180), (3,1,270), (3,2,270), (3,3,270)

2 1 3 (200), (1,1,180), (1,3,300), (2,1,70), (3,2,240), (3,3,270)
4 (100), (1,3,210), (2,1,70), (2,2,160), (3,1,180), (3,2,180), (3,3,180)

2 1 (100), (1,1,180), (1,2,210), (1,3,210), (2,2,70), (3,1,150), (3,2,300), (3,3,180)
2 (150), (1,2,180), (2,2,80)
4 (150), (1,3,180), (2,1,100), (2,2,60), (3,1,270), (3,2,270), (3,3,270)

3 1 1 (100), (1,1,210), (1,2,210), (1,3,210), (2,2,240), (3,1,80), (3,2,180), (3,3,180)
4 (100), (1,3,210), (2,1,240), (2,2,240), (3,1,60), (3,2,200), (3,3,120)

2 1 (100), (1,1,180), (1,2,300), (1,3,210), (2,2,270), (3,1,140), (3,2,50), (3,3,140)
3 (200), (1,1,270), (1,3,270), (2,1,300), (3,2,60), (3,3,180)
4 (150), (1,3,180), (2,1,270), (2,2,240), (3,1,180), (3,2,80), (3,3,120)

3 1 (100), (1,1,270), (1,2,180), (1,3,150), (2,2,180), (3,1,160), (3,2,160), (3,3,70)
3 (100), (1,1,180), (1,3,180), (2,1,270), (3,2,180), (3,3,80)
4 (50), (1,3,270), (2,1,180), (2,2,150), (3,1,180), (3,2,140), (3,3,70)

16

operations can be observed in Figure 8-b where the first and the second operations of job 2 (operations

(2,2,1) and (2,1,2)) are overlapped when they are processed on machines 4 and 2, respectively. Other

such overlapping are also present in the schedule as shown in the Gantt chart. If alternative rouging is

not considered, this overlapping cannot happen. This entails that lot streaming can result in a greater

makespan reduction in flexible job-shop scheduling than in classical job-shop scheduling.

The schedule shown in Figure 8-c, case-3, is obtained by assuming that machine 1 is not available

in the first 800 minutes. This schedule is quite different from the one shown in case-2. For example,

in case-2, six operations are assigned to machine 1 whereas in case-3 only two operations are assigned

to this machine. This is because, when routing flexibility is considered, the alternative machines of a

given operation that will be released soon from previous schedule may represent better choices for this

operation. In flexible job-shop, there may be several such operations having alternative machines with

different release dates. This demonstrates the importance of considering machine release date in this

type of shops.

Other several features of the proposed model are also illustrated in this example. As shown in Table

3, lag times of 200 and 180 minutes were assumed for the second operations of jobs 1 and 3, respectively.

Because of such lag time assumption, in case-1 for example, the setup of operation (3,1,2) on machine

1 and that of (1,1,2) on machine 2 started at 525 and 1966 minutes. Without these lag times, they will

be started at 345 and 1766 minutes, respectively. Another important consideration in the model was

the nature of setup of being attached or detached. The third operation of job 1 has a detached setup

allowing overlapping of the setup of this operation with that of the second operation of the same sublot.

Such overlapping can also be observed in the Gantt charts in Figure 8. Also shown in this figure, no

such overlaps occur for all the operations where attached setups was assumed.

In this example problem one can also see that although lot streaming decreases the overall makespan,

it increases the number of setups and the total setup time. In case-1, when lot streaming was not

considered, we have 8 setup incidences with a total setup time of 1110 minuets. In case case-2, the total

number of setups increased to 16 with a total setup time of 2060 minutes. This is about 86% increase

in total setup time. This demonstrates that optimizing the sequences to minimize setup time is more

important when LS is considered.

