A simulated annealing with multiple-search paths
and parallel computation for a comprehensive
flowshop scheduling problem

Published in 2015 in the International
Transactions in Operational Research Vol. 22,
669-691

Please cite this article as:

Defersha, F. M., (2015) A Simulated Annealing with
Multiple Search Paths and Parallel Computation for a
Comprehensive Flowshop Scheduling Problem.
International Transactions in Operational Research, Vol.
22, 669-691

The online version can be found at the following link:

http://onlinelibrary.wiley.com/doi/10.1111/itor.12105/abstract

http://onlinelibrary.wiley.com/doi/10.1111/itor.12105/abstract

A Simulated Annealing with Multiple Search Paths
and Parallel Computation for a Comprehensive
Flowshop Scheduling Problem

Fantahun M. Defersha'

School of Engineering, University of Guelph, 50 Stone Road East,
Guelph, Ontario, Canada, N1G 2W1

Abstract

Recent studies have demonstrated that the performance of a simulated annealing
algorithm can be improved by following multiple search paths and parallel computa-
tion. In this paper, we use these strategies to solve a comprehensive mathematical
model for a flexible flowshop lot streaming problem. In flexible flowshop environment,
a number of jobs will be processed in several consecutive production stages, and each
stage may involve a certain number of parallel machines that may not be identical.
Each job is to be split into several unequal sublots by following the concept of lot
streaming. The sublots are to be processed in the order of the stages, and sublots
of certain products may skip some stages. This complex problem also incorporates
sequence-dependent setup times, the anticipatory or non-anticipatory nature of se-
tups, release dates for machines, and machine eligibility. Numerical examples are
presented to demonstrate the effectiveness of lot streaming in hybrid flowshops, the
performance of the proposed simulated annealing algorithm and the improvements
achieved using parallel computation.

Keywords: Hybrid flexible flowshop; Lot streaming; Simulated Annealing; Multiple
Search Paths; Parallel Computation.

1. Introduction

Simulated annealing (SA) is a general-purpose optimization technique capable of finding
optimal or near-optimal solutions in various applications. As pointed out in Kratica et al.
(2001), SA is able to converge to an optimum value. However, the basic SA is also limited
because the cost incurred in solving many complex optimization problems can be very high
in terms of computational time. Numerous efforts have therefore been attempted to make
the technique practical for solving larger problems by shortening execution time. Lee and

Lee (1996) classified these efforts into two major categories: algorithmic optimization (of

TFor correspondence: fdefersh@uoguelph.ca, Tel: (519) 824-4120 Ext. 56512; Fax: (519) 836-0227

sequential SA) and parallel computing. In the category of optimizing a sequential SA,
typical examples are careful perturbation (Deutsch and Wen, 1998) and adaptive cooling
rate (Youhua and Weili, 1996; Azizi and Zolfaghari, 2004). However, Lee and Lee (1996)
pointed out that these techniques do not significantly improve the quality of the solution or
execution time. On the other hand, the advent of parallel computing has made it possible
to achieve speed-up by orders of magnitude in various applications (Lee and Lee, 1996).
Recent studies have also demonstrated that simulated annealing algorithms with multiple
search paths and parallel computation have superior search performances compared to those
with single search path and sequential computation (Lee and Lee, 1996; Czech et al., 2009).
As shown in Azencott (1992b), the probability of an error that is, the probability of not
getting an optimal solution when performing a multiple search path SA (MSPSA) decreases
exponentially as the number of search paths increases in return to a linearly increasing
computational time. The use of parallel computing, then, is an effective technique to
achieve an exponential reduction in the error probability of an MSPSA while at the same
time reducing computational time. This can be done by dividing the search paths into
groups and allocating them to concurrently available processors. Parallelizing the MSPSA
may also improve the quality of the solution without affecting computational time. This
can be accomplished by letting multiple copies of the MSPSA with the same number of
search paths run on several concurrently available processors.

In this paper we present a multiple-search path parallel simulated annealing for solving
a flexible flowshop scheduling problem with lot streaming. Lot streaming is a technique
that splits a given job into sublots, each consisting of identical items. This allows the over-
lapping of successive operations in multi-stage manufacturing systems thereby reducing
production makespan. It is used to implement the time-based strategy in today’s compet-
itive global manufacturing environment(Chang and Chiu, 2005). In fact, many world-class
manufacturing companies such as Dell and Toyota have adopted this strategy to quickly
produce goods and deliver them to their customers (Blackburn, 1991; Bockerstette and
Shell, 1993). The concept of lot streaming was formally introduced in Reiter (1966) and its
practice in solving flowshop scheduling problems is not new. Many previous studies have
considered flowshop lot streaming in two stages or special cases of lot streaming in three
stages. These include Potts and Baker (1989), Vickson and Alfredsson (1992), Trietsch and
Baker (1993), Baker and Jia (1993), Glass et al. (1994), Baker (1995), Chen and Steiner
(1996), Sen et al. (1998), and Sriskandarajah and Wagneur (1999). Lot streaming in flow-

shops with more than three stages has been studied recently by several researchers (see for
example Kumar et al., 2000; Hall et al., 2003; Liu, 2003; Chiu et al., 2004; Bukchin and
Masin, 2004; Martin, 2009; Biskup and Feldmann, 2006; Tseng and Liao, 2008; Feldmann
and Biskup, 2008; Marimuthu et al., 2008).

The studies mentioned above usually assume that a single machine is being used in
each stage. However, so-called hybrid flowshops, where there are parallel machines at
certain stages, are very common. If one stage poses a bottleneck in the production process,
managers may consider investing in additional machines for that stage. Moreover, hybrid
flowshops have important applications in flexible manufacturing systems (FMS); in the
manufacturing of electronics and furniture; and in the food processing, petrochemical, and
pharmaceutical industries (Xiao et al., 2000; Tang et al., 2005, 2006; Zandieh et al., 2006;
Jungwattanakit et al, 2008). To this end, the issue of hybrid flowshop scheduling has
attracted much interest and many scientific papers have been written dealing with the
diverse aspects of the problem (see for example Botta-Genoulaz, 2000; Bertel and Billaut,
2004; Oguzc et al., 2004; Tang et al., 2005; Zhang et al., 2005; Tang et al., 2006; Ruiz
and Maroto, 2006; Zandieh et al., 2006; Ying and Lin, 2006; Jungwattanakit et al., 2008;
Janiak et al., 2007; Ruiz et al., 2008). However, the issue of lot streaming in hybrid flowshop
scheduling has received much less attention than lot streaming in pure flowshop scheduling.
For instance, in a sizable review of 225 papers on hybrid flowshop scheduling done by Ruis
et al. (2010), lot streaming was addressed in only two papers, namely Zhang et al. (2005)
and Liu (2008). However, these two cases, Zhang et al. (2005) and Liu (2008), apply
to a very special situation where there are parallel machines only in the first stage and
the number of stages is limited to two. In an attempt to bridge the gap between research
efforts in flowshop lot streaming and hybrid flowshop scheduling, Defersha (2011) developed
a comprehensive mathematical model for the general hybrid flexible flowshop (HFFS) lot
streaming problem. The author demonstrated that lot streaming can be more effective in
hybrid flowshops than in pure flowshops, even though there is far more research on the
latter than the former.

