Jobshop lot streaming with routing flexibility,
sequence-dependent setups, machine release dates
and lag time

Published in 2012 in the International Journal of
Production Research Vol. 50, 2331 -2352

Please cite this article as:

Defersha, F. M., and Chen, M., (2012). Job shop lot
streaming with routing flexibility, sequence-dependent
setups, machine release dates and lag time. International
Journal of Production Research, Vol. 50, 2331-2352.

The online version can be found at the following link:

http://dx.doi.org/10.1080/00207543.2011.574952

http://dx.doi.org/10.1080/00207543.2011.574952

Job-Shop Lot Streaming with Routing Flexibility, Sequence Dependent Setups,
Machine Release Dates and Lag Time

Fantahun M. Defersha and Mingyuan Chen*

Department of Mechanical and Industrial Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, Canada, H3G 1M8

Abstract

Lot streaming is a technique of splitting production lots into smaller sublots in a multi-stage man-
ufacturing systems so that operations of a given lot can be overlapped. This technique can reduce
manufacturing makespan and is one effective tool for time-based manufacturing strategy. Research
on lot streaming models and solution procedures in flexible job-shops has been limited. Flexible
job-shop scheduling problem is an extension of the classical job-shop scheduling problem by allowing
an operation to be assigned to one of a set of eligible machines during scheduling. In this paper we
develop a lot streaming model for a flexible job-shop environment. The model considers several prag-
matic issues such as sequence dependent setup time, attached or detached nature of setups, machine
release date and lag time. In order to efficiently solve the developed model, an island-model parallel
genetic algorithm is proposed. Numerical examples are presented to demonstrate the features of the
proposed model and compare computation performance of the parallel genetic algorithm over the
sequential one. The results are very encouraging.

Keywords: Lot Streaming, Flexible Job-shop Scheduling; Sequence Dependent Setup; Machine Re-
lease Date; Lag Time; Parallel Genetic Algorithm

1. Introduction

Lot streaming (LS) is a technique in which a production lot is split into smaller sublots such that
each sublot is treated individually and transferred to the next processing stage upon its completion
[3, 18]. Different sublots of the same job can thus be processed simultaneously at different stages. As
a result of such operation overlapping, production can be significantly accelerated. This technique has
been used to implement the time-based strategy in todays global competition [15]. Many world-class
manufacturing companies (e.g., Dell and Toyota) have adopted this strategy to quickly produce and
deliver goods to their customers [6, 7]. The concept was first formally introduced in literature by
Reiter [48] in 1966. Since then a considerable number of articles have been published on LS where the
researcher mainly focus on flowshop [see for example 46, 4, 28, 3, 55, 36, 31, 37, 19, 8, 41, 5, 54, 24, 40].
Research on job-shop scheduling problems (JSP) with lot streaming, however, is quite limited. Jacobs
and Bragg [32] studied a LS problem in job shops and considered the before-arrival (detached) type
of setups. Smunt et al. [53] considered LS problems in stochastic flowshops and job-shops. They used

simulation and showed that lot splitting substantially improves mean and standard flow time over no

*For correspondence: mychen@encs.concordia.ca, Tel: (514) 848-2424 Ext. 3134; Fax: (514) 848-3175

lot splitting. Dauzere-Peres and Lasserre [21, 22] proposed an iterative procedure for LS in a job-
shop which solves a linear programming sub-problem to determine sublot-sizes for a fixed sequence and
searches for different sequences using a heuristic algorism. Jeong et al. [33] developed a lot splitting
heuristic for JSP in a dynamic environment. Some heuristics are applied to determine the split lots
and the sublot sizes and then schedule sublots with a modified shifting bottleneck procedure. Low
et al. [38] demonstrated the benefits of lot splitting in job-shops. A disjunctive graph was first used to
describe the addressed scheduling problem, and an integer programming model was then constructed
to obtain an optimal solution for small size problems. Chan et al. [11] proposed a genetic algorithm to
determine the number of equal sized sublots for each lot and the processing sequence of these sublots
in a job-shop environment. In their subsequent works, the authors extended their JSP-LS studies by
considering unequal sized sublots in Chan et al. [12, 13] and assembly operations in Chan et al. [14].
Buscher and Shen [9] proposed a three phase algorithm for JSP-LS. The algorithm incorporates the
predetermination of sublot sizes, the determination of schedules based on Tabu search and the variation
of sublot sizes. Edis and Ornek [23] applied simulation to study LS problems in a stochastic job shop
with equal and discrete sublots. The work presented in our this paper extends the job-shop lot streaming
literature reviewed above by considering (1) routing flexibility, (2) sequence dependent setup time, (3)
attached/detached setups, (4) machine release dates, and (5) lag time.

Routing Flexibility: The presence of alternative routings is typical in many discrete multi-batch
production environments. Routing flexibility increases the number of ways in which one can assign
operations to machines in order to come up with a better schedule. Flexible job-shop scheduling
problem (FJSP) is an extension of the classical JSP by considering routing flexibility during scheduling
to achieve a better schedule. Recent studies in FJSP without LS can be found in Chen et al. [17], Saidi
and Fattahi [52], Gao et al. [25], Pezzella et al. [45], Xing et al. [56], and Gao et al. [26]. In this paper,
we propose a model and solution procedure for FJSP with lot streaming (FJSP-LS).

Sequence Dependent Setup: In many real-life situations, a setup operation is often required
between operations and it strongly depends on the immediate preceding operation on the same machine
[20, 2]. Panwalkar et al. [44] noticed that significant portion of jobs required sequence dependent setups
in job scheduling. Flow shop problems with sequence-dependent setups are extensively covered in the
current literature [see for example 30, 35, 43, 47, 49, 51]. However, as pointed in Manikas and Chang
[39], research on job-shops scheduling with sequence-dependent setups has been limited. In this paper,
sequence dependent setup time is considered in FJSP-LS. As lot streaming increases the number of
setup incidences, the optimization of the sequence to minimize the setup time becomes more important.

Attached/Detached Nature of Setup: In addition to sequence dependence, an important feature
of setups is their state of being attached or detached. A setup of a particular operation is attached
(non-anticipatory) if it is assumed that setting up the machine for this operation can be performed when
the job arrives at the machine. When a setup is performed prior to the arrival of the job, the setup
is called detached (or anticipatory). In this case the setup time can overlap with the processing time
of the preceding operation if these two consecutive operations are not assigned to the same machine.

In most papers in the literature, authors assumed attached setup. In the proposed model, setup of

each operation can be treated as either attached or detached depending on the actual manufacturing
requirements.

Machine Release Date: The proposed model also considers machine release date. It is the
time at which a machine will complete processing products from previous schedule and be available
for processing products of the current schedule. This is a common situation in industry as production
environments are seldom found empty and one may have to consider ongoing operations from previous
schedule [50]. In this research we noticed that when routing flexibility is considered in scheduling,
machine release date becomes very important as the selection of an alternative machine can be affected
by its release date. This is because, the machine to be released soon may represent a better choice than
the one to be released in a latter time.

Lag Time: 1t is a requirement for delaying the starting time of an operation from the completion
time of the previous operation of a sublot. Such time lag may occur when, for example, drying or
cooling of products are performed before further operations can take place. In the proposed model, lag
time has been incorporated.

Solving classical JSP is known to be NP-hard [27]. The introduction of sequence dependent setup
time, routing flexibility and lot splitting complicates the already difficult classical JSP. In order to
efficiently solve the FJSP-LS mathematical model proposed in this paper, we developed a parallel
genetic algorithm (PGA) that runs on a high performance parallel computing platform. The algorithm
is based on the island model parallelization technique of a genetic algorithm (GA). From early days of
its development, the GA’s potential for parallelization has been noted. Several authors have applied
parallel genetic algorithms in diverse domains while research on using PGAs for JSP has not been
seen. This paper contributes to the literature by providing a comprehensive model for FJSP-LS and
reporting the use of parallel computing in solving this type of difficult problems. The rest of this paper
is organized as follows. In Section 2, we present the MILP model for FJSP-LS. The PGA is detailed
in Section 3. Numerical examples are give in Section 4. Discussion and conclusions are presented in

Section 5.

2. Mathematical Formulation

In this section we present a mixed integer linear programming model for FJSP-LS. The model formalizes
the problem studied and can be used to solve small size problems using branch and bound algorithm.
Solutions from such small size problems can be used to validate correctness of the developed heuristic

solution method.