4.2. Computational Performance

In this section, we show the performance of the developed genetic algorithm and the improvements

achieved through parallel computation. Figure 9 shows the convergence history of CPLEX (version

11.2.0) and that of the sequential genetic algorithm in solving a small problem instance presented in the

previous section (Problem-1, Case-c). In this figure it can be seen that the makespan of the schedule

generated by CPLEX after about 6 and half hours of computation is 2692 minutes and does not improve

afterwards. Whereas, the genetic algorithm was able to generate a schedule with a makespan of 2530

in less than one minuet of computation. In order to validate this improved solution generated by the

genetic algorithm, we submitted it to CPLEX as a starting incumbent solution and it was accepted as a

feasible starting solution, though CPLEX was unable to further improve it. For larger problems studied

17

Figure 8: Schedule for problem-1: (a) without lot streaming, (b) with lot streaming, and (c) when
machine M1 is not available for the first 800 minutes. Note: The detail numerical values of the starting
and the ending times of the setups and the operations are given in Table 5.

18

Table 5: The details of the schedules shown in Figure 8

Case-1 Case-2 Case-3
Machine Run (j, s, o) SB SE/PB PE (j, s, o) SB SE/PB PE (j, s, o) SB SE/PB PE

M1 R1 (3,1,1) 0 100 345 (1,1,1) 0 150 768 (3,1,2) 800 900 1145
R2 (3,1,2) 525 665 910 (3,2,2) 768 948 1144 (3,1,3) 1145 1305 2530
R3 (3,1,3) 910 1070 2295 (3,1,2) 1144 1194 1243
R4 (1,1,3) 2342 2552 2876 (3,1,3) 1243 1403 1647
R5 (1,2,3) 1647 1857 2058
R6 (1,1,3) 2058 2118 2241

M2 R1 (1,1,2) 1966 2066 2552 (1,1,2) 968 1068 1253 (1,2,2) 1322 1422 1708
R2 (1,2,2) 1369 1449 1750 (1,1,2) 2046 2126 2326
R3 (2,1,2) 1750 1930 2197
R4
R5
R6

M3 R1 (1,1,1) 0 100 1766 (1,2,1) 0.0 200 1169 (1,2,1) 0 200 1122
R2 (3,2,3) 1169 1349 2290 (1,1,1) 1122 1202 1846
R3 (1,2,3) 1846 1986 2209
R4 (1,1,3) 2266 2326 2481
R5
R6

M4 R1 (2,1,1) 0 100 1492 (3,1,1) 0 100 149 (3,1,1) 0 100 345
R2 (2,1,2) 1492 1592 1940 (3,2,1) 149 209 405 (2,1,1) 345 525 976
R3 (2,1,1) 405 585 1503 (2,2,1) 976 1046 1987
R4 (2,2,1) 1503 1573 2047 (2,2,2) 1987 2087 2322
R5 (2,2,2) 2047 2147 2266 (2,1,2) 2322 2382 2495
R6

Note: SB, SE, PB, PE stand for setup begins, setup ends, processing begins, and processing ends, respectively.

19

in this paper, CPLEX was unable to start computation because of large memory requirement whereas

the genetic algorithm was able to generate solutions in just few minutes and progressively improve those

solutions. This clearly demonstrates the potential of the genetic algorithm in solving larger problem

instances.

2400290034003900440049005400
0:00:00 0:00:01 0:00:02 0:00:18 0:00:23 0:00:29 0:00:32 0:00:59 0:01:02 0:02:37 1:47:30 1:47:37 6:15:00 6:15:02 6:24:19 6:24:25 10:00:00 15:00:00 20:00:00Makespan

Time
Fainal solution makespan using1. CPLEX 2692 Minutes2. SGA 2530 MinutesCPLEX SGA

Figure 9: Comparison of CPLEX and the SGA in solving Problem 1

The performance of the genetic algorithm can be further improved by parallel computation using

island model PGA presented in Section 3.5. In order to illustrate such performance improvement, we

consider problems much lager than the Problem 1 presented in the previous section. The general nature

of the considered problems are given in Table 6. Figure 10 illustrates the performance improvement

archived in solving Problem 2 through parallel computation as the number of processors increases. Each

curve represents an average convergence of the genetic algorithm from 10 test runs with different genetic

parameters given in Table 7. In Figure 10 it can be seen that, at its convergence, the sequential genetic

algorithm generates a schedule with a makespan of 5227 minutes on the average. The 8-processor parallel

genetic algorithm reduces this makespan by about 109 minutes. As we increase the number of processors