In order to further bridge this research gap, in this paper we develop an SA algorithm
with multiple search paths to efficiently solve the comprehensive model presented in De-
fersha (2011). The algorithm was implemented in both sequential and parallel computing
platforms. The performance of the parallel SA is evaluated against a sequential SA. The

results were very encouraging. The rest of this paper is organized as follows. In Section 2,

we present the considered mixed integer linear programming model for HFF'S lot streaming.
In Section 3 we provide the basics of a single and multiple search path SA and a technique
to parallelize the multiple search path SA. Details of the parallel SA method are presented
in Section 4. Numerical examples are given in Section 5. Discussion and conclusion are in

Section 6.

2. Mathematical Formulation

The main objective of this paper is to present an efficient SA algorithm that will solve a
comprehensive mathematical model proposed by Defersha (2011) for an HFF'S lot streaming
problem. The model incorporates lot streaming and other practical issues, including the
following: (1) the existence of parallel machines that may not be identical; (2) the possibility
that certain jobs will skip certain stages; (3) sequence-dependent setup times; (4) the
anticipatory or non-anticipatory nature of setups; (5) release dates of machines; and (6)
machine eligibility. The problem and mathematical model are further described below to

improve readers comprehension of this paper.

2.1. Problem Description and Assumptions

Consider a flowshop consisting of several consecutive production stages that process several
jobs. Each stage has a known number of parallel machines that may not be identical. Each
job is to be split into several unequal consistent sublots. The sublots are to be processed in
the order of the stages, and sublots of certain products may skip some stages. At a given
stage, a sublot of a job can be assigned to one of the parallel machines eligible to process
that particular job. For each job there is a sequence-dependent setup time on each eligible
machine, and this setup time may be anticipatory or non-anticipatory at different stages.
Each machine can process at most one sublot at a time. Sublots of different products can
be interleaved. The problem is to determine the size of each sublot of each job, and the
assignment and processing sequence of these sublots on each machine in each stage. The
objective function is to minimize the completion time of the last sublot to be processed in

the system

2.2. Notations

Below we define the many notations required to mathematically model the problem pre-

sented above.

Indexes and Input Data:

I

M;

Tn,m,i

@n

Variables:

Number of stages where stages are indexed by ¢ or [= 1,2, ..., 1,

Number of machines in stage ¢ where machines are indexed by m or k =

1,2,.... M,
Number of jobs (products) where jobs are indexed by n or p = 1,2, ..., N,

Total number of sublots of job n where sublots are indexed by j or s =

1,2, ..., Jy,

A set of pairs of stages ([,) for job n constrained by precedence relations, i.e,

the processing of job n in stage [is followed by its processing in stage 1,
Processing time for one unit of job n on machine m in stage i,
Batch size of job n,

Maximum number of production runs of machine m in stage ¢ where production

runs are indexed by r or u =1,2,...., R, ;.

Setup time on machine m in stage ¢ for processing job n following the processing

of job p on this machine; if n = p, the setup may be called minor setup,

A binary data equal to 1 if setup of job n in stage i is attached (non-anticipatory),

or 0 if this setup is detached setup (anticipatory),
A binary data equal to 1 if job n needs processing in stage i, otherwise 0,

A binary data equal to 1 if job n can be processed on machine m in stage i,

otherwise 0; Dy, ;i < By,
The release date of machine m in stage 1,

Large positive number.

Continuous Variables:

Cjn,i

Completion time of the j** sublot of job n from stage i,

Crom.i Completion time of the r** run of machine m in stage 1,
Ajn Size of the j** sublot of job n,

Crnaz Makespan of the schedule,

Binary Variables:

Tymijn Binary variable which takes the value 1 if the 7 run on machine m in stage i

is for the j** sublot of job n, 0 otherwise,

Yim A binary variable that takes 1 if sublot j of job n is non-zero (\;,, > 1), 0

otherwise,

In the list of notations above, a production run r is the possessing of a sublot by a
machine. The maximum number of production runs, R,,;, on a particular machine m, in
a particular stage 7, is theoretically equal to the total number of sublots of all the jobs.
However, because parallel machines are present and certain jobs will skip stages, the number
of sublots that will actually be processed on a particular machine at an optimal solution is
likely lower than the total number of sublots. Hence, a reasonably lower value for R,,; has

to be assumed in order to reduce the number of variables in the mathematical model.

2.3. MILP Model

Using the notation given above, the objective function and the constraints of the considered

mixed integer linear programming (MILP) model are presented below.

Minimize:
7 = Crmazx (1)
Subject to:
Cromyi = Cimi + 0 Zpmiin — Q5 Y(r,m,i,j,n) (2)
Cromi < Cini — S Tpmijn+ Q5 Y(r,m,i,j,n) (3)
Cimi — Njn - Dmyi — Smiimo — Q- Timigjm + Q> Foy 3 V(m, i, j,n) (4)

Jp

Cr,m,z' -)\j,n : Tn,m,i - Sm,i,n,p -Q { (E mr—l,m,i,s,p) + xr,m,i,j,n} + 2Q Z Cr—1,m,i »

s=1

~

Cim,i —)\j,n : Tmm@ - Sm,i,mO ' An,i - Q- (:Eu,k,l,j,n + xl,m,i,j,n) + 2Q 2 Cuk,l 5

V(u, k,m,l,i,5,n)|(l,i) € E, (6)

Jp
Cr,m,i_/\j,n'Tn,m,i_Sm,i,n,p'An,i_Q E Tr—1,m,i,s,p + Lo ke,l,jn + LTrmyi,jn +SQ Z Cuk,l 5
s=1

v<u7r7k7m7l727j7n7p)|(l7l>eE’n? T>]‘ (7)
N Jn
Z Z Lrmyi,jn <1 ; V<T7 m, Z) (8)
n=1 j=1
N Jn N Jn
Z Z mr—i—l,m,i,j,n S Z Z xr,m,i,j,n ; V(T, m, Z)‘T < Rm,i (9)
n=1 j=1 n=1 j=1
JIn
> XN =0Qun; Yn (10)
j=1
N Q- Yjn s Y(G,n) (11)
YVin S)\j,n) \V/(j, n) (12)
M; Rm,i
Trm,ijgm — Vin* Bn,i ; V(Z,], TL) (13)
m=1 r=1
CC'r,m,i,j,n S Dn,m,i ; V(r,m, i7j7 TL) (14)
Crmax 2 Cj,n,i ; v(]? n, Z) (15)
Tym.ijn and 7;, are binary (16)

7

The objective function in Eq. (1) is to minimize the makespan of the schedule which is
equal to the completion time of the last sublot processed in the system. The constraints in
Egs. (2) and (3) together state that the completion time of the j™ sublot of job n in stage
i is equal to the completion time of the 7'* run of machine m in stage 4 if this production
run is assigned to that particular sublot. The starting time of the setup for the first run
(r = 1) of machine m in stage i is given by €1 mi — Ajn X Thmi — Smaino if the j7 sublot
of job n is assigned to this first run. This starting time cannot be less than the release
date of the machine as enforced by the constraint in Eq. (4). The constraint in Eq. (5) is
to enforce the requirement that the setup of any production run r > 1 of a given machine
cannot be started before the completion time of run r — 1 of that machine. The constraint
in Eq. (6) states that for any pair of stages (I,i) € E,, the setup or the actual processing
of the first run on machine m in stage ¢ may not be started before the completion time of
run u of machine k in stage [, depending on whether the setup of product type n in stage
7 is non-anticipatory or anticipatory. This constraint is applied if run » of machine £ in
stage [and that of the first run of machine m in stage ¢ are both assigned to sublot j of job
n. The constraint in Eq. (7) is similar to that in Eq. (6) except Eq. (7) is for run r > 1 of
machine m in stage . In this case, the sequence dependent setup time has to be considered
by taking into account the type of the job that was processed in run r — 1 of machine m in
stage i. The constraint in Eq. (8) states that a production run r of a particular machine
m at a particular stage i can be assigned to at most one sublot. The constraint in Eq. (9)
is to enforce the logic that a production run r + 1 of a given machine can be assigned to
a sublot if and only if run r of that machine is already assigned to another sublot. The
constraint in Eq. (10) enforces that the sum of the sizes of the sublots of a given job should
be equal to the lot size of that particular job. The constraints in Egs. (11) and (12) are
to set the binary variable v;,, to a value equal to 1 or zero depending on whether the size
of j' sublot of job n is positive or zero, respectively. If sublot j of job n is positive (i.e.,
vjn = 1) and it requires processing in stage 4, then it should be assigned to one of the
eligible machine in stage i. This is enforced by the constraints in Egs. (13) and (14). Eq.
(15) states that the makespan of the schedule, ¢,,.., is greater or equal to the completion
time of any sublot on any stage. At optimality, ¢,,.. takes the value of the completion time