2.1. Problem Description and Notations

Consider a job-shop consisting of M machines where certain machines are same or have some common
functionalities. The system is processing a set of jobs from previous schedules and each machine m
has a release date D,,, at which time it will be available for current schedule. Consider also a set of J

independent jobs to be currently scheduled in the system. The batch size of job j is given by B; and this

batch is to be split into S; number of unequal consistent sublots (transfer batches). A decision variable
bs; is used to denote the size of sublot s of job j. Each sublot of job j is to undergo O; number of
operations in a fixed sequence where each operation can be processed by one of several eligible machines.
T5,j,m is unit processing time for an operation o of a sublot of job j on machine m. An operation o of a
sublot of job j can be started on machine m after lag time L, ; and after the setup is performed. The
setup time for an operation o of job type j on machine m depends on the preceding operations and is
denoted by S, jm.o,j7, where operation o’ of a sublot of job j" is the preceding operation on machine m.

If operation o of sublot s of job j is the first operation to be processed on machine m, the setup time

*

is simply represented as Sy ;. for operation o of a sublot of job

The setup time S, j o j» (OF S;jvm)
j can be overlapped with the processing time of operation o — 1 of the same sublot if it is a detached
setup and machine m is available for setup. The problem is to determine the size of each sublot, to
assign the operation of each sublot to one of the eligible machines and to determine the sequence and
starting time of the assigned operations on each machine. The objective is to minimize the makespan
of the schedule. We next introduce some additional notations and then present a mixed integer linear

programming (MILP) formulation for FJSP-LS.

Additional Parameters:

R, Maximum number of production runs of machine m where production runs are indexed by
roru=1,2, ..., Ry; Each of these production runs can be assigned to at most one sublot.
Thus the assignment of the operations to production runs of a given machine determines the

sequence of the sublots on that machine;

P, jm A binary data equal to 1 if operation o of a sublot job j can be processed on machine m, 0
otherwise;
Ao j A binary data equal to 1 if setup of operation o of a sublot of job j is attached (non-

anticipatory), or 0 if this setup is detached (anticipatory);

Q Large positive number.

Variables:
Continuous Variables:
Cmaz Makespan of the schedule

Co,s,j,m Completion time of operation o of sublot s of job j on machine m;

Cr.m Completion time of the r** run of machine m;
b ; Size of sublot s of job j

Binary Integer Variables:

Trmos,j A binary variable which takes the value 1 if the r* tun on machine m is for operation o of

sublot s of job j, 0 otherwise;

Yr,m,0,4 A binary variable which takes the value 1 if the 7" run on machine m is for operation o of

any one of the sublots of job j, 0 otherwise;
Vs, A binary variable that takes the value 1 if sublot s of job j is non-zero (bs; > 1), 0 otherwise,

Zrm A binary variable that takes the value 1 if the r*" potential run of machine m has been

assigned to an operation, 0 otherwise;

2.2. MILP Model for FJSP-LS

Following the problem description and using the notations given above, the MILP mathematical model
for the FJSP-LS is presented below.

Minimize:

Objective = Cmay (1)
Subject to:
Craz 2 Co,s,5,m 5 V(O, s,j,m) (2)
/C\'r,m > Co,s,j,m T+ Q- Ty m,o,s,5 — Q; V(T, m, o, 87j> (3)
Er,m < Co,s,j,m — Q- ZTrm,o0,5,5 T Q; V(T‘, m, o, Svj) (4)
Cm = bs,j* Tojm — S5 jm — Q T1mos; + Q= D s V(m, 0,5,) ()
Er,m - bs,j : To,j,m - So,j,m,o’,j’ -Q- (y'r’—l,m,o’,j’ + $r,m,o,s,j) + 2Q > 87‘—1,771 ;
Y(r,m,o0,s,7,0,5")|(r > 1) (6)
Crm = bsj Tojm = Sgjum - Aoy — - (TLmio,s,5 + Tor s i0-1,5,5) T 20 2 G s + Loy 5
Y(m,r",m’, o, 5,j)|{((1,m) # (r’,m/)) A(o>1)} (7)
Crm = bsj - Tojm — Sojmor i+ Aog = - (Yr—1,m0 5" + Trmio,s,j + Trtim0-1,5,5) T 32 2 Co ot + Loy 5
V(r,m,r",m’ 0,5,5,0, i V{(r >1)A(o>1)A(r,m) # (r',m') A (0,7) # (0,7} (8)
Yrm,o,j < Po,j,m ; V(T‘, m, O,j) (9)
S
Yrm,o,j = Z Trm,o,s,j 3 V(’I“, m, O,j) (10)
s=1
M R,
Z Zxr,m,o,s,j = Vs,j 3 V(O, S,j) (11)
m=1r=1
bsj < Bj-vsj ;5 Y(s,7) (12)
Vs,j S bs,j ; V(S,j) (13)

S;

> bsi=Bis Y() (14)

s=1
J S5 0O

Z Z Z xr7m7078’j = ZT7m) \V/(T, m) (15)

7j=1s5=1o0=1
Zr4+1,m < Zrm 3 V(T‘, m) (16)
Lyr! m,ol,s,j <1- Trm,o,5,5 > V(T, 7“,, m, o, 0/7 Saj)‘{(ol > 0) N (7’/ < T’)} (17)
T ot ysj < 1 — Trmos,j s v(r, T,a m, o, 0,7 S,j)|{(0/ <o) A (1"/ >r)} (18)
Trm.os,js Yrmogs Vs, and 2., are binary (19)

The objective function in Eq. (1) is to minimize the makespan of the schedule. Constraint in Eq.
(2), along with the objective function, determines the makespan. The constraints in Eqgs. (3) and (4)
together state that the completion time of the o operation of sublot s of job j is equal to the completion
time of the 7* run of machine m if this production run is assigned to that particular operation. The
staring time of the setup for the first run (r = 1) of machine m is given by €1, — bs j - To jm — S*o,jm if
the o' operation of sublot s of job j is assigned to this first run. This starting time cannot be less than
the release date of machine D,, as enforced by the constraint in Eq. (5). The constraint in Eq. (6) is
to enforce the requirement that the setup of any production run r» > 1 of a given machine cannot be
started before the completion time of run r — 1 of that machine. The constraint in Eq. (7) states that
for any pair of machines (m,m'), the setup (if A, ; = 1) or the actual processing (if A, ; = 0) of the first
run on machine m cannot be started before the completion time of run ' of machine m’ plus lag time
L, ;. This constraint is applied if first run of machine m is assigned to operation o of sublot s of job j
and run 7’ of machine m’ is assigned to operation o — 1 of this same sublot. The constraint in Eq. (8) is
similar to that in Eq. (7) except that Eq. (8) is for run » > 1 of machine m. In this case, the sequence
dependent setup time has to be considered by taking into account the operation that was processed in
run 7 — 1 of machine m. The constraint in Eq. (9) states that a production run r of machine m can be
assigned to operation o of any one of sublots of job j if this operation can be performed on this machine.
Constraint 10 depicts the logical relation between the binary variable y .0 and 2, ,.0.5,;. If the size
of sublot s of job j is positive (7s; = 1), an operation o of this sublot must be assigned to exactly one
production run of one machine (Eq. 11). However, if the size of this sublot is zero, it should not be
assigned to any production run. The constraint in Eq. (12) forces the binary variable 75 ; to take the
value 1 if the sublot size b, ; is greater than zero. If the sublot size b, ; = 0, the binary variable -, ;
is forced to take the value 0 by the constraint in Eq. (13). The constraint in Eq. (14) states that the
sum of the sizes of the sublots of job j equals the batch size of this job. Each production run of a given
machine can be assigned to at most one operation (Eq. 15), and production run r + 1 can be assigned
to an operation if and only if run r of that machine is already assigned (Eq. 16). The constraints given
in Egs. (17) and (18) are used speed up the branch and bound procedure in solving small size problems.
These constraint sets are not required to model the problem as the relations have been imposed by the

constraints in Egs. (7) and (8). The constraint in Eq. (17) accounts for the fact that if an operation

o of sublot s job j is assigned to a production run r of machine m, any upcoming operation o’ of this
sublot cannot be assigned to any earlier run r’ of machine m. The constraint in Eq. (18) is a mirror
image of constraint Eq. (17). It states that if an operation of a sublot of a given job is assigned to a
production run of a machine, any earlier operation of that sublot cannot be assigned to any upcoming
production run of that machine. Integral requirements on the variable x, 057, Yrm,o0,j> Vs,j and zrm

are given Eq. (19).

3. Genetic Algorithm

Solving the classical JSP is known to be NP-hard [27] and so is solving the FJSP-LS model presented
in the previous section. In order to efficiently solve this model, we developed an island-model Parallel
Genetic Algorithm (PGA) that runs on a high performance parallel computing platform. The various

elements of this algorithm are presented in the following subsections.