to 16, 24, 32 and 48, the average makespan of the several test runs is reduced by 125, 165, 170, and 183

minutes, respectively. Such improvements obtained by parallel computation in solving Problem-2 were

also observed in solving several other problems considered in this paper. Figure 11 shows the average

convergence graphs of the sequential genetics algorithm (SGA) and a 24-subpopulation parallel genetic

algorithm in solving problems 2, 3, 4, and 5. In this figure, it can be seen that in all the problems

considered there are makespan reductions through parallel computation. The parallel genetic algorithm

was codded in C++ programming language using MPI message-passing library for communication. The

code was executed in a parallel computation environment composed of more than 250 interconnected

workstation each having a 8-core Intel Xeon 2.8GHz processor. The test problems were run using up to

48 cores.

20

Table 6: The general nature of the problems considered

Number of Number of Number of
Number of Number of sublots for operations for alternative routes

Problem No. machines jobs each job the jobs for the operation
2 8 20 4 3 to 5 1 to 3

3 12 30 4 3 to 6 1 to 3

4 10 25 4 3 to 4 1 to 3

5 12 35 3 2 to 4 1 to 3

5000510052005300540055005600
0 1000 2000 3000Makespan (Minutes) Generaion

SGAPGA8PGA16PGA24PGA32PGA48
Figure 10: Performance improvement through parallelization of the genetic algorithm as the number of
processor is increased from 1 to 8, 16, 24, 32, and to 48.

21

5000510052005300540055005600

0 1000 2000 3000Makespan (Minu
tes)

Generaion
SGA
PGA 69007100730075007700790081008300

0 1000 2000 3000Makespan (Minu
tes)

Generaion
SGAPGA

(a) Problem 2 (b) Problem 3

400041004200430044004500460047004800

0 1000 2000 3000Makespan (Minu
tes)

Generaion
SGAPGA 3300340035003600370038003900

0 1000 2000 3000Makespan (Minu
tes)

Generaion
SGA
PGA

(a) Problem 4 (b) Problem 5

Figure 11: Average convergence of the SGA vs PGA for problems 1, 2, 4, and 5.

22

4.3. Some Empirical Studies

In this section we present some empirical studies on the impact of the parameters of the proposed

algorithm on its performance. In Figure 12 are the plots of the makespan of the schedules obtained

after several iterations by SGA and the PGA with 8, 16, 32 and 48 subpopulation under different test

runs. The test runs are differentiated by the settings of their genetic parameters as shown in Table 7.

In Figure 12, we can see that the patterns by which the final solution quality of the SGA is affected

by the genetic parameters are similar to those of the PGA irrespective of number of computing cores

(same as the number of subpopulations) used. This indicates that the genetic parameter tuning (such

as population size, tournament size, probabilities for the crossover and mutation operators) of PGA

can be done by using SGA without committing parallel computing resource. We also obsered that the

patterns by which the final solution quality from both SGA and PGA are affected by the change of the

genetic parameters are similar for different problem instances as can seen in Figures 12, 13-(a), (b), and

(c). This implies that the genetic parameters setting that worked well for one problem instance is likely

to work well for other problems.

4950500050505100515052005250
1 2 3 4 5 6 7 8 9 10Makespan (Minutes

)
Test Run

SGAPGA 8PGA16PGA 24PGA 32PGA48
Figure 12: The effect of changing genetic parameters on the final solution quality obtained by the SGA
and PGA with different number of subpopulation in solving problem 2

We also performed empirical studies on the convergence behavior of the proposed PGA affected by

parameters specific to the island model parallelization. One such parameter is the connection topology.