of the last sublot to be processed in the system. Eq. (16) is the integrality requirement.

3. Simulated Annealing

3.1. The Basic Algorithm

A simulated annealing is a stochastic search algorithm where a point X in the search space
is analogous to a state of some physical system. A function F(X) is defined as the internal
energy of that system at state X. The goal of the search is to bring the system from
an arbitrary initial state X, to a state where the system will be at its minimum possible
energy. In doing so, the algorithm visits a sequence of random points X, X, ---, X,, of
the search space such that E(X,,) is the minimum possible energy of the system as n — 0.
This sequence of visitation is determined by Eq. (17) where X/ is a neighborhood point
generated by slightly moving away from X,.

(X! if B(X)) < B(X,)

Tpi1 =< X) if exp (%@) > rand() (17)

| X, otherwise

In the above equation, rand() is a random number generated for making a stochastic
decision for a new solution. 7T}, is the temperature at the n'* iteration. The sequence of
T, the cooling schedule, is generated such that T, > T,,,, with lim,,_,. 7, = 0. From
Eq. (17), it can be seen that the choice of X,,; depends only on the current solution z,,
not on the previously visited solutions. Thus, the search path of such simulated annealing
algorithms follows a Markov chain. From here onwards we refer to the basic algorithm as
a sequential single search path simulated annealing algorithm (SSSP-SA). For a suitable
cooling schedule, the probability of not getting an optimal solution after n iterations using
an SSSP-SA is characterized by Eq. (18) where U,,;, is a set of optimal solution points
(Chiang and Chow, 1988). In this equation, n is large enough and K > 0 and 8 > 0

are constants specific to a given energy landscape and neighborhood generation. Thus as

n — 00, the solution converges to one of the optimal points in U,,;, with probability of 1.0.

P(X,, & Upin) ~ (g)e (18)

3.2. Sequential Multiple Search Paths SA

Most SA schemes in the literature follow a single search path. However, from the point of

view of performance, following a single search path may not be necessary or advisable (Lee

and Lee, 1996). A sequential multiple search path SA (SMSP-SA) performs S independent
versions of simulated annealing algorithms using the same search space, neighborhood
generation and cooling schedule. Each one of these independent versions stops after n
iterations to provide S independent terminal solutions {X,, 1, X2, ---, X, s}. The best
and final solution X, is then selected from these terminal solutions. A general pseudocode
of an SMSP-SA is given in Figure 1. The characteristic equation for the probability that
this algorithm will miss the optimal solution can be derived from Eq. (18) and is given by
Eq. (19). Thus, from Eq. (19), for 0 < K/n < 1, it can be seen that the probability of
error decreases exponentially as S increases while computational time grows only linearly
(Azencott, 1992b). This suggests that performing multiple short simulated annealing runs

will yield a better solution than than performing a long single annealing run.

P(XN & Upin) = ﬁp(xn,i & Uppin) ~ (%)65 < (%)9 (19)

=1
3.3. Parallelizing the SA

Parallel computing is a promising technique that can either reduce the computational time
needed to solve a sequential multiple search path simulated annealing (SMSP-SA), or expo-
nentially decrease its probability of error, depending on the way the SA is parallelized. In
order to reduce computational time, let S search paths be partitioned into equal sub-groups
as S1, 52, -+, 5, and distributed to p concurrently available processors. The computational
time for the parallel multiple search path SA (PMSP-SA), t,, will be equal to t;/p where
ts is the computational time for the SMSP-SA.

On the other hand, we may parallelize an SMSP-SA to improve the quality of the so-
lution without significantly affecting computational time. In this case, let the SMSP-SA
have S search paths that require ¢, unit times to perform n iterations in each search path.
By running multiple copies of the SMSP-SA on several concurrently available computers,
the value of S can be increased many times while ¢; and n stay the same. The greater
the number of search paths, the smaller the probability that the SA will miss the optimal
solution. A good introduction on parallel simulated annealing with multiple search paths
can be found in Azencott (1992a), Lee and Lee (1996), and Meise (1998), although the au-
thors assumed only a single search path per processor. In our parallel simulated annealing,
however, several shorter search paths will be traced on each processor since the exponential

reduction in error probability suggests that multiple short SA runs are better than a single

10

SMSP-SA() //Sequential Multiple Search Path SA

{
Randomly generate S solution points {Xo,1, Xo2, -+, Xo.s}
Set initial temperature Ty
Set n=20,r=0;
REPEAT
{
FOR(¢g=1t0o Q) //Q = number of iterations at temperature T,
{
FOR j=1to S //S = number of independent search paths
{
Generate X;z,j from X, ;
IF E(X], ;) < E(Xn,;)
Xnt1,j = X5,
ELSE IF exp (“5e 20l >
Xnt15 =X
ELSE
Xnt1,5 = Xn,j
}
n=n-+1
¥
r=r+1
Tr =« X Tr—l
}
UNTIL a stoping criterion is met
X, = X, j- such that E(X,, ;») < E(X,, ;) for j=1to S
}

Figure 1: Pseudocode for an instance of a SMSP-SA

Components of the Proposed Algorithm

Solution Representation

A simple permutation of the jobs in an array constitutes the most widely used encoding of
a solution for pure flowshop scheduling. Such simple encoding has also been adopted for
hybrid flowshop scheduling. The permutation of the jobs is used to guide the assignment
and sequencing of the jobs at every stage through some form of heuristics or priority

rules. When lot streaming is considered, we need additional components in the solution

11

representation to encode the number and sizes of the sublots of each job. Moreover, jobs of
the same product will appear on several places of the permutation representing the sublots
of this product. Figure 2 illustrates the solution encoding of the proposed SA algorithm
assuming four jobs where jobs 1 and 4 have two sublots each and jobs 2 and 3 have three
sublots each. The left-hand-side segment of the solution encoding, labeled LHS-Segment,
encodes the size of the sublots of each job. In this part of the solution representation, the
element «;,, takes a random value in the interval [0, 1]. For a solution under consideration
the size of the j* sublot of job n is computed (decoded) using Eq. (20). The right-hand-side
segment of the solution representation, labeled RHS-Segment, represents a permutation
of S sublots where S is the total number of sublots of all the jobs given by ij J, and
7(s) is a pair of numeric values at the s location of the permutation denoting a sublot at
that location. In Figure 2 for example, m(1) denotes sublot 2 of job 3 whereas 7(2) denotes

sublot 1 of job 4 and so on.