3.1. Solution Representation

A Genetic algorithm processes population of individuals, each representing a solution of the problem
to be solved. In solving FJSP using genetic algorithm, Chen et al. [16], Kacem [34], Pezzella et al. [45],
Gao et al. [26] used solution representations encoding both assignment and sequencing of operations
on the various machines. Similar representations can be used in solving the proposed FJSP-LS if each
sublot is considered as a job and the representations are augmented to encode the size and the number
of sublots of each job. In order to illustrate such a solution representation, let us consider a small
example problem processing three jobs in a four-machine flexible job shop. The number of operations,
maximum number of sublots for each job, and the set of eligible machines for each operation are given
in Table 1. By considering each sublot as a job and using the technique proposed in Kacem [34], a
typical feasible operation to machine assignment and sequencing is encoded in a chromosome as shown
in Figure 1. In this chromosome, each gene is represented by a quadruple (j, s, o, m) denoting the
assignment of the o operation of sublot s of job j to machine m. The sequence of the genes in the
chromosome represents the sequences of the operations in the machines. For example, by reading the
chromosome from left to right, the assignment and sequencing of operations on machine-1 can be decoded
as (71, s3,01)—(43, s2,03)—(j3,s3,03). This information is obtained from the genes at locations 10,
22 and 23 on the chromosome where m = 1. The assignment of operations to the other machines and
their sequences is given in Table 2 as decoded from the chromosome. In this chromosome, for a given j

and s, the gene (7, s,0,m) always lies to the right of all the other genes (j, s,0’,m’) having o’ < o.

Table 1: An example small flexible job-shop problem
Set of eligible machines

No. of Max No. of for operation
Job Operations Sublots ol 02 03
Jjl 3 3 {m1, m2} {m3} {m2, m4}
j2 2 2 {m3, m4} {m2}
J3 3 3 {m3} {m2, m4} {m1, m3}

L2345 6]| 7891011121314 [15[16(17|18|19]20]21]22
t’)NMMVﬂ'(’)v—tNNNMM(’)MNVNVF"—‘NE
ol el Bl Aol e Bl Bl Boll BN Bl Bod Dol Kol Rl o8 ol Bl Dol B Bl Bl Bl I
YRR BT DY DR DY DY RS DY Bt DY B Y B DY BN DY e RN R D S D DY Y
MMNMNMMMWMMMMMMNMNMMMM.Q

Jj =job index, s=sublotindex, o= operationsindex, m = machine index

Figure 1: Representation of the assignment of operations to machines and their sequencing

Table 2: Operation assignment and sequencing decoded from Figure 1
Operation assigned to production run
Machine rl 72 r3 r4 5 r6 r7 r8

ml (j1,s3,01) (j3,52,03) (43, s3,03)
m2 (jl,s2,01) (53,s1,02) (j1,s1,01) (43,s3,02) (j2,s1,02) (52,52,02) (41, s2,03)
m3 (j3,s2,01) (52,s1,01) (453,s1,01) (j3,s3,01) (j1,52,02) (j1,s1,02) (j3,s1,03) (j1,s3,02)

md (j2,s2,0l) (j3,s2,02) (j1,s1,03) (j1,s3,03)

The chromosome in Figure 1 encodes only the assignment and sequencing of the operations of the
sublots. For solving the proposed FJSP-LS model, it is augmented to encode the number of sublots of
each job and their sizes. To accomplish this encoding process, a left hand side segment (LHS-Segment)
has been added to this chromosome as shown in Figure 2. In this segment, the gene o ; takes a random
value in the interval [0, 1]. For a chromosome under consideration the size of the s sublot of job j
is computed using Eq. (20). From this equation, it can be seen that certain sublots may have a size
of zero if their corresponding genes have the value zero. Thus, the maximum and the actual number
of sublots for each job and their sizes are encoded in the LHS-Segment. The right hand-side segment

(RHS-Segment) is essentially the same as the chromosome shown in Figure 1.

LHS-Segment RHS-Segment
—————— | _— >

Job -1 Job -2 Job -3 1|2 3\ \20 21|22
1 i R ERYARERE
OO 1103 1 [9 1&g 5| O 31Rp 31X 3 38 = | GG S
| | | | | 5 | = Sl =]
as,j takes a value from 0 to 1

Figure 2: Solution representation used in solving the proposed FJSP-LS using GA

As,j . Sj
s x By i 3l s >0
Zs:l Qs,j
bs,j =

B;/S; ; otherwise
3.2. Genetic Operators

Genetic operators make the population evolve by creating promising candidate solutions to replace the
less-promising ones. These operators are generally categorized as selection, crossover, and mutation

operators.

3.2.1 Selection Operator

A simple way to simulate the natural selection process in a GA is through tournament selection. In
the proposed GA, we use a k-way tournament selection operator. In this operator, k individuals are
randomly selected and the one presenting the highest fitness (smallest makespan) is declared the winner
and a copy of this individual is added to the mating pool to form the next generation. Then, the k
individuals in the tournament are placed back to the current population and the process is repeated.

This continues until the number of individuals added to the mating pool is equal to the population size.

3.2.2 Crossover Operator

Once the mating pool is generated using the selection operator, the individuals in the pool are randomly
paired to form parents for the next generation. Then for each pair, the algorithm arbitrarily selects one
of the available crossover operators and applies it with certain probability to create two child individuals

by exchanging information contained in the parents. The crossover operators are:

e Single Point Crossover-1 (SPC-1)

Single Point Crossover-2 (SPC-2)

Operation-to-Machine Assignment Crossover (OMAC)

Job Level Operations Sequence Crossover (JLOSC)

Sublot Level Operations Sequence Crossover (SLOSC)

The above five crossover operators are applied with probabilities equal to p1, p2, -+, ps, respec-
tively. The crossover operator SPC-1 generates an arbitrary crossover point in the LHS-Segment and
swaps the part of this segment at the left of the crossover point. The crossover SPC-2 exchanges the
portion of the LHS-Segment of the parents at the right of an arbitrarily chosen crossover point. These
two crossover operators are illustrated in Figure 3. The crossover operators OMAC, JLOSC and SLOSC
are specific to the RHS-Segments of the parent chromosomes. These operators are adapted from Kacem
[34], where the authors did not consider lot streaming. They can be distinguished as assignment or
sequence crossover operators. An assignment crossover operator generates two offsprings by exchanging

the assignment of a subset of operations between two parents. OMAC is such an operator. From a

given pair of parent chromosomes, this operator creates two child chromosomes where each child chro-
mosome retain the order of the operations supplied by the other parent. The creation of child-1 by
this operator, retaining the order of the operations as obtained from parent-1, is illustrated in Figure
4. In step-1, operations from parent-1 are randomly selected. In step-2, all the genetic information of
parent-1 without the assignment properties of the chosen operations is copied to child-1. In the last
step, step-3, the assignment properties of the chosen operations are copied from parent-2 to complete
child-1. Child-2 is created in a similar way where step-1 begins from parent-2.

Sequencing crossover operators only exchange the sequencing property of the operations in the parent
chromosomes, i.e., the assignment of operations to machines is reserved in the offspring. JLOSC and
SLOSC are such operators. The creation of child-1 by JLOSC, preserving the operation-assignment
information of parent-1, is illustrated in Figure 5. In step-1, an operation is arbitrarily chosen from
parent-1. In step 2, all the operations of all the sublots of the job which the chosen operation belongs
to are copied to child-1. Step 3 is to complete the new individual with the remaining operations, in the
same order as they appear in parent-2 while their assignment properties are kept unchanged as they
were in parent-1. SLOSC is similar to JLOSC except step-2 of SLOSC is limited only to a single sublot

which the arbitrarily chosen operation belongs to.

Parent 1 Parent 1
[Job-1 | Job-2 Job -3 1] 2) Job-1 | Job-2 | Job -3 1] 2)
(g} Lo}
o, Hlag i, Rl 23— a;la -
; ; 22[X1,31%K 231333 L1IXg ; ; ; =
| |) | | |)
Oy, 18, 11003 1K p O3 1| X010 0 3105 313 3
° ! ! | ! ! °
=] =]
2 ?
5 Arbitrarly Chosen Arbitrarly Chosen 5
LE X-Over Point X-Over Point [}j
T | | i i | T
]]]]]
a1,15a2,15a3,1 &, ~ a5, a1,2ia2,2 a1,3ia2,3ia3,3 r~
! ! - ! ! ! -
oo 31% 05155 &%y, ~
o o
[Job-1 | Job-2 Job -3 1] 2) Job-I | Job-2 | yob-3 1] 2/
Parent 2 Parent 2
(a) SPC-1 (b) SPC-2

Figure 3: Single Point Corssover operators SPC-1 and SPC-2

3.2.3 Mutation Operator

Crossover operators do not introduce new genetic material into the population pool. This task is
performed by the mutation operators acting on a single chromosome at the gene level to alter information
contained in the gene. These operators are usually applied on each child chromosome with small

probabilities. The six mutation operators used in the proposed PGA are:

e Sublot Step Mutation (SStM)

10

Step 1

- %

- %

- %

Ly %

u ‘o‘s‘l

(AR | T€TL (A T
L€c‘e | SR 1ee‘e (A A A
| RS | RSRA Tm,mﬁmHNﬁmmmJ
peeer X€€‘T [N €TC°1
(A A (A A A4 (A A T A
pETT bETT PETD I‘e‘e‘e
(A A 4 (A A 4 TTTT 1‘ece
A | XTeT €€ vETr
€CTE X€TE | I €UTT
€TUIT A | €TUIT (A AAS
€TCr €7TC1 €71 TETT
(A2 RN I Ar AR) ISR A A S AL
Na‘—”aﬂnﬂ M_LDV.. X?—nﬂf—” M_LDV.. ﬁnﬂa‘—”aﬂ) ﬁmﬂnﬁam
wn wn

TCIE TUTE TTIE €TTY
IT€°T I1°€°T I1°€°T 1171
€1e’e €1°e’e €1°e’e vriecs
bTTE X‘T T rrelet A
T A A 2 A vTre
€UITE €1TE €UTE 7161
€1TC XTOTT LT ‘0| TT°T°1
(A | XTTa CUICT U |e1¢%¢
o A €ITTE €TTE €TTE
— — — (@\|

~— N

E D 2D 2 =

D) . p— o p— (D]

5 5 5 5

[a [

t corssover operator.