Figure 14 shows the convergence graphs of the 24-subpopulation PGA with different connection topolo-

gies as illustrated in Figure 7. The curves show the average convergence of 10 test runs as described

previously. From this figure it can be seen that the fully connected topology outperforms other two

topologies. Another PGA specific parameter is the migration policy. It determines the individuals to

migrate from the source subpopulation and those to be replaced by the migrants in the destination

subpopulation. In this empirical study we considered three different migration policies: (1) random-

replace-random (RR), (2) best-replace-random (BR), and (3) best-replace-worst (BW). Figure 15 shows

23

62506550685071507450775080508350

1 2 3 4 5 6 7 8 9 10Makespan (Min
utes)

Test Run

SGA PGA24

39504050415042504350445045504650

1 2 3 4 5 6 7 8 9 10Makespan (Min
utes)

Test Run

SGA PGA24

(a) Problem 3 (b) Problem 4

3100325034003550370038504000

1 2 3 4 5 6 7 8 9 10Makespan (Min
utes)

Test Run

SGA PGA24

(c) Problem 5
Figure 13: The effect of changing genetic parameters on the final solution quality obtained by the SGA
and 24 subpopulation PGA in solving problems 3, 4, and 5

24

the convergence graphs of the PGA in solving problems 2 and 3. The curves represent the average con-

vergence of the 10 test runs. It can be seen that the PGA is less sensitive to the change of migration

policy while the best-replace-random migration policy slightly outperforms the other two policies.

5000505051005150520052505300
0 1000 2000 3000Makespan (Minu

tes)
Generaion

RingMeshFC 690071007300750077007900
0 1000 2000 3000Makespan (Minu

tes)
Generaion

RingMeshFC
(a) Problem 2 (b) Problem 3

41004175425043254400447545504625
0 1000 2000 3000Makespan (Minu

tes)
Generaion

RingMeshFC 330033753450352536003675
0 1000 2000 3000Makespan (Minu

tes)
Generaion

RingMeshFC
(a) Problem 4 (b) Problem 5

Figure 14: Average convergence of the PGA under different connection topologies for problems 1, 2, 4,
and 5.

5. Discussion and Conclusions

Lot streaming is a technique in which a production lot is split into smaller sublots such that each sublot

is treated individually and transferred to the next processing stage upon its completion. Thus, different

sublots of the same job can be processed simultaneously at different stages, thereby reducing production

makespan. In this research we noted that the study of lot streaming in job-shop is very limited. In this

paper, we attempted to extend this limited literature by considering (1) routing flexibility, (2) sequence

dependent setup time, (3) attache/detached nature of setup, (4) machine release dates, (5) lag time,

and (6) high performance parallel computation. Because of the consideration of routing flexibility, the

problem studied can be termed as flexible-job shop scheduling with lot streaming. A mixed integer

linear programming model was developed to formalize the problem. The developed model is NP-hard

and difficult to solve even for small size problems using off the shelf optimization software. To this

end, we developed a parallel genetic algorithm that runs on a high-performance parallel computing

environment. A numerical example showed the importance of considering several pragmatic issues

addressed in this paper in an integrated manner. Several other numerical example problems were

25

50505070509051105130515051705190
0 1000 2000 3000Makespan (Minu

tes)
Generaion RRBWBR 69007100730075007700

0 1000 2000 3000Makespan (Minu
tes)

Generaion
RRBWBR

(a) Problem 2 (b) Problem 3

Figure 15: Average convergence of the parallel genetic algorithm under different migration policies for
problems 1 and 2.

solved by the developed PGA and the examples show the superior computational performance of the

PGA against those of a sequential GA and an off-shelf optimization package. In our future research,

we plan to extend the model and the solution procedure to solving lot streaming problems considering

multiple objectives such as workload balancing, due dates and mean flow-time requirements, and others

factors such as capacitated buffer and transportation time.

Acknowledgements: This research is supported by Discovery Grant from NSERC and by Faculty

Research Support Fund from the Faculty of Engineering and Computer Science, Concordia University,

Montreal, Canada. We thank RQCHP (Réseau québécois en calcul de haute performance http://www.

rqchp.qc.ca/) for its assistance in providing access to parallel computing facilities.