Ajn = Tn 7 X Qn (20)
> j=1 X
LHS-Segment RHS-Segment
n=1 2 3 4 |s=1 2 3 4 5 6 7 8 9 10
O[O, [012 |06, [0G, [[03|05 K [0 [@3) [a [an [| @@ e |63 [an [a3)

O(j,n G, n)

Figure 2: Solution representation

4.2. Energy Function

In the proposed SA, a point X in the search space is a solution encoded as shown in Figure
2 and the value of the corresponding energy function E(X) is equal to the makespan
Cmaz- 1ts value corresponding to a particular solution X can be computed by assigning
and sequencing the sublots on each machine in each stage using the information decoded
from that solution. In order to perform this evaluation process, the size of each sublot is
first decoded from the LHS-Segment of X using Eq. (20). Once the size of the sublots is
obtained, the permutation 7 of the sublots taken from the RHS-Segment of X will be used
to guide the assignment and sequencing of the sublots on the parallel machines in each
stage. By considering each sublot as a job on its own, the assignment and sequencing of

sublots can be performed in a similar way as for hybrid flowshop scheduling without lot

12

streaming. Indeed, to represent this process, we adopt the assignment rule that appears in
Ruiz and Maroto (2006) where the author did not consider lot streaming. This assignment
rule requires that we go through all the stages required by each sublot in 7 and look for the
machine that can finish this sublot at the earliest time. The rule has been adjusted to take
the following into account: (1) attached and detached setup time; (2) machine release date;
(3) skipping of stages by certain jobs; and (4) the possibility that the size of certain sublots
may be zero. If a sublot is of zero size, it should not be assigned to any machine in any
stage. Considering these adjustments, if sublot j of job n is assigned to an eligible machine
m in stage ¢, its completion time c;,; in this stage should be computed based on one of
the following four different cases. The complete process of assigning the operations of the
various sublots and the determination of the corresponding makespan c¢,,,, is presented in

the flowchart given in Figure 3.

Case 1 a) Sublot j of job n is the first sublot to be assigned on machine m.

b) For job n, stage i is the first stage to be visited.

e In this case, the machine is available after its release date, F, ;.

e Setup can commence immediately after F),; and the processing of the sublot

can begin after the setup is completed.

L ThU.S, Cingi = Fm,i + Sm,i,n,O +)\j,n : Tn,m,i-

Case 2 a) Sublot j of job n is not the first sublot to be assigned on machine m.
b) Sublot z of job p was the last sublot assigned on machine m.

c¢) For job n, stage i is the first stage to be visited.

e In this case, the machine is available after ¢, ,; (the completion time of sublot

x of job p).

e Setup for sublot j of job n can commence immediately after c,,; and the

processing of the sublot can begin after the setup is completed.

o Thus, ¢jni = Cepi+ Sminp T Njm - Tnm,i-

Case 3 a) Sublot j of job n is the first sublot to be assigned on machine m.

b) Job n has to visit stage | immediately before it visits stage i, i.e., (I,i) € E,

13

e Similar to Case 1, in this case as well the machine is available after its release

date, F,,;.

e Setup for sublot j of job n can commence immediately after F,,; if it is

detached (i.e., A,,; = 0) or at max{F,,;; ¢jn,} if it is attached (i.e., A,; = 1).

e The processing of the sublot j of job n can begin at [max{F}, ;; ¢jni} + Sm.in,o]
if its setup is attached or at max{F,, ; + Smino0; Cjni}if its setup is detached.

L4 ThU-S7 Cj,n,i - maX{Fm,i + (1 - An,z) : Sm,i,n,O; Cj,n,l} + An,i : Sm,i,n,O +)‘j,n : Tn,m,i~

Case 4 a) Sublot j of job n is not the first sublot to be assigned on machine m.
b) Sublot x of job p was the last sublot assigned on machine m.

c¢) Job n has to visit stage [immediately before it visits stage i, i.e., (I,7) € E,

e Similar to Case 2, in this case the machine is available after ¢, ,; (the com-

pletion time of sublot x of job p).

e Sctup for sublot j of job m can commence immediately after c,,; if it is

detached or at max{c, p;; ¢;.;} if it is attached.

e The processing of the sublot j of job n can begin at [max{c, pi; ¢jni} + Sminp)

if its setup is attached or at max{c, p;+Sm,inp; Cjni} if its setup is detached.

e Thus, ¢jni = max{cyp;i+(1—=An:) Sminp; Cinit+Njn TomitAni Sminp-

4.3. Move Operators

At each iteration, several move operators are applied on each solution with small prob-
abilities. In the proposed SA algorithm, we used four move operators: (i) Sublot Size
Step Move (SSStM); (ii) Sublot Size Swap Move (SSSwM); (iii) Sublot Order Shift Move
(SOShM); and (iv) Sublot Order Swap Move (SOSwM). The operator SSStM is applied
with a small probability o, on each element «;, in the LHS-Segment to step up or down
the value of this element with a step amount € using the equation «;, = min{l, «;,, + 60}
or max{0, «;, — 0}, respectively. The step amount 6 is calculated every time this operator
is applied to a given «;, with the equation 6 = 0, x rand(), where a oy € [0,1] is a
parameter of the algorithm and rand() is a random number generator in (0,1). The opera-
tor SSSwM is applied with a small probability o5 on each n in the LHS-Segment to swap

the values of two arbitrarily selected «;, and «j,. The perturbation operator SOShM

14

Start

A 4

For the solution under consideration, using the data from the LHS-Segment and
Eq. 20, decode the size of the sublot 4 ; , for all (j, n).

A 4

Get the permutation 7 of the S sublots from the RHS-Segment of the solution
under consideration.

v
Initialize s=1;i=1

v

Set the values of j and » by those at location s of the permutation 7.
i.e. (J, n) = n(s)

No

B

\ 4

ni=1?
l Yes

Assign sublot j of product n to one of the eligible machine in

stage i that can result in the smallest completion time ¢;,, ; of

this sublot in this stage. The value of ¢;,; is calculated based
on one of the four cases presented in Section 4.2.

i=i+1

s=s+1
i=

Calculate ¢,,oc = MaXy(,ni){Cjni}

A 4
(Stop)

Figure 3: The process of assigning and sequencing the sublots on each machine in each
stage and the determination of the makespan corresponding to a particular solution.

15

arbitrarily selects a sublot in the RHS-Segment and relocates the sublot to another arbi-
trary location in the RHS-Segment. This perturbation operator has a small probability os.
The operator SOSwM arbitrarily selects two sublots in the RHS-Segment and swaps these
sublots with a small probability o,.

4.4. Cooling Schedule

The cooling schedule can be defined by the rules that determine three factors: (a) how
high the starting temperature should be; (b) when the current temperature should be
lowered; and (c) by how much the temperature should be lowered.. In this paper we use
a popular cooling schedule in which a specified number of iterations are performed at a
constant temperature T, = § x T,._1. In this cooling schedule, r is the index of temperature
levels, and the constant 3, in [0, 1], is the cooling coefficient and generally set as close to
1. Thus, the parameters of the proposed simulated annealing method associated with the
cooling schedule are the initial temperature Tj, the cooling exponent 3, and the number of

iterations at each temperature level.