101N assignmen

Operat

Figure 4

Step 1

uo‘sl
TETT TUT U (A A 4
| SR 1eee‘e 1ee’e (A A
| RSRA 1‘cc’e | ALY TEECT
bEeeT TTTT €TET
(A A A €cer 7 A4
bETT TT€T T‘e‘e’e
(A A 4 PrTe | RS
A TET T = vETT
€ Te €C°1e €C°Te €U 1T
€TTY [A (A A A
€TT b g T T [TETT
(Q\l on
(AN m (AN W (AN —eTTa
wn wn
(A [ArA! | o Y
(AN Y TT1E N,SAAHQN.S
TT°6“1 [A § | A |
€1°e’e €re‘e €1°e’e AN
A TAAAS AL I3 A
[A TITT pTre
€1TE €UTE QS@HS@;
€TUIC I1°¢1 TIT°T°1
TTCTT TTTU— €T
o A o ALY €TTE €TTE
— — — 2
N N
E D=2 D 2 =
15) . — . p— (D]
— <= <= Mm
& o O &

10N sequence corssover operator.

Job level operati

Figure 5

11

Sublot Swap Mutation (SSwM)

Sublot Size degenerator (SSD)

Random Operation Assignment Mutation (ROAM)

Intelligent Operations Assignment Mutation (IOAM)

Operations Sequence Shift Mutation (OSSM)

The operator SStM is applied with small probability o1 on each gene «j ; in the LHS-Segment to
step up or down the value of this gene with a step amount 6 using equations o, ; = min{1, o, ; + 0}
and o, ; = max{0, o ; — 0}, respectively. The step amount 6 is calculated every time this operator is
applied on a given oy ; with the equation 6 = Onax x rand() where Onax € [0,1] is a parameter and
rand() is random number generator in [0,1]. The operator SSwM is applied with small probability o9
on each j in the LHS-Segment to swap the values of two arbitrarily selected genes a; ; and ay ;. The
operator SSD is a non-probabilistic mutation operator to set the value of a,; = 0 if o/ ijzl Qg j 18
less than a degeneration limit d. The parameter d is chosen to be close to 0. The reason is that very
small sublot sizes (less than d x 100% of the lot size) may not lead to acceptable solution because of
setup requirement for the sublots.

The mutation operators ROAM, IOAM and OSSM are specific to the RHS-Segment of the chromo-
somes. These operators are adapted from Kacem [34], and similar to the RHS-Segment specific crossover
operators discussed in the previous subsection, these mutation operators can also be distinguished as
assignment or sequence operators. Assignment mutation operators only change the assignment property
of the chromosome undergoing the mutation while the sequencing property is reserved. ROAM is an
assignment mutation operator applied with a small probability o3 on each gene of the RHS-Segment
of each chromosome. Whenever it gets effected on a particular gene, it alters the assignment of the
operation represented by the gene to one of its alternative machines. The other assignment mutation
operator IOAM selects an operation on the machine with the maximum workload, and assign it to the
machine with the minimum workload, if compatible. This operator is effected on each chromosome
with a probability o4. The shift mutation operator OSSM, applied with a probability o5, selects an
operation from RHS-Segment of the chromosome and moves it into another position, taking care of the

precedence constraints for that operation.

3.3. Initial Population

In generating an initial population, we need to initialize both LHS- and RHS-Segments of each chro-
mosome. In this study, the LHS-Segment of each chromomere is randomly initialized. This provides
the sizes and numbers of the sublots of each job of the corresponding initial solution. Once the sizes
of the sublots are known, the processing times (sublot size X unit processing time) of each operation
on the various alternative machines can be computed. Using this processing time information and re-
garding each sublot as a job, the RHS-Segment of the chromosome (i.e., the operation assignment and

sequencing) can be initialized using the technique outlined in [45]. This technique takes into account

12

both the processing times and the workload of the machines, i.e., the sum of the processing times of

the operations assigned to each machine. The procedure proceeds in finding, for each operation, the

machine with the minimum workload.

3.4. Fitness Evaluation

The makespan of the schedule corresponding to a given chromosome is used as the fitness measurement

of this chromosome. In calculating the makespan, we take into account: (1) the dependance of setup

time on sequence, (2) the nature of the setup (attached or detached), (3) lag time requirement of certain

operations, (4) machine release dates, and (5) the possibility of the sizes of certain sublots of becoming

zero. The procedure is outlined below.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Using the information obtained from the LHS-Segment of the chromosome and Eq. (20),

calculate the sizes of the sublots of the various jobs.
Set I =1

Set the values of indices j, s, o and m as obtained from the gene at location [of the RHS-

Segment of the chromosome.
If bs j is greater than zero, then go to Step 5; otherwise go to Step 6.

Calculate the completion time ¢, 5 j.m

e If (1) operation o of sublot s of job j is the first operation assigned to machine m and
(2) 0o =1, then:
Co,s,jym = Dy, + S,

ojm T bsj - Tojm-

e If (1) operation o of sublot s of job j is the first operation assigned to machine m, (2)
o> 1, and (3) operation o-1 is assigned to machine m’, then:

Co,s,j,m = MaAX{ Dy + (1 — Ao j) X S 5 13 Comtysjum + Lot +bsj X Tojm + Ao X S5 5 1

e If (1) operation o’ of sublot s’ of job j’ is the operation to be processed immediately
before operation o of job sublot s of j on machine m and (2) o = 1, then:

Co,s,j;m = Co' 5! j':m T Sojm,o j' + bs,j * Tojm-

e If (1) operation o' of sublot s’ of job j' is the operation to be processed immediately
before operation o of sublot s of job j on machine m, (2) o > 1, and (3) operation o-1 is
assigned to machine m/, then:

Cos,jym = Max{Co ¢ j1m + (1 = Aoj) X Sojmojs Co-tysjm' + Logt +bsj X Tpjm +

Ao,j X So,j,m,of i -

If [is less than the total number of genes of the RHS-Segment of the chromosome, increase

its value by 1 and go to Step 3; otherwise go to Step 7

Calculate the makespan of the schedule as ¢nay = max{c,sjm; V(o,s,j,m)} and set the

fitness of the solution to ¢;az-

13

The above procedure (in particular Step 5) is based on the property of the chromosomes that, for a
given j and s, the gene (j, s, 0, m) always lies to the right of all the other genes (j, s, o', m’) having o’ < o.
Because of this property of the chromosome, whenever the completion time of operation (j, s,0,m) on
machine m is to be calculated, the completion time of operation (4, s,0—1,m’) is already calculated and
available, regardless to which machine this preceding operation is assigned. Moreover, the completion
time of the operation (j', s’, 0, m) to be processed on machine m immediately before operation (j, s, 0, m)

is also calculated and available.

3.5. Parallelization of the GA

;From early days of its development, the GAs potential for parallelization has been noticed with all its
attendant benefits of efficiency. GAs can be parallelized in different ways and detailed taxonomy can be
found in Nowostawski and Poli [42] and Canti-Paz [10]. These studies show three major types of PGAs:
(1) single-population master-slave PGAs, (2) single-population fine-grained PGAs, and (3) multiple-
population island model PGAs. Figure 6 presents schematic representations of these parallelization

techniques.

Master

Slaves

(a) Master-Slave (b) Fine-Grain (c) Island-Model

Figure 6: Different parallelization schemes of genetic algorithm.