Table 7: Genetic parameters used for the test runs

Test Run
Parameter 1 2 3 4 5 6 7 8 9 10
Population Size 5500 2500 4500 3000 4000 3500 2500 2000 2800 3800
Tournament size factor 0.1 0.2 0.05 0.03 0.2 0.15 0.12 0.25 0.2 0.15
Crossover probability for:
SPC1 ρ1 0.85 0.8 0.95 0.8 0.75 0.8 0.75 0.9 0.7 0.8
SPC2 ρ2 0.85 0.8 0.95 0.8 0.9 0.8 0.75 0.8 0.85 0.8
OMAC ρ3 0.95 0.85 0.8 0.75 0.75 0.9 0.85 0.75 0.85 0.9
JLOSC ρ4 0.8 0.9 0.85 0.95 0.8 0.75 0.8 0.7 0.8 0.85
SLOSC ρ5 0.9 0.8 0.85 0.9 0.95 0.9 0.75 0.7 0.9 0.83

Mutation probability for:
SStM σ1 0.15 0.1 0.05 0.1 0.02 0.1 0.15 0.1 0.02 0.1
SSwM σ2 0.1 0.08 0.1 0.12 0.1 0.1 0.2 0.15 0.1 0.05
SSD d 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ROAM σ3 0.1 0.05 0.1 0.1 0.03 0.1 0.1 0.15 0.1 0.1
IOAM σ4 0.1 0.12 0.2 0.15 0.05 0.2 0.1 0.25 0.2 0.1
OSSM σ5 0.2 0.1 0.25 0.1 0.05 0.1 0.05 0.15 0.06 0.15

26

http://www.rqchp.qc.ca/
http://www.rqchp.qc.ca/

References

[1] Alba, E. and Troya, J. M., 2000. Influence of the migration policy in parallel distributed gas with

structured and panmictic populations. Applied Intelligence, 12, 163–181.

[2] Baker, K., 1974. Introduction to Sequence and Scheduling. Wiley, NY,

[3] Baker, K., 1995. Lot streaming in the two-machine flow shop with setup times. Annals of Operations

Research, 57, 1–11.

[4] Baker, P. D., K.R, 1990. Solution procedures for the lot streaming problem. Decision Sciences, 21,

475–491.

[5] Biskup, D. and Feldmann, M., 2006. Lot streamin with varaibal sublots: an integer programming

formulation. Journal of Operational Research Society, 57, 296–303.

[6] Blackburn, J., 1991. Time-Based Competition. Business One Irwin, Burr Ridge, IL,

[7] Bockerstette, J. and Shell, R., 1993. Time Based Manufacturing. McGraw-Hill, New York,

[8] Bukchin, J. and Masin, M., 2004. Multi-objective lot splitting for a single product m-machine

flowshop line. IIE Transactions, 36, 191–202.

[9] Buscher, U. and Shen, L., 2008. An integrated tabu search algorithm for the lot stream-

ing problem in job shops. European Journal of Operational Research, In Press (DOI:

10.1016/j.ejor.2008.11.046).

[10] Cantú-Paz, E., 2000. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Pub-

lishers, Norwell, MA,

[11] Chan, F., Wong, T., and Chan, P., 2004. Equal size lot streaming to job-shop scheduling problem

using genetic algorithm. Proceedings of the 2004 IEEE International Symposium on Intelligent

Control. Taipei, Taiwan, September 2-4, 2004, pp. 472–476.

[12] Chan, F., Wong, T., and Chan, P., 2005. Lot streaming technique in job-shop environment. Pro-

ceedings of the 13th Mediterranean Conference on Control and Automation. Limassol, Cyprus,

June 27-29, 2005, pp. 364–369.

[13] Chan, F., Wong, T., and Chan, P., 2008. The application of genetic algorithms to lot streaming

in a job-shop scheduling problem. International Journal of Production Research, In press (DOI:

10.1080/00207540701577369).

[14] Chan, F., Wong, T., and Chan, P., 2008. Lot streaming for product assembly in job shop environ-

ment. Robotics and Computer-Integrated Manufacturing, 24, 321–331.

[15] Chang, J. H. and Chiu, H. N., 2005. A comprehensive review of lot streaming. International Journal

of Production Research,, 43, 1515–1536.

27

[16] Chen, H., Ihlow, J., and Lehmann, C., 1999. A genetic algorithm for flexible job-shop scheduling.

In the proceedings of the 1999 IEEE International Conference on Robotics & Automation. May

1999, Detroit, Michigan, pp. 1120–1125.

[17] Chen, J., Chen, K., Wu, J., and Chen, C., 2007. A study of the flexible job shop scheduling problem

with parallel machines and reentrant process. International Journal of Advanced Manufacturing

Technology, In Press, DOI 10.1007/s00170-007-1227-1.