4.5. Interactions of Search Paths

In the proposed simulated annealing algorithm, each of the P concurrently available pro-
cessors (CPUs) follows S search paths.. These search paths are allowed to interact to
improve performance. We track two levels of interactions: local and global. In the local
interaction, after every L number of iterations, a CPU will restart all of its S search paths
at the current temperature from the best solution it has found so far (where L is defined
as the local interaction frequency). In the global interaction (across CPUs), one of the
possessing elements is chosen to coordinate the communication among the CPUs. After
every L X F iterations, this CPU, in addition to executing its S-search path SA, will gather
the best solutions found so far by all the CPUs and determine a winner solution as the best
of all (where F' may be defined as global communication factor). It will then broadcast this
winner solution to all the CPUs. In turn, each CPU will restart the S-search paths in its
domain from the winner solution at the current level of temperature. If F' is chosen to be
a large value (say between 20 and 40), global communication happens less frequently. This
infrequent communication between processors promotes exploitation of the search space

within each processor and exploration of the entire search space across the processors.

16

4.6.

Steps of the Parallel Simulated Annealing

In this section, we present the steps of the parallel simulated annealing algorithm. We also

redefine some exiting notations and introduce new notations. These are explained below.

p

Xn7s7p

BS,
BS

rand()

Processor Index (processor ID), p = 0, 2, ..., P — 1 where P is the number of

concurrently available processors.

Index of search paths, s = 1, 2, ..., S where S is the number of search paths

followed by each processor.

Iteration counter, n = 1, 2, ..., N where NN is the maximum number of iterations

in each search path.

The solution at the n** iteration along the s** search path in the p* processor.
Cooling schedule coefficient.

Index for the temperature levels in the cooling schedule.

Temperature at the r** level, T, = 8 x T,_1 = " x Ty.

Number of iterations to be performed in each search path at each temperature

level.

Number of iterations performed in each search path before a processor restarts
all of its search paths (at the current level of temperature) from the best solution

it has found so far.

Global Communication frequency factor where product F' x L defined as the
number of iterations to be performed by each search path before communication

is effected among the processors.
Best solution found so far in the p* processor.
Best solution found so far by all the processors

Random number generator. Each processor uses a different seed for the random

number generator.

17

Using the above notations, the steps of the proposed parallel SA are outlined in the
flowchart in Figure 4. These steps were coded in C++ with MPI message-passing library
for communication. The code was tested in a parallel computation environment composed

of several computing nodes, each containing eight processors (3.2 GHz, 4GB RAM).

5. Numerical Examples
5.1. Pure vs Hybrid flow-shop lot streaming

Most existing models and solution techniques in the literature about flowshop lot streaming
apply to pure flowshop. However, lot streaming is more effective in hybrid flowshops than
in pure flowshops because of the following two reasons. Firstly, hybrid flowshops can
overlap the operation of sublots of a given job not only across stages but also within stages.
Secondly, some stages in pure flowshop can easily pose bottlenecks that inhibit further
splitting of certain jobs. Defersha (2011) illustrated this point in a paper that addressed
a small problem where two jobs were processed in three-stage flowshop. In this section
we further illustrate the greater effectiveness of lot streaming in a hybrid flowshop by
considering several arbitrarily generated examples composed of five to 25 parts and four
to 15 stages. The general features of these sample problems are given in Tables 1 and
2. Each test problem has four categories: a) pure flowshop without lot streaming; b)
pure flowshop with lot streaming; ¢) hybrid flowshop without lot streaming; and d) hybrid
flowshop with lot streaming. Table 3 provides the makespans of the schedules obtained for
the four categories in every test case by using the proposed algorithm. The table shows that
in all the test cases, the reduction of makespan through lot streaming was much greater
in hybrid flowshop than in pure flowshop. The average makespan reduction of the ten
test cases was 35% in hybrid flowshop, whereas it was only 20% in pure flowshop. Yet,
contrary to these findings and their practical potential in several manufacturing settings,

lot streaming research in hybrid flowshops is quite limited.

5.2. Computational Performance

In this section, we illustrate the performance of the proposed algorithm. We solved a
small test problem by using CPLEX, a state-of-the-art optimization package and the de-
veloped algorithm. Figure 5 shows the convergence histories of CPLEX (version 12.1.0)
and the SMSP-SA in solving a small test problem (Problem-1d). The figure shows that the
makespan of the schedule generated by CPLEX was 1580 minutes after about 46 hours of

18

INITIALIZATION

\ 4

Set p = My-Process-1D; Set n =r = 0; Set Tg = Tinitial

\ 4

» Sets=0
A 4

» Sets=s+1

Set E(BSp) = Large-Number; If p = 0, set E(BS) = Large-Number
Randomly Generate initial solutions Xo,1,p, X0,2,p, - X0,S,p
Calculate E(Xo,s,p) fors=1,2,...,S

MOVE

No

DS

Yes

Setn=n+1

Perturb X s p to get a trial solution X’n 5 p
v
EVALUATE
Calculate E(X’n s p)

v

DECIDE
If E(X’ns,p) < E(Xn,sp)s then Xn+15p=X’nsp
ELSE IF exp[E(Xn s,p) - E(X’ns,p)] > rand(), then Xn+15p =X’n;sp
ELSE Xn+1,5,p = Xn,s,p

v

UPDATE

If E(Xn+1‘syp) < E(BSp), THEN BSp = Xn+1‘S’p

Setr=r+1

nmod L =0?

Set T, =pxT,1

A

Fors=1,...,S,

n mod (FxL) = 0?

set Xnsp = BSp

A

COMMUNICATE

e Ifp=0,send BSp to the process whose Process_ID = 0;
e |If p=0; receive the best solutions found by each process and

determine BS and send this solution to all other processes;

o Ifp=0, receive BS from the process whose Process_ID =0;
e Set Xnysyp =BS

Figure 4: Steps of the algorithm.

19

Table 1: Problems Features (Problems 1a to 5d)
Features Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

a b ¢ d a b ¢ d a b ¢ d a b ¢ d a b ¢ d
NoOfProducts 5 5 5 5 8 &8 8 &8 10 10 10 10 12 12 12 12 14 14 14 14
MaxNoOfSublots 1 5 1 5 1 5 1 5 1 5 1 5 1 6 1 6 1 5 1 5
NoOfStages 4 4 4 4 5 5 5 5 6 6 6 6 8 8 8 8 8 8 8 8
MaxNoOfParaMach1 1 3 3 1 1 3 3 1 1 3 3 1 1 4 4 1 1 4 4
MinNoOfSublots 1 5 1 5 1 5 1 5 1 5 1 5 1 6 1 6 1 5 1 5

MinNoOfParaMach 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
MinimumlLotsize 120 120 120 120 120 120 120 120 200 200 200 200 200 200 200 200 150 150 150 150
MaximumLotsize ~ 340 340 340 340 340 340 340 340 400 400 400 400 450 450 450 450 380 380 380 380

Note: MaxNoOfParaMach = Maximum number of parallel machines. The number of machines across the stage varies between
MaxNoOfParaMach and MinNoOfParaMach.