In this research, we follow the island model PGAs to efficiently solve the proposed FJSP-LS model.
This class of PGAs has an appealing trait in that it often reduces the computational effort to solve the
same problem as compared to SGAs, even on a single processor computer [29]. This characteristic makes
a difference with respect to other search algorithms in that island-model PGAs are not simple parallel
versions of sequential algorithms. Thus they represent a new class of algorithms that search the solution
space differently [42]. The reason for this can be found in the most significant characteristics of this class
of parallelization [1]: (1) their decentralized search, which allows speciation (different subpopulations
evolve towards different solutions), (2) the larger diversity levels (many search regions are sought at the
same time), and (3) exploitation inside these subpopulations, i.e., refining the better solutions found
in each subpopulation. In addition to these interesting characteristics, this class of PGAs can easily
be implemented using public domain libraries such as MPI (Message Passing Interface) on a cluster
of inexpensive computers connected to a slow network. These characteristics are the main motivating

factors to consider island-model PGAs for solving the comprehensive model proposed in this paper.

14

This class of PGAs can be implemented in different connection topologies. In this paper we considers
three commonly used topologies shown in Figure 7. Each circle represents a processing element evolving

its own subpopulation.

(a) Ring (b) Mesh (c) Fully Connected

Figure 7: Common connection topologies of island model parallel genetic algorithm.

4. Numerical Example

In this section, we present several example problems and computational results to illustrate the features

of the proposed model and the performance improvement achieved using parallellization of the GA.

4.1. Model Illustration

A small instance of lot streaming problem consisting of processing three jobs in a four-machine flexible
job-shop is considered to illustrate the features of the developed model. The batch size of each job,
and for each operation the nature of setup (attached or detached), lag time, alternative machines and
corresponding processing times are given in Table 3. The sequence dependent setup time data are given
in Table 4. This small example problem was solved using the proposed algorithm for three different
cases. In case-1, it was assumed that there is no lot streaming while in case-2 it was assumed that each
job is to split into a maximum of three sublots. Case-3 is same as case-2 except the first machine is not
available for the first 800 minutes. The sizes of the various sublots and the Gantt charts of the resulting
schedules are given in Figure 8. Numerical values of the starting and the ending times of setups and
the operations are given in Table 5.

When lot streaming is not consisted, the makespan of this small problem is 2876 minutes as shown
in Figure 8-a. In case-2, the problem was solved again by letting the maximum number of sublots for
each job to be 3. A schedule with 2 sublots for each job and a makespan of 2290 minutes was obtained.
This is about 20% reduction of the makespan from that in case 1. In the literature, lot streaming
has been often touted to enable the overlapping of successive operations of a given job in a multistage
manufacturing systems. In this research, we observed that when routing flexibility is considered, lot
streaming can also enable the overlapping of identical operations, i.e., operation o of a given job j on one

machine with operation o of the same job on another alternative machine. The overlapping of successive

15

Table 3: Processing Data for Jobs

Alternative routes, (m, Tp jm)

Wi Bj o AOJ LOJ' 1 2 3
1 540 1 na na (1, 3.00) (3, 2.90)
2 1 200 (1, 1.00) (2, 0.90)
3 0 (1, 0.60) (3, 0.70) (4, 0.60)
2 580 1 na na (3, 2.50) (4, 2.40)
2 1 0 (1, 0.60) (2, 0.70) (4, 0.60)
3 490 1 na na (1, 0.50) (4, 0.50)
1 180 (1, 0.50) (3, 0.40) (4, 0.40)
3 1 0 (1, 2.50) (3, 2.40) (4, 2.60)
na = not applicable
Table 4: Sequence Dependent Setup Time Data
j o m Setup time (S);.m)s o (G 0, Sogmorgr) v
1 1 1 (150), (1,1,80), (1,2,160), (1,3,160), (2,2,270), (3,1,270), (3,2,240), (3,3,210)
3 (200), (1,1,80), (1,3,160), (2,1,210), (3,2,240), (3,3,210)
2 1 (50), (1,1,120), (1,2,60), (1,3,140), (2,2,150), (3,1,180), (3,2,240), (3,3,300)
2 (100), (1,2,80), (2,2,180)
3 1 (150), (1,1,120), (1,2,160), (1,3,60), (2,2,270), (3,1,270), (3,2,270), (3,3,210)
3 (150), (1,1,140), (1,3,60), (2,1,180), (3,2,210), (3,3,270)
4 (100), (1,3,60), (2,1,240), (2,2,180), (3,1,270), (3,2,270), (3,3,270)
2 1 3 (200), (1,1,180), (1,3,300), (2,1,70), (3,2,240), (3,3,270)
4 (100), (1,3,210), (2,1,70), (2,2,160), (3,1,180), (3,2,180), (3,3,180)
2 1 (100), (1,1,180), (1,2,210), (1,3,210), (2,2,70), (3,1,150), (3,2,300), (3,3,180)
2 (150), (1,2,180), (2,2,80)
4 (150), (1,3,180), (2,1,100), (2,2,60), (3,1,270), (3,2,270), (3,3,270)
3 1 1 (100), (1,1,210), (1,2,210), (1,3,210), (2,2,240), (3,1,80), (3,2,180), (3,3,180)
4 (100), (1,3,210), (2,1,240), (2,2,240), (3,1,60), (3,2,200), (3,3,120)
2 1 (100), (1,1,180), (1,2,300), (1,3,210), (2,2,270), (3,1,140), (3,2,50), (3,3,140)
3 (200), (1,1,270), (1,3,270), (2,1,300), (3,2,60), (3,3,180)
4 (150), (1,3,180), (2,1,270), (2,2,240), (3,1,180), (3,2,80), (3,3,120)
3 1 (100), (1,1,270), (1,2,180), (1,3,150), (2,2,180), (3,1,160), (3,2,160), (3,3,70)
3 (100), (1,1,180), (1,3,180), (2,1,270), (3,2,180), (3,3,80)
4 (50), (1,3,270), (2,1,180), (2,2,150), (3,1,180), (3,2,140), (3,3,70)

16

operations can be observed in Figure 8-b where the first and the second operations of job 2 (operations
(2,2,1) and (2,1,2)) are overlapped when they are processed on machines 4 and 2, respectively. Other
such overlapping are also present in the schedule as shown in the Gantt chart. If alternative rouging is
not considered, this overlapping cannot happen. This entails that lot streaming can result in a greater
makespan reduction in flexible job-shop scheduling than in classical job-shop scheduling.

The schedule shown in Figure 8-c, case-3, is obtained by assuming that machine 1 is not available
in the first 800 minutes. This schedule is quite different from the one shown in case-2. For example,
in case-2, six operations are assigned to machine 1 whereas in case-3 only two operations are assigned
to this machine. This is because, when routing flexibility is considered, the alternative machines of a
given operation that will be released soon from previous schedule may represent better choices for this
operation. In flexible job-shop, there may be several such operations having alternative machines with
different release dates. This demonstrates the importance of considering machine release date in this
type of shops.

Other several features of the proposed model are also illustrated in this example. As shown in Table
3, lag times of 200 and 180 minutes were assumed for the second operations of jobs 1 and 3, respectively.
Because of such lag time assumption, in case-1 for example, the setup of operation (3,1,2) on machine
1 and that of (1,1,2) on machine 2 started at 525 and 1966 minutes. Without these lag times, they will
be started at 345 and 1766 minutes, respectively. Another important consideration in the model was
the nature of setup of being attached or detached. The third operation of job 1 has a detached setup
allowing overlapping of the setup of this operation with that of the second operation of the same sublot.
Such overlapping can also be observed in the Gantt charts in Figure 8. Also shown in this figure, no
such overlaps occur for all the operations where attached setups was assumed.

In this example problem one can also see that although lot streaming decreases the overall makespan,
it increases the number of setups and the total setup time. In case-1, when lot streaming was not
considered, we have 8 setup incidences with a total setup time of 1110 minuets. In case case-2, the total
number of setups increased to 16 with a total setup time of 2060 minutes. This is about 86% increase
in total setup time. This demonstrates that optimizing the sequences to minimize setup time is more

important when LS is considered.

4.2. Computational Performance

In this section, we show the performance of the developed genetic algorithm and the improvements
achieved through parallel computation. Figure 9 shows the convergence history of CPLEX (version
11.2.0) and that of the sequential genetic algorithm in solving a small problem instance presented in the
previous section (Problem-1, Case-c). In this figure it can be seen that the makespan of the schedule
generated by CPLEX after about 6 and half hours of computation is 2692 minutes and does not improve
afterwards. Whereas, the genetic algorithm was able to generate a schedule with a makespan of 2530
in less than one minuet of computation. In order to validate this improved solution generated by the
genetic algorithm, we submitted it to CPLEX as a starting incumbent solution and it was accepted as a

feasible starting solution, though CPLEX was unable to further improve it. For larger problems studied

17

Sublot Index

Machine is Job Index —+ l r Operation Index

Unavailable

X X X X 550

Setup Time Processing Time

Sublot Size: (J1, S1,540) (J2, S1,580) (J1, S1,490)

M1 3,1,1 3,12 3,13 | 1,1,3
-m _ i h N | _

Sublot Size: (J1, S1,206) (J1, S2,334) (J2,S1,383) (J2,S2,197) (J3,S1,98) (J3,S2,392)

Ml 11,1 3,22 3,12 3,13 1,23 1,13
AEIIRTINERNINNRRINNRNNNNNNNNNNNN ANNNNNNNNNN 5 N ANNNNNNNNNNNN ANNNNANNNNN AN

500 1000 1500 2000 2500 3000

(c) case-3 Time (Minutes)

Figure 8: Schedule for problem-1: (a) without lot streaming, (b) with lot streaming, and (c) when
machine M1 is not available for the first 800 minutes. Note: The detail numerical values of the starting
and the ending times of the setups and the operations are given in Table 5.