[18] Chen, J. and Steiner, G., 1996. Lot streaming with detached setups in three-machine flow shops.

European Journal of Operational Research, 96, 591–611.

[19] Chiu, H. N., Chang, J. H., and Lee, C. H., 2004. Lot streaming models with a limited number of ca-

pacitated transporters in multistage batch production systems. Computers & Operations Research,

31, 2003–2020.

[20] Conway, R. and Maxwell, W., 1967. Theory of Scheduling. Addison-Wesley, MA,

[21] Dauzere-Peres, S. and Lasserre, J., 1993. An iterative procedure for lot streaming in job-shop

scheduling. Computers and Industrial Engineering, 25, 231–234.

[22] Dauzere-Peres, S. and Lasserre, J., 1997. Lot streaming in job-shop scheduling. Operations Re-

search, 45, 584–595.

[23] Edis, R. and Ornek, A., 2009. Simulation analysis of lot streaming in job shops with transportation

queue disciplines. Simulation Modelling Practice and Theory, 17, 442–453.

[24] Feldmann, M. and Biskup, D., 2008. Lot streaming in a multiple product permutation flow shop

with intermingling. International Journal of Production Research, 46, 197–216.

[25] Gao, J., Gen, M., Sun, L., and Zhao, X., 2007. A hybrid of genetic algorithm and bottleneck shifting

for multiobjective flexible job shop scheduling problems. Computers & Industrial Engineering, 53,

149–162.

[26] Gao, J., Sun, L., and Gen, M., 2008. A hybrid genetic and variable neighborhood descent algorithm

for flexible job shop scheduling problems. Computers & Operations Research, 35, 2892–2907.

[27] Garey, M. R., Johnson, D. S., and Sethi, R., 1976. The complexity of flowshop and jobshop schedul-

ing. Mathematics of Operations Research, 1, 117–129.

[28] Glass, C., JND, G., and Potts, C., 1994. Lot streaming in three-stage process. European Journal

of Operations Research, 75, 378–394.

[29] Gordon, V. and Whitley, D., 1993. Serial and parallel genetic algorithms as function optimizers.

Proceedings of the Fifth International Conference on Genetic Algorithms, edited by S. Forrest.

Morgan Kaufmann, San Mateo, CA., pp. 177–183.

28

[30] Gupta, J., 1986. Flowshop schedules with sequence dependent setup times. Journal of Operations

Research Society of Japan, 29, 206–219.

[31] Hall, N. G., Laporte, G., Selvarajah, E., and Srikandarajah, C., 2003. Scheduling and lot streaming

in flow shops with no-wait in process. Journal of Scheduling, 6, 339–354.

[32] Jacobs, F. and Bragg, D., 1988. Repetitive lots: flow time reductions through sequencing and

dynamic batch sizing. Decision Science, 19, 281–294.

[33] Jeong, H., Park, J., and Leachman, R., 1999. A batch splitting method for a job shop scheduling

problem in an mrp environment. International Journal of Production Research, 37, 3583–3598.

[34] Kacem, I., 2003. Genetic algorithm for the flexible jobshop scheduling problem. In the Proceeding

of the IEEE International Conference on Systems, Man, and Cybernetics. Washington, DC, pp.

3464–6469.

[35] Kochhar, S. and Morris, R., 1987. Heuristic methods for flexible flow line scheduling. Journal of

Manufacturing Systems, 6, 299–314.

[36] Kumar, S., Bagchi, T., and Sriskandarajah, C., 2000. Lot streaming and scheduling heuristics for

m-machine no-wait flow shop. Computers and Industrial Engineering, 38, 149–172.

[37] Liu, S. C., 2003. A heuristic method for discrete lot streaming with variable sublots in a flow shop.

International Journal of Advanced Manufacturing Technology, 22, 662–668.

[38] Low, C., Hsu, C., and Huang, K., 2004. Benefits of lot splitting in job-shop scheduling. International

Journal of Advanced Manufacturing Technology, 24, 773–780.