Table 2: Problems Features (Problems 6a to 10d)

Features Problem 6 Problem 7 Problem 8 Problem 9 Problem 10
a b ¢ d a b ¢ d a b ¢ d a b ¢ d a b ¢ d
NoOfProducts 16 16 16 16 18 18 18 18 20 20 20 20 22 22 22 22 25 25 25 25

MaxNoOfSublots 1 5 1 5 1 6 1 6 1 &8 1 8 1 6 1 6 1 5 1 5
NoOfStages 8 8 8§ 10 10 10 10 10 10 10 10 12 12 12 12 15 15 15 15
MaxNoOfParaMach 1 1 311 4 4 1 1 5 5 1 1 6 6 1 1 5 5
MinNoOfSublots 1 5 5 1 6 1 6 1 8 1 8 1 6 1 6 1 5 1 5
MinNoOfParaMach 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
MinimumLotsize 300 300 300 300 400 400 400 400 400 400 400 400 300 300 300 300 100 100 100 100
MaximumLotsize ~ 600 600 600 600 600 600 600 600 800 800 800 800 600 600 600 600 500 500 500 500

= W oo

computation. The SMSP-SA, on the other hand, was able to generate a schedule with a
makespan of 1143 minutes (27% improvement) in less than three minutes. To validate the
improved solution generated by the SMSP-SA, we submitted it to CPLEX as a starting
incumbent solution. CPLEX accepted it as a feasible starting solution but was unable to
improve it. Regarding the larger problems studied in this paper, CPLEX was unable to
start computation because of the large amount of memory required, whereas the SMSP-SA
was able to generate solutions in a few minutes and progressively improve them. This
illustrates the computational performance of the developed algorithm and its potential in

solving larger problems.

5.3. Improvement through Parallelization

In the previous section, we illustrated the effectiveness of the sequential SA by comparing
its performance with that of the state-of-the-art optimization package CPLEX. The per-
formance of the sequential SA can be further improved using the multi-processor parallel
implementation procedure outlined in Section 4.6. Figure 6 shows the makespan of the
schedule for problem 10d using the sequential SA and a 32-processor (four nodes with eight

cores each) parallel SA over 16 test runs conducted by varying the algorithm parameters

20

Table 3: Makespan improvements

Pure Flowshop Hybrid Flowshop
Makespan Improvement Makespan Improvement
Problem a b % c d %
1 2889 2363 18 1813 1143 37
2 3085 2696 13 2945 2054 30
3 6271 5113 18 5635 3900 31
4 10003 8302 17 5168 3093 40
) 9625 8059 16 5604 3740 33
6 14467 11723 19 11521 7728 33
7 23700 17909 24 13097 8016 39
8 31853 24619 23 16111 10611 34
9 34776 27025 22 21987 13487 39
10 21886 15565 29 13683 8257 40
Average 20 35
2000 2000
1900 1900
1800 % 1800
S 1700 <
§ 1600 \ Y %88
£ 1500 £ 1500
S 1400 S 1400
1300 1300
1200 1200
1100 — T T 1100 4+ T
A NI 0 g S P LD P oW
6’)3’ q"?’g '\/f\% ’\?;)% '19'{’» ,,)6"\?‘ bg:{)/ VG’)’:, NS Q\”» 0'\?‘ @j\’ Q'Vb‘
Time Time
CPLEX SMSP-SA

Figure 5: A 46-hour and 3-minute convergence graphs of CPLEX and SMSP-SA, respec-
tively,in solving a small problem instance

as shown in Table 4. The parallel SA outperformed the sequential SA in 14 out of 16 test
runs. Using parallel computation, we achieved a maximum improvement of 750 minutes
in test run 12, and the average improvement over the 16 test runs was 270 minutes. We
observed such performance improvements in several other problems whose general features
are given in Table 5. Figure 7 shows the convergence of the sequential and parallel SAs
(the latter with eight and 32 processors) in solving Problems 10d, 11, 12, 13 and 14. The
convergence graphs in the first three columns show results for 16 test runs that utilized
the 16 parameter sets given in Table 4, and the last column shows the average convergence
of these test runs. These convergence graphs also show the improvements in the algo-
rithms performance as we moved progressively from the sequential SA to the parallel SAs

using eight and then 32 processors. Figure 8 shows the average and standard deviations of

21

makespans of the final solution of 16 test runs in each problem. Again, we can clearly see
that the average makespan improved in each problem as we moved progressively from the
sequential to the parallel SAs. More interestingly, the standard deviation of the makespans
also decreased as we increased the number of processors. Consequently, an important issue
in parallelizing the simulated annealing is not only how to build the algorithm to achieve
maximum performance, but also how to make it robust in its ability to offer a consistently
high level of performance over different parameter settings. Thus, the parallel SA requires

less extensive parameter calibration efforts than the sequential SA.

@ Sequential SA OParallel SA on 32 Processors (4 nodes each having 8 cores)
8800
8600
S 8400
2
8200 -
(7]
]
= 7800 - I I l
7600 - I I I
7400 -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Test Run

Figure 6: Makespan of problem 10d over 16 test runs

6. Discussion, Conclusion and Future Research

Lot streaming allows different sublots of the same job to be processed simultaneously at
different stages. Production can be significantly accelerated as a result of such overlapping
in operations. Previous research on flowshop lot streaming has generally featured the
utilization of single machines in each stage. However, so-called hybrid flowshops that
feature parallel machines at certain stages are very common in some industries. Indeed,
hybrid flowshop scheduling has attracted much interest, and many scientific papers dealing
with the diverse aspects of the problem have been published. Nevertheless, the issue of
lot streaming in hybrid flowshop scheduling has gained less attention than lot streaming
in pure flowshop scheduling, even thoughit is more effective in the former case. In an
attempt to bridge this gap in research, the author of this paper developed a comprehensive
mathematical model for the general hybrid flexible flowshop (HFFS) lot streaming problem,
and a simulated annealing algorithm with multiple search paths to efficiently solve that

comprehensive model. The proposed algorithm was implemented in both sequential and

22

Table 4: Algorithm parameters for various test runs

Parameter
Set S TO (0% Q o1 09 03 (o) HmaX L F
1 240 170000 0.96 400 0.018 0.067 0.100 0.186 0.183 800 20

2 290 130000 0.97 300 0.04 0.140 0.060 0.200 0.172 900 30
3 210 160000 0.97 300 0.066 0.100 0.110 0.270 0.127 1500 10
4 170 100000 0.98 400 0.024 0.100 0.100 0.267 0.150 1200 50
5 280 190000 0.99 300 0.027 0.100 0.100 0.290 0.187 500 40
6 280 100000 0.99 300 0.04 0.062 0.137 0.145 0.160 700 40
7 160 110000 0.97 200 0.019 0.100 0.127 0.108 0.120 1200 30
8 270 150000 0.99 200 0.067 0.068 0.100 0.135 0.150 800 20

9 140 110000 0.97 500 0.031 0.103 0.053 0.299 0.171 1000 30
10 220 90000 0.97 500 0.04 0.100 0.100 0.200 0.150 700 50
11 160 140000 0.96 500 0.045 0.115 0.100 0.240 0.150 600 40
12 220 160000 0.97 400 0.013 0.100 0.086 0.200 0.150 1300 10
13 230 90000 0.97 500 0.013 0.066 0.057 0.274 0.192 500 30
14 230 190000 0.98 200 0.05 0.100 0.102 0.200 0.150 1200 10
15 170 180000 0.96 200 0.03 0.067 0.100 0.200 0.150 1000 20
16 270 170000 0.97 300 0.058 0.132 0.096 0.136 0.197 1100 20

S—number of search path followed by each processor; Tp—initial temperature; a— cooling exponent; @ —number of iteration
at each temperature level along each search path; o1, o2, 03, 04, and Omax—parameters for move operators; L—number of
iteration before a processor restart its search paths from the best solution it found so far; F—communication factor.