18

Table 5: The details of the schedules shown in Figure 8

Case-1 Case-2 Case-3
Machine Run | (j,s,0) SB SE/PB PE | (j,s,0) SB SE/PB PE | (j,s,0) SB SE/PB PE
M1 R1 (3,1,1) 0 100 345 | (1,1,1) 0 150 768 | (3,1,2) 800 900 1145
R2 (3,1,2) 525 665 910 | (3,2,2) 768 948 1144 | (3,1,3) 1145 1305 2530
R3 | (3,1,3) 910 1070 2295 | (3,1,2) 1144 1194 1243
R4 (1,1,3) 2342 2552 2876 | (3,1,3) 1243 1403 1647
R5 (1,2,3) 1647 1857 2058
R6 (1,1,3) 2058 2118 2241
M2 R1 (1,1,2) 1966 2066 2552 | (1,1,2) 968 1068 1253 | (1,2,2) 1322 1422 1708
R2 (17272) 1369 1449 1750 (17172) 2046 2126 2326
R3 (2,1,2) 1750 1930 2197
R4
R5
R6
M3 R1 (171,1) 0 100 1766 (172,1) 0.0 200 1169 (172,1) 0 200 1122
R2 (3,2,3) 1169 1349 2290 | (1,1,1) 1122 1202 1846
R3 (1,2,3) 1846 1986 2209
R4 (1,1,3) 2266 2326 2481
R5
R6
M4 R1 | (2,1,1) 0 100 1492 | (3,1,1) 0 100 149 | (3,1,1) 0 100 345
R2 (2,1,2) 1492 1592 1940 | (3,2,1) 149 209 405 | (2,1,1) 345 525 976
R3 (2,1,1) 405 585 1503 | (2,2,1) 976 1046 1987
R4 (2,2,1) 1503 1573 2047 | (2,2,2) 1987 2087 2322
R5 (2,2,2) 2047 2147 2266 | (2,1,2) 2322 2382 2495
R6
Note: SB, SE, PB, PE stand for setup begins, setup ends, processing begins, and processing ends, respectively.

19

in this paper, CPLEX was unable to start computation because of large memory requirement whereas
the genetic algorithm was able to generate solutions in just few minutes and progressively improve those

solutions. This clearly demonstrates the potential of the genetic algorithm in solving larger problem

instances.
5400
4900 . Fainal solution makespan using ||
CPLEX \\)\ 1. CPLEX 2692 Minutes
g 4400 2. SGA 2530 Minutes |
Y \\
o 3900
]
© \\K
= 3400
2900 | & \v—w
SGA R I A R VR VR
2400 T T T T T T T T T T T T T T T T T T
©Q = &N 0O N O N O N N O N O N4 OO In © O O
Qe @ g N A Mmih @ N mn N Qg o NSO 9 9
© O O © © O O O d A NN MLV IN &« « ©O O O
2 2 @29 9 2 99 99 e 2@ ¢« ¢ d d a4 AN Q Q
O O O O O O O O O 0O "W «w OV W v 3 ﬂ 8

Figure 9: Comparison of CPLEX and the SGA in solving Problem 1

The performance of the genetic algorithm can be further improved by parallel computation using
island model PGA presented in Section 3.5. In order to illustrate such performance improvement, we
consider problems much lager than the Problem 1 presented in the previous section. The general nature
of the considered problems are given in Table 6. Figure 10 illustrates the performance improvement
archived in solving Problem 2 through parallel computation as the number of processors increases. Each
curve represents an average convergence of the genetic algorithm from 10 test runs with different genetic
parameters given in Table 7. In Figure 10 it can be seen that, at its convergence, the sequential genetic
algorithm generates a schedule with a makespan of 5227 minutes on the average. The 8-processor parallel
genetic algorithm reduces this makespan by about 109 minutes. As we increase the number of processors
to 16, 24, 32 and 48, the average makespan of the several test runs is reduced by 125, 165, 170, and 183
minutes, respectively. Such improvements obtained by parallel computation in solving Problem-2 were
also observed in solving several other problems considered in this paper. Figure 11 shows the average
convergence graphs of the sequential genetics algorithm (SGA) and a 24-subpopulation parallel genetic
algorithm in solving problems 2, 3, 4, and 5. In this figure, it can be seen that in all the problems
considered there are makespan reductions through parallel computation. The parallel genetic algorithm
was codded in C++ programming language using MPI message-passing library for communication. The
code was executed in a parallel computation environment composed of more than 250 interconnected
workstation each having a 8-core Intel Xeon 2.8 GHz processor. The test problems were run using up to

48 cores.

20

Table 6: The general nature of the problems considered

Number of Number of Number of
Number of Number of sublots for operations for alternative routes
Problem No. machines jobs each job the jobs for the operation
2 8 20 4 3toh 1to3
3 12 30 4 3to6 1to3
4 10 25 4 3to4d 1to3
5 12 35 3 2to4 1to3

5600

5500 |- \.
i \\
§ 5400 |- \ \
2 9 \\x ——SGA
< 5300 ﬁ\
©
o — PGA8
© 5200 ——PGA16
= R et
\\‘\\-_ ——PGA24
5100 K, ——
—— ——PGA32
e PGA48
5000
0 1000 2000 3000

Generaion

Figure 10: Performance improvement through parallelization of the genetic algorithm as the number of
processor is increased from 1 to 8, 16, 24, 32, and to 48.

21

Makespan (Minutes)

Makespan (Minutes)

5600

5500

5400

5300

5200

5100

5000

4800

4700

4600

4500

4400

4300

4200

4100

4000

\,__‘ SGA

‘k\
PGA
—
1000 2000 3000
Generaion
(a) Problem 2
Ei\\\\
NN
‘.,&AH
Y
PGA
\\
1000 2000 3000
Generaion

(a) Problem 4

Makespan (Minutes)

Makespan (Minutes)

8300

8100

7900

7700

7500

7300

7100

6900

3900

3800

3700

3600

3500

3400

3300

|l¢\
VN
N
SGA
‘~..~__‘
PGA
—]
0 1000 2000 3000
Generaion
(b) Problem 3
k\“‘\-ﬁ
lﬁl‘ ‘-‘_\ SGA
\.\
“\ PGA
\\“_\
0 1000 2000 3000
Generaion

(b) Problem 5

Figure 11: Average convergence of the SGA vs PGA for problems 1, 2, 4, and 5.

22

4.3. Some Empirical Studies

In this section we present some empirical studies on the impact of the parameters of the proposed
algorithm on its performance. In Figure 12 are the plots of the makespan of the schedules obtained
after several iterations by SGA and the PGA with 8, 16, 32 and 48 subpopulation under different test
runs. The test runs are differentiated by the settings of their genetic parameters as shown in Table 7.
In Figure 12, we can see that the patterns by which the final solution quality of the SGA is affected
by the genetic parameters are similar to those of the PGA irrespective of number of computing cores
(same as the number of subpopulations) used. This indicates that the genetic parameter tuning (such
as population size, tournament size, probabilities for the crossover and mutation operators) of PGA
can be done by using SGA without committing parallel computing resource. We also obsered that the
patterns by which the final solution quality from both SGA and PGA are affected by the change of the
genetic parameters are similar for different problem instances as can seen in Figures 12, 13-(a), (b), and
(c). This implies that the genetic parameters setting that worked well for one problem instance is likely

to work well for other problems.