[39] Manikas, A. and Chang, Y., 2008. Multi-criteria sequence-dependent job shop scheduling using

genetic algorithms. Computers & Industrial Engineering, , In press.

[40] Marimuthu, S., Ponnambalam, S. G., and Jawahar, A. N., 2008. Evolutionary algorithms for

scheduling m-machine flow shop with lot streaming. Robotics and Computer-Integrated Manufac-

turing, 24, 125–139.

[41] Martin, C. H., 2006. A hybrid genetic algorithm/mathematical programming approach to the

multi-family flowshop scheduling problem with lot streaming. OMEGA International Journal of

Management Sciences, doi: 10.1016/j.omega.2006.11.002.

[42] Nowostawski, M. and Poli, R., 1999. Parallel genetic algorithm taxonomy. Proceedings of the

Third International Conference on Knowledge-Based Intelligent Information Engineering System.

Adelaide, Australia, pp. 88–92.

[43] Osman, I. and Potts, C., 1989. Simulated annealing for permutation flow-shop scheduling. Omega,

17, 551–557.

29

[44] Panwalkar, S. S., Dudek, R. A., and Smith, M. L., 1973. Sequencing research and the industrial

scheduling problem. In S. E. Elmaghraby (Ed.), Symposium on the theory of scheduling and its

applications. Springer-Verlag, p. 29.

[45] Pezzella, F., Morganti, G., and Ciaschetti, G., 2008. A genetic algorithm for the flexible job-shop

scheduling problem. Computers and Operations Research, 35, 3202–3212.

[46] Potts, C. and Baker, K., 1989. Flow shop scheduling with lot streaming. Operations Research Letter,

8, 297–303.

[47] Reeves, C. R., 1995. A genetic algorithm for flowshop sequencing. Computers and Operations

Research, 22, 5–13.

[48] Reiter, S., 1966. A system for managing job shop production. Journal of Business, 34, 371–393.

[49] Rios-Mercado, R. and Bard, J., 1999. A branch-and-bound algorithm for permutation flow shops

with sequence-dependent setup times. IIE Transactions, 31, 721–731.

[50] Ruiz, R., Şerifoglub, F. S., and Urlings, T., 2008. Modeling realistic hybrid flexible flowshop schedul-

ing problems. Computers & Operations Research, 35, 1151–1175.

[51] Ruiz, R., Maroto, C., and Alcaraz, J., 2005. Solving the flowshop scheduling problem with sequence

dependent setup times using advanced metaheuristics. European Journal of Operational Research,

165, 34–54.

[52] Saidi, M. and Fattahi, P., 2007. Flexible job shop scheduling with tabu search algorithm. Interna-

tional Journal of Advanced Manufacturing Technology, 35, 563–570.

[53] Smunt, T., Buss, A., and Kropp, D., 1996. Lot splitting in stochastic flow shop and job shop

environments. Decision Science, 27, 215–238.

[54] Tseng, C. T. and Liao, C. J., 2007. A discrete particle swarm optimization for lot-

streaming flowshop scheduling problem. European Journal of Operational Research, doi:

10.1016/j.ejor.2007.08.030.

[55] Vickson, R., 1995. Optimal lot streaming for multiple products in a two-machine flow shop. Euro-

pean Journal of Operations Research, 85, 556–575.

[56] Xing, L., Chen, Y., and Yang, K., 2008. Multi-objective flexible job shop sched-

ule: Design and evaluation by simulation modeling. Applied Soft Computing, In

Press (doi:10.1016/j.asoc.2008.04.013).

30

	Defersha-Chen-IJPR-5.pdf
	1 Introduction
	2 Mathematical Formulation
	2.1 Problem Description and Notations
	2.2 MILP Model for FJSP-LS

	3 Genetic Algorithm
	3.1 Solution Representation
	3.2 Genetic Operators
	3.2.1 Selection Operator
	3.2.2 Crossover Operator
	3.2.3 Mutation Operator

	3.3 Initial Population
	3.4 Fitness Evaluation
	3.5 Parallelization of the GA

	4 Numerical Example
	4.1 Model Illustration
	4.2 Computational Performance
	4.3 Some Empirical Studies

	5 Discussion and Conclusions
	References