Table 5: Features of the Additional Problems

Features Problem 11 Problem 12 Problem 13 Problem 14
NoOfProducts 25 20 10 20
MaxNoOfSublots 5 5 5 5
NoOfStages 30 40 60 o0
MaxNoOfParaMach 6 6 6 6
MinNoOfSublots 5 5 5 5
MinNoOfParaMach 3 3 3 3
MinimumLotsize 200 300 800 800
MaximumULotsize 500 800 1200 1200

Note: MaxNoOfParaMach = Maximum number of parallel machines. The number of machines across the stage varies between
MaxNoOfParaMach and MinNoOfParaMach.

parallel computing platforms, and its performance was evaluated against a state-of-the art
optimization package and a sequential SA. The results were very encouraging. In our future
research, we plan to expand the model presented in this paper to account for capacitated
buffer size and capacitated material handling equipment, interdependence of jobs because
of assembly requirements and differences in job priority. We also plan to incorporate several
objective functions in addition to makespan reduction within the context of lot streaming.
These objectives may include due date, work-in-process inventory, flow time, etc. We will
also consider advancing the research presented in this article by developing models and

solution procedures for lot streaming in non-conventional manufacturing systems, such as

23

those based on cellular, fractal and distributed layouts, about which we currently have

limited research

Acknowledgements: We thank SciNet (http://www.scinet.utoronto.ca/)and SHAR-
CNET (https://www.sharcnet.ca/) for their assistance in providing access to parallel

computing facilities.

24

http://www.scinet.utoronto.ca/
https://www.sharcnet.ca/

Number of Processing Elements

Temperature Index r

Temperature Indexr

Temperature Indexr

1 8 32 Average
94 94 94
92 92 92
’g“ 90 ’g 90 ‘g“ 90 ’8‘
= 88 o 88 o 88 ;=
§ 86 g 86 g 86 5
a a o o
g 84 2 84 84 2
?‘En 82 - ‘-‘En 82 +— E 82 ;‘
8t 78 78 T e
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Temperature Index r Temperature Indexr Temperature Indexr Temperature Indexr
Problem 10
125 125 125 4
120 120 120
g g g g
= 115 = 115 = = 115 -
< < c c
< « ® ®
2 110 +— 2 110 a 2 110
u u a o
£ — 3 L — 2 2
g 105 — S 105 - 3 S 105 -
00 +—+ 7 100 00 +—+———————
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Temperature Index r Temperature Indexr Temperature Indexr Temperature Indexr
Problem 11
200 + 200 200 200 -+
190 - 1% 190 - 190 -
g g g g
= 180 - = 180 - = 180 = 180 -
< < c c
H _— H & H
2 170 R — 2 170 2 170 2 170
u u a o
= = = 2
S 160 — S 160 - S 160 S 160
S——
50 +— 150 50 +——7— 50 +—r——— T
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Temperature Index r Temperature Indexr Temperature Indexr Temperature Indexr
Problem 12
320 320 320
310 310 310
S 300 N B S 300 S 300
=] =] =] =]
2 290 = 2 290 2 290
< < c c
3 280 - 2 3 280 3 280 -
@ x @ @
£ 270 — £ £ 270 - £ 270 -
] ———————] <} <]
2 260 - 2 2 260 - 2 260 -
250 +———T——— T 250 +— T 250 +—r—
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Temperature Index r Temperature Indexr Temperature Indexr Temperature Indexr
Problem 13
350 - 350
340 - 340 -
5 B & 330 - 5 330 -
=] =] =] =]
= = 2 320 4 2 320
< < c c
3 3 I R — 3 310
x a @ @
<]] <} <]
= 2 2 290 - —] 2 290 -
280 +— T 280 +—
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

Temperature Indexr

Problem

14

Figure 7: Individual and average convergence graphs of the 16 test runs for problems 10d,
11, 12, 13, and 14 by varying the number of processing elements

25

Problem 14

Average STD Average STD
84 2.0 111 2.2
T @ g
2 3 18 2 110 2
5 s 5 g 18
8 8 g 16 2 109 g =
& g E] E 1.6
S ® g 14 s 108 H
[£ o £ 14
g & S 12 & 107 s
5 s 5 1.2
> >
< g0 1.0 < 106 1
1 8 32 8 32 1 8 32 1 8 32
No of PE No of PE No of PE No of PE
Problem 10 Problem 11
Average STD Average STD
4 275 8.5
g g 75
2 167 35 2 273 :
§ 165 5 B 5 65
g 163 s 3 g 7 2 55
i 3 2 g as
S 161 & 25 S 269 s 4
@ £ o £ 35
g 159 s , & 267 s
g 157] 25
< 155 15 < 265 15
1 8 32 8 32 1 3 32 1 3 32
No of PE No of PE No of PE No of PE
Problem 12 Problem 13
Average STD
310 % —
g 7
< 305 _ 65
£ 300 o 55 -+
s £ s
P g
E 295 S 45 ¢
a a4
>
< 290 35 4
1 8 32 8 32
No of PE No of PE

Figure 8: Average and standard deviations (STD) of makespans of 16 test runs for problems
10d, 11, 12, 13, and 14 by varying the number of processing elements

26

References

Azencott, R., 1992a. Parallel simulated annealing: an overview of basic techniques. In
Robert Azencott, editor, Simulated Annealing: Parallelization Techniques. John Wiley
and Sons, New York, pp. 25-35.

Azencott, R., 1992b. Sequential simulated annealing: speed of convergence and acceleration
techniques. In Robert Azencott, editor, Simulated Annealing: Parallelization Techniques.

John Wiley and Sons, New York, pp. 1-9.

Azizi, N. and Zolfaghari, S., 2004. Adaptive temperature control for simulated annealing:

a comparative study. Computers & Operations Research, 31, 2439-2445.

Baker, K., 1995. Lot streaming in the two-machine flow shop with setup times. Annals of

Operations Research, 57, 1-11.

Baker, K. R. and Jia, D., 1993. A comparative study of lot streaming procedures. OMEGA

International Journal of Management Sciences, 21, 561-566.

Bertel, S. and Billaut, J. C., 2004. A genetic algorithm for an industrial multiprocessor flow
shop scheduling problem with recirculation. European Journal of Operational Research,

159, 651-662.

Biskup, D. and Feldmann, M., 2006. Lot streaming with variable sublots: an integer pro-
gramming formulation. Journal of Operational Research Society, 57, 296-303.

Blackburn, J., 1991. Time-Based Competition. Business One Irwin, Burr Ridge, 1L,
Bockerstette, J. and Shell, R., 1993. Time Based Manufacturing. McGraw-Hill, New York,

Botta-Genoulaz, V., 2000. Hybrid flow shop scheduling with precedence constraints and
time lags to minimize maximum lateness. International Journal of Production Economics,

64, 101-111.

Bukchin, J. and Masin, M., 2004. Multi-objective lot splitting for a single product m-
machine flowshop line. I1E Transactions, 36, 191-202.

Chang, J. H. and Chiu, H. N., 2005. A comprehensive review of lot streaming. International
Journal of Production Research,, 43, 1515-1536.

27

Chen, J. and Steiner, G., 1996. Lot streaming with detached setups in three-machine flow
shops. Furopean Journal of Operational Research, 96, 591-611.

Chiang, T. S. and Chow, Y., 1988. On the convergence rate of annealing processes. STAM

journal on control and optimization, 26, 1455-1470.

Chiu, H. N., Chang, J. H., and Lee, C. H., 2004. Lot streaming models with a limited
number of capacitated transporters in multistage batch production systems. Computers

& Operations Research, 31, 2003-2020.