5250
A
/
\
5200 /'c-r’q A
- h / \
\
£ 5150 A (- [\
£ D__ﬁ‘. y “ —0—SGA
=3] \ A\ | - PGAS
= 5100 ; A W \ i N
g ‘l “ / \ \ —+— PGA16
1] ! »> £ \ —+—PGA24
_';“ 5050 K N/ / ,I; \\ ‘\ PGA 32
1
— \ —%— PGA48
5000 |- T e, L
4950

Test Run

Figure 12: The effect of changing genetic parameters on the final solution quality obtained by the SGA
and PGA with different number of subpopulation in solving problem 2

We also performed empirical studies on the convergence behavior of the proposed PGA affected by
parameters specific to the island model parallelization. One such parameter is the connection topology.
Figure 14 shows the convergence graphs of the 24-subpopulation PGA with different connection topolo-
gies as illustrated in Figure 7. The curves show the average convergence of 10 test runs as described
previously. From this figure it can be seen that the fully connected topology outperforms other two
topologies. Another PGA specific parameter is the migration policy. It determines the individuals to
migrate from the source subpopulation and those to be replaced by the migrants in the destination
subpopulation. In this empirical study we considered three different migration policies: (1) random-

replace-random (RR), (2) best-replace-random (BR), and (3) best-replace-worst (BW). Figure 15 shows

23

——SGA —A—PGA24 ——SGA —A—PGA24
4650
8350
A 4550 A
__ 8050 f \ /ﬂ — / \
g / / 8 aas0 n
E 7750 \ va 5 /{ \ /\\:\
2 7450 / e - s 30 /r/ \ /{/ \
N (]
§ 7150 ~7' A » /\ § 4250 o /A \/ -
L W \V N g 4150 A \(X \\‘—_‘
6550 4050 ‘4/
6250 3950
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Test Run Test Run
(a) Problem 3 (b) Problem 4

==SGA —A—PGA24

4000

3850 o
g 3700 //\ od /\\
S R s
%-'3550 Q\\/' /A\ / ’\
% 3400 /./ / //(\L‘
b

3250 k‘/

3100

Test Run

(c) Problem 5

Figure 13: The effect of changing genetic parameters on the final solution quality obtained by the SGA
and 24 subpopulation PGA in solving problems 3, 4, and 5

24

the convergence graphs of the PGA in solving problems 2 and 3. The curves represent the average con-
vergence of the 10 test runs. It can be seen that the PGA is less sensitive to the change of migration

policy while the best-replace-random migration policy slightly outperforms the other two policies.

5300
7900 -

—~ 5250 —_
wv [%)
§ ."5' 7700 B
£ 5200 1l £ “I;-,
2 X 2 7500 Nts
< 5150 \ 5 c "u‘.
© ' © ~
e . Ring 2 7300 aa Ring
£ 5100 T) Foang | —
© — ====-Mesh § oo ‘_ ====-Mesh
= ™~ Treea

5050 FC 7100 te] e—FC

._
5000 6900
0 1000 2000 3000 0 1000 2000 3000
Generaion Generaion
(a) Problem 2 (b) Problem 3
a625 |-Li 3675 |1
&
— 4550 = P
g o & 3600 5
*

3 4475 5 z N 2
2 2400 R S a5 o
c A c ey b
8 4325 ":\ . 8 . R Ri
2 ..‘-\ Ring @ 3450 ——EELT ing
£ D el £ e —.-
© 4250 159 g ====-Mesh © T ===-<Mesh
2 A 2 3375 e [

4175 \'\.‘~--'-:?— FC

s o)
4100 3300
0 1000 2000 3000 0 1000 2000 3000
Generaion Generaion
(a) Problem 4 (b) Problem 5

Figure 14: Average convergence of the PGA under different connection topologies for problems 1, 2, 4,
and 5.

5. Discussion and Conclusions

Lot streaming is a technique in which a production lot is split into smaller sublots such that each sublot
is treated individually and transferred to the next processing stage upon its completion. Thus, different
sublots of the same job can be processed simultaneously at different stages, thereby reducing production
makespan. In this research we noted that the study of lot streaming in job-shop is very limited. In this
paper, we attempted to extend this limited literature by considering (1) routing flexibility, (2) sequence
dependent setup time, (3) attache/detached nature of setup, (4) machine release dates, (5) lag time,
and (6) high performance parallel computation. Because of the consideration of routing flexibility, the
problem studied can be termed as flexible-job shop scheduling with lot streaming. A mixed integer
linear programming model was developed to formalize the problem. The developed model is NP-hard
and difficult to solve even for small size problems using off the shelf optimization software. To this
end, we developed a parallel genetic algorithm that runs on a high-performance parallel computing
environment. A numerical example showed the importance of considering several pragmatic issues

addressed in this paper in an integrated manner. Several other numerical example problems were

25

5190
5170
5150
5130
5110
5090

Makespan (Minutes)

5070
5050

~
-
‘M
-

1000 2000

Generaion

3000

RR

—=== BW

BR

7700

7500

7300

Makespan (Minutes)

7100

6900

1000

Generaion

2000

RR

——== BW

BR

(a) Problem 2

(b) Problem 3

Figure 15: Average convergence of the parallel genetic algorithm under different migration policies for
problems 1 and 2.

solved by the developed PGA and the examples show the superior computational performance of the

PGA against those of a sequential GA and an off-shelf optimization package. In our future research,

we plan to extend the model and the solution procedure to solving lot streaming problems considering

multiple objectives such as workload balancing, due dates and mean flow-time requirements, and others

factors such as capacitated buffer and transportation time.

Acknowledgements: This research is supported by Discovery Grant from NSERC and by Faculty

Research Support Fund from the Faculty of Engineering and Computer Science, Concordia University,

Montreal, Canada. We thank RQCHP (Réseau québécois en calcul de haute performance http://www.

rqchp.qc.ca/) for its assistance in providing access to parallel computing facilities.

Table 7: Genetic parameters used for the test runs

Test Run
Parameter 1 2 3 4) 6 7 8 9 10
Population Size 5500 2500 4500 3000 4000 3500 2500 2000 2800 3800
Tournament size factor 0.1 0.2 0.05 0.03 0.2 0.15 0.12 0.25 0.2 0.15
Crossover probability for:
SPC1 P1 0.85 0.8 0.95 0.8 0.75 0.8 0.75 0.9 0.7 0.8
SPC2 P2 0.85 0.8 0.95 0.8 0.9 0.8 0.75 0.8 0.85 0.8
OMAC p3 0.95 0.85 0.8 0.75 0.75 0.9 0.85 0.75 0.85 0.9
JLOSC p4 0.8 0.9 0.85 0.95 0.8 0.75 0.8 0.7 0.8 0.85
SLOSC ps 0.9 0.8 0.85 0.9 0.95 0.9 0.75 0.7 0.9 0.83
Mutation probability for:
SStM o1 0.15 0.1 0.05 0.1 0.02 0.1 0.15 0.1 0.02 0.1
SSwM 09 0.1 0.08 0.1 0.12 0.1 0.1 0.2 0.15 0.1 0.05
SSD d 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ROAM o3 0.1 0.05 0.1 0.1 0.03 0.1 0.1 0.15 0.1 0.1
I0AM o4 0.1 0.12 0.2 0.15 0.05 0.2 0.1 0.25 0.2 0.1
OSSM o5 0.2 0.1 0.25 0.1 0.05 0.1 0.05 0.15 0.06 0.15

26

http://www.rqchp.qc.ca/
http://www.rqchp.qc.ca/

References

1]

Alba, E. and Troya, J. M., 2000. Influence of the migration policy in parallel distributed gas with
structured and panmictic populations. Applied Intelligence, 12, 163—181.

Baker, K., 1974. Introduction to Sequence and Scheduling. Wiley, NY,

Baker, K., 1995. Lot streaming in the two-machine flow shop with setup times. Annals of Operations

Research, 57, 1-11.

Baker, P. D., K.R, 1990. Solution procedures for the lot streaming problem. Decision Sciences, 21,
475-491.

Biskup, D. and Feldmann, M., 2006. Lot streamin with varaibal sublots: an integer programming

formulation. Journal of Operational Research Society, 57, 296-303.
Blackburn, J., 1991. Time-Based Competition. Business One Irwin, Burr Ridge, IL,
Bockerstette, J. and Shell, R., 1993. Time Based Manufacturing. McGraw-Hill, New York,

Bukchin, J. and Masin, M., 2004. Multi-objective lot splitting for a single product m-machine
flowshop line. IIFE Transactions, 36, 191-202.

Buscher, U. and Shen, L., 2008. An integrated tabu search algorithm for the lot stream-
ing problem in job shops. FEuropean Journal of Operational Research, In Press (DOI:
10.1016/j.ejor.2008.11.046).

Cantu-Paz, E., 2000. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Pub-
lishers, Norwell, MA,

Chan, F., Wong, T., and Chan, P., 2004. Equal size lot streaming to job-shop scheduling problem
using genetic algorithm. Proceedings of the 2004 IEEE International Symposium on Intelligent
Control. Taipei, Taiwan, September 2-4, 2004, pp. 472-476.

Chan, F.; Wong, T., and Chan, P., 2005. Lot streaming technique in job-shop environment. Pro-
ceedings of the 13th Mediterranean Conference on Control and Automation. Limassol, Cyprus,

June 27-29, 2005, pp. 364-369.

Chan, F., Wong, T., and Chan, P., 2008. The application of genetic algorithms to lot streaming
in a job-shop scheduling problem. International Journal of Production Research, In press (DOI:

10.1080/00207540701577369).

Chan, F., Wong, T., and Chan, P., 2008. Lot streaming for product assembly in job shop environ-
ment. Robotics and Computer-Integrated Manufacturing, 24, 321-331.

Chang, J. H. and Chiu, H. N., 2005. A comprehensive review of lot streaming. International Journal

of Production Research,, 43, 1515-1536.

27

[16]

[17]

Chen, H., Thlow, J., and Lehmann, C., 1999. A genetic algorithm for flexible job-shop scheduling.
In the proceedings of the 1999 IEEE International Conference on Robotics & Automation. May
1999, Detroit, Michigan, pp. 1120-1125.

Chen, J., Chen, K., Wu, J., and Chen, C., 2007. A study of the flexible job shop scheduling problem
with parallel machines and reentrant process. International Journal of Advanced Manufacturing
Technology, In Press, DOI 10.1007/s00170-007-1227-1.

Chen, J. and Steiner, G., 1996. Lot streaming with detached setups in three-machine flow shops.
FEuropean Journal of Operational Research, 96, 591-611.

Chiu, H. N., Chang, J. H., and Lee, C. H., 2004. Lot streaming models with a limited number of ca-
pacitated transporters in multistage batch production systems. Computers & Operations Research,

31, 2003-2020.
Conway, R. and Maxwell, W., 1967. Theory of Scheduling. Addison-Wesley, MA,

Dauzere-Peres, S. and Lasserre, J., 1993. An iterative procedure for lot streaming in job-shop

scheduling. Computers and Industrial Engineering, 25, 231-234.

Dauzere-Peres, S. and Lasserre, J., 1997. Lot streaming in job-shop scheduling. Operations Re-

search, 45, 584-595.

Edis, R. and Ornek, A., 2009. Simulation analysis of lot streaming in job shops with transportation

queue disciplines. Simulation Modelling Practice and Theory, 17, 442-453.

Feldmann, M. and Biskup, D., 2008. Lot streaming in a multiple product permutation flow shop

with intermingling. International Journal of Production Research, 46, 197-216.

Gao, J., Gen, M., Sun, L., and Zhao, X., 2007. A hybrid of genetic algorithm and bottleneck shifting
for multiobjective flexible job shop scheduling problems. Computers € Industrial Engineering, 53,
149-162.

Gao, J., Sun, L., and Gen, M., 2008. A hybrid genetic and variable neighborhood descent algorithm
for flexible job shop scheduling problems. Computers & Operations Research, 35, 2892—-2907.

Garey, M. R., Johnson, D. S., and Sethi, R., 1976. The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research, 1, 117-129.

Glass, C., JND, G., and Potts, C., 1994. Lot streaming in three-stage process. Furopean Journal
of Operations Research, 75, 378-394.

Gordon, V. and Whitley, D., 1993. Serial and parallel genetic algorithms as function optimizers.
Proceedings of the Fifth International Conference on Genetic Algorithms, edited by S. Forrest.
Morgan Kaufmann, San Mateo, CA., pp. 177-183.

28

[30]

[35]

[36]

[41]

[42]

[43]

Gupta, J., 1986. Flowshop schedules with sequence dependent setup times. Journal of Operations
Research Society of Japan, 29, 206-219.

Hall, N. G., Laporte, G., Selvarajah, E., and Srikandarajah, C., 2003. Scheduling and lot streaming
in flow shops with no-wait in process. Journal of Scheduling, 6, 339-354.

Jacobs, F. and Bragg, D., 1988. Repetitive lots: flow time reductions through sequencing and
dynamic batch sizing. Decision Science, 19, 281-294.

Jeong, H., Park, J., and Leachman, R., 1999. A batch splitting method for a job shop scheduling

problem in an mrp environment. International Journal of Production Research, 37, 3583-3598.

Kacem, 1., 2003. Genetic algorithm for the flexible jobshop scheduling problem. In the Proceeding
of the IEEE International Conference on Systems, Man, and Cybernetics. Washington, DC, pp.
3464-6469.

Kochhar, S. and Morris, R., 1987. Heuristic methods for flexible flow line scheduling. Journal of
Manufacturing Systems, 6, 299-314.

Kumar, S., Bagchi, T., and Sriskandarajah, C., 2000. Lot streaming and scheduling heuristics for

m-machine no-wait flow shop. Computers and Industrial Engineering, 38, 149-172.

Liu, S. C., 2003. A heuristic method for discrete lot streaming with variable sublots in a flow shop.

International Journal of Advanced Manufacturing Technology, 22, 662—-668.

Low, C., Hsu, C., and Huang, K., 2004. Benefits of lot splitting in job-shop scheduling. International
Journal of Advanced Manufacturing Technology, 24, 773-780.

Manikas, A. and Chang, Y., 2008. Multi-criteria sequence-dependent job shop scheduling using

genetic algorithms. Computers & Industrial Engineering, , In press.

Marimuthu, S., Ponnambalam, S. G., and Jawahar, A. N., 2008. Evolutionary algorithms for
scheduling m-machine flow shop with lot streaming. Robotics and Computer-Integrated Manufac-

turing, 24, 125-139.

Martin, C. H., 2006. A hybrid genetic algorithm/mathematical programming approach to the
multi-family flowshop scheduling problem with lot streaming. OMFEGA International Journal of
Management Sciences, doi: 10.1016/j.omega.2006.11.002.

Nowostawski, M. and Poli, R., 1999. Parallel genetic algorithm taxonomy. Proceedings of the
Third International Conference on Knowledge-Based Intelligent Information Engineering System.

Adelaide, Australia, pp. 88-92.

Osman, I. and Potts, C., 1989. Simulated annealing for permutation flow-shop scheduling. Omega,

17, 551-557.

29

[44]

Panwalkar, S. S., Dudek, R. A., and Smith, M. L., 1973. Sequencing research and the industrial
scheduling problem. In S. E. Elmaghraby (Ed.), Symposium on the theory of scheduling and its
applications. Springer-Verlag, p. 29.

Pezzella, F., Morganti, G., and Ciaschetti, G., 2008. A genetic algorithm for the flexible job-shop
scheduling problem. Computers and Operations Research, 35, 3202-3212.

Potts, C. and Baker, K., 1989. Flow shop scheduling with lot streaming. Operations Research Letter,
8, 297-303.

Reeves, C. R., 1995. A genetic algorithm for flowshop sequencing. Computers and Operations
Research, 22, 5-13.

Reiter, S., 1966. A system for managing job shop production. Journal of Business, 34, 371-393.

Rios-Mercado, R. and Bard, J., 1999. A branch-and-bound algorithm for permutation flow shops
with sequence-dependent setup times. ITE Transactions, 31, 721-731.

Ruiz, R., Serifoglub, F. S.; and Urlings, T., 2008. Modeling realistic hybrid flexible flowshop schedul-
ing problems. Computers € Operations Research, 35, 1151-1175.

Ruiz, R., Maroto, C., and Alcaraz, J., 2005. Solving the flowshop scheduling problem with sequence
dependent setup times using advanced metaheuristics. Furopean Journal of Operational Research,
165, 34-54.

Saidi, M. and Fattahi, P., 2007. Flexible job shop scheduling with tabu search algorithm. Interna-
tional Journal of Advanced Manufacturing Technology, 35, 563-570.

Smunt, T., Buss, A., and Kropp, D., 1996. Lot splitting in stochastic flow shop and job shop

environments. Decision Science, 27, 215-238.

Tseng, C. T. and Liao, C. J., 2007. A discrete particle swarm optimization for lot-
streaming flowshop scheduling problem. Furopean Journal of Operational Research, doi:

10.1016/j.ejor.2007.08.030.

Vickson, R., 1995. Optimal lot streaming for multiple products in a two-machine flow shop. Euro-

pean Journal of Operations Research, 85, 556-575.

Xing, L., Chen, Y., and Yang, K., 2008. Multi-objective flexible job shop sched-
ule: Design and evaluation by simulation modeling. Applied Soft Computing, In

Press (doi:10.1016/j.as0c.2008.04.013).

30

	Defersha-Chen-IJPR-5.pdf
	1 Introduction
	2 Mathematical Formulation
	2.1 Problem Description and Notations
	2.2 MILP Model for FJSP-LS

	3 Genetic Algorithm
	3.1 Solution Representation
	3.2 Genetic Operators
	3.2.1 Selection Operator
	3.2.2 Crossover Operator
	3.2.3 Mutation Operator

	3.3 Initial Population
	3.4 Fitness Evaluation
	3.5 Parallelization of the GA

	4 Numerical Example
	4.1 Model Illustration
	4.2 Computational Performance
	4.3 Some Empirical Studies

	5 Discussion and Conclusions
	References