Czech, A., Mikanik, W., and Skinderowicz, R., 2009. Implementing a parallel simulated
annealing algorithm. in the porceeding of Parallel Processing and Applied Mathematics.

Wroclaw, Poland, September 13-16, pp. 146-155.

Defersha, F. M., 2011. A comprehensive mathematical model for hybrid flexible flowshop
lot streaming problem. International Journal of Industrial Engineering Computations, 2,

283-294.

Deutsch, C. V. and Wen, X. H., 1998. An improved perturbation mechanism for simulated
annealing simulation. Mathematical Geology, 30, 801-816.

Feldmann, M. and Biskup, D., 2008. Lot streaming in a multiple product permutation flow
shop with intermingling. International Journal of Production Research, 46, 197-216.

Glass, C., JND, G., and Potts, C., 1994. Lot streaming in three-stage process. Furopean
Journal of Operations Research, 75, 378-394.

Hall, N. G., Laporte, G., Selvarajah, E., and Srikandarajah, C., 2003. Scheduling and lot

streaming in flow shops with no-wait in process. Journal of Scheduling, 6, 339-354.

Janiak, A., Kozan, E., Lichtenstein, M., and Oguzc, C., 2007. Metaheuristic approaches
to the hybrid flow shop scheduling problem with a cost-related criterion. International

Journal of Production Economics, 105, 407-424.

Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., and Werner, F., 2008. Algorithms
for flexible flow shop problems with unrelated parallel machines, setup times, and dual

criteria. International Journal of Advanced Manufacturing Technology, 37, 354-370.

Kratica, J., Tosiee, D., Filipoviee, V., and Ljubie, 1., 2001. Solving the simple plant location
problem by genetic algorithms. RAIRO-Operations Research, 35, 127-142.

28

Kumar, S., Bagchi, T., and Sriskandarajah, C., 2000. Lot streaming and scheduling heuris-
tics for m-machine no-wait flow shop. Computers and Industrial Engineering, 38, 149—

172.

Lee, S.-Y. and Lee, K. G., 1996. Synchronous and asynchronous parallel simulated annealing
with multiple markov chains. IEFE Transactions on Parallel and Distributed Systems,

7, 903-1007.

Liu, J. Y., 2008. Single-job lot streaming in m-1 two-stage hybrid flowshops. European
Journal of Operational Research, 187, 1171-1183.

Liu, S. C., 2003. A heuristic method for discrete lot streaming with variable sublots in a

flow shop. International Journal of Advanced Manufacturing Technology, 22, 662—668.

Marimuthu, S., Ponnambalam, S. G., and Jawahar, A. N., 2008. Evolutionary algorithms
for scheduling m-machine flow shop with lot streaming. Robotics and Computer-Integrated

Manufacturing, 24, 125-139.

Martin, C. H., 2009. A hybrid genetic algorithm/mathematical programming approach to
the multi-family flowshop scheduling problem with lot streaming. OMEGA International
Journal of Management Sciences, 37, 126-137.

Meise, C., 1998. On the convergence of parallel simulated annealing. Stochastic Processes

and their Applications, 76, 99-115.

Oguzc, C., Zinder, Y., Do, V. H., Janiak, A., and Lichtenstein, M., 2004. Hybrid flow-shop
scheduling problems with multiprocessor task systems. Furopean Journal of Operational

Research, 152, 115-131.

Potts, C. and Baker, K., 1989. Flow shop scheduling with lot streaming. Operations Re-
search Letter, 8, 297-303.

Reiter, S., 1966. A system for managing job shop production. Journal of Business, 34,
371-393.

Ruis, R., Antonio, J., and Rodriguez, V., 2010. The hybrid flow shop scheduling problem.
FEuropean Journal of Operational Research, 205, 1-18.

Ruiz, R., Serifoglub, F. S.; and Urlings, T., 2008. Modeling realistic hybrid flexible flowshop
scheduling problems. Computers & Operations Research, 35, 1151-1175.

29

Ruiz, R. and Maroto, C., 2006. A genetic algorithm for hybrid flowshops with sequence
dependent setup times and machine eligibility. Furopean Journal of Operational Research,

169, 781-800.

Sen, A., Topaloglu, E., and Benli, O. S.; 1998. Optimal streaming of a single job in a
two-stage flow shop. Furopean Journal of Operational Research, 110, 42—62.

Sriskandarajah, C. and Wagneur, E., 1999. Lot streaming and scheduling multiple products

in two-machine no-wait flow shop. IIE Transactions, 31, 695-707.

Tang, L., Liu, W., and Liu, J., 2005. A neural network model and algorithm for the
hybrid flow shop scheduling problem in a dynamic environment. Journal of Intelligent

Manufacturing, 16, 361-370.

Tang, L., Xuan, H., and Liu, J., 2006. A new lagrangian relaxation algorithm for hybrid
flowshop scheduling to minimize total weighted completion time. Computers & Opera-

tions Research, 33, 3344-3359.

Trietsch, D. and Baker, K., 1993. Basic techniques for lot streaming. Operations Research,
41, 1065-1076.

Tseng, C. T. and Liao, C. J., 2008. A discrete particle swarm optimization for lot-streaming

flowshop scheduling problem. Furopean Journal of Operational Research, 191, 360-373.

Vickson, R. G. and Alfredsson, B. E., 1992. Two and three machines flow shop scheduling
problems with equal sized transfer batches. International Journal of Production Research,

30, 1551-1574.

Xiao, W.; Hao, P., Zhang, S., and Xu, X., 2000. Hybrid flow shop scheduling using genetic
algorithms. Proceedings of the 3rd World Congress on Intelligent Control and Automa-
tion. Hefei, P.R. China, pp. 537-541.

Ying, K.-C. and Lin, S.-W., 2006. Multiprocessor task scheduling in multistage hybrid flow-
shops: an ant colony system approach. International Journal of Production Research, 44,

3161-3177.

Youhua, W. and Weili, Y., 1996. Adaptive simulated annealing for the optimal design of
electromagnetic devices. IEEE Transactions on Magnetics, 32, 1214-1217.

30

Zandieh, M., Fatemi Ghomi, S. M. T., and Moattar Husseini, S. M., 2006. An immune al-
gorithm approach to hybrid flow shops scheduling with sequence-dependent setup times.

Applied Mathematics and Computation, 180, 111-127.

Zhang, W., Yin, C., Liu, J., and Linn, R. J.; 2005. Multi-job lot streaming to minimize
the mean completion time in m-1 hybrid flowshops. International Journal of Production

Economics, 96, 189-200.

31

	FFSLS-Simulated Annealing-Final Submission.pdf
	1 Introduction
	2 Mathematical Formulation
	2.1 Problem Description and Assumptions
	2.2 Notations
	2.3 MILP Model

	3 Simulated Annealing
	3.1 The Basic Algorithm
	3.2 Sequential Multiple Search Paths SA
	3.3 Parallelizing the SA

	4 Components of the Proposed Algorithm
	4.1 Solution Representation
	4.2 Energy Function
	4.3 Move Operators
	4.4 Cooling Schedule
	4.5 Interactions of Search Paths
	4.6 Steps of the Parallel Simulated Annealing

	5 Numerical Examples
	5.1 Pure vs Hybrid flow-shop lot streaming
	5.2 Computational Performance
	5.3 Improvement through Parallelization

	6 Discussion, Conclusion and Future Research
	References

