A mathematical model and a parallel multiple
search path simulated annealing for an integrated
distributed layout and machine cell formation

Published in 2017 in the Journal of
Manufacturing Systems, Vol. 43, 195 -212

Please cite this article as:

Defersha, F. M. and Hodiya, A. (2017). A mathematical
model and a parallel multiple search path simulated
annealing for an integrated distributed layout and
machine cell formation. Journal of Manufacturing
Systems, Vol. 43, 195-212.

The online version can be found at the following link:

http://www.sciencedirect.com/science/article/pii/S0278612517300407

http://www.sciencedirect.com/science/article/pii/S0278612517300407

A Mathematical Model and a Parallel Multiple Search Path
Simulated Annealing for an Integrated Distributed Layout Design
and Machine Cell Formation

Fantahun M. Defersha®*, Abenet Hodiya®":

“School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
b Current address: PowerCor Manufacturing (Linamar), 545 Elmira Rd N, Guelph, Ontario, Canada N1K 1C2

Abstract

Facility layout problem is a well-researched problem of finding configurations of departments and
machines on a plant floor with the objective of improving material handling efficiency. With this
objective, different techniques of configuring facilities have been documented in literature. Among
them are cellular and distributed layouts. Cellular layouts are applicable in scenarios where demand
and product mix are relatively stable and rational part families/machine cells can be identified. With
this assumption, the literature provides many techniques for their design. Distributed layout, on the
other hand, are recommended in volatile environments where product demand and mix are changing
very rapidly. However, we argue that a real-life scenario may lay within the spectrum of these
two extremes. In this paper, we attempt to bridge this gap by developing a mathematical model
that integrates distributed layout design and machine cell formation with an objective to minimize
a weighted sum of material handling and inter cellular movement costs. Through distributing the
machines over the shop floor, the model attempts to minimize material handling cost. By identifying
possible machine cells and part families, it attempts to minimize inter cellular movements. At the
same time, the model ensures that machines that belong to the same cell are laid out on contiguous
physical locations so that the advantages of cellular manufacturing systems can be fully exploited.
Operations sequence, alternative routing, workload balancing among cells and other pragmatic issues
are also incorporated in the model. We developed a parallel multiple search path simulated annealing
to solve the proposed model efficiently. Several numerical examples are presented to illustrated the
model and the computational performance of the developed algorithm.

Keywords: Mathematical Model; Distributed Layout; Cell Formation; Multiple Search Path
Simulated Annealing; High Performance Parallel Computing.

1. Introduction

Over the past 50 years, group technology and its implementation via cellular manufacturing sys-
tem (CMS) can be regarded as one of the most significant advances in the quest for faster, better,
cheaper production and delivery of manufactured goods (Askin, 2013). It is a production philos-
ophy aimed at increasing productivity by utilizing the similarities of products in their design and

manufacturing attributes. CMS in particular involves (i) grouping parts having similar processing

*Corresponding author
Email address: fdefersh@uoguelph.ca (Fantahun M. Defersha)

Preprint submitted to Journal of Manufacturing Systems April 5, 2017

requirements into part families, and (ii) organizing dissimilar machines along other supporting re-
sources and operators into relatively autonomous cells such that each cell produces a part family
with at most efficiency. Surveys on CMS user industries were conducted by Askin and Estrada
(1999), Hyer and Wemmerlév (1989), Wemmerlév and Johnson (1997) and Wemmerléve and Hyer
(1989) and all found astounding results. In some of these surveys, respondents reported on average
reductions of cycle time by 61%, setup time by 53%, distance/move time by 61%, response time
to customer by 50% and work-in-process inventory by 48%. Improvements in product quality and
job satisfaction, on average, by 31% and 27%, respectively, were also reported along with many
other benefits. To this end, since the early pioneer articles by McAuley (1972), Rajagopalan and
Batra (1975) and King (1980), CMSs have attracted more than 40 years intensive research in various
aspects of their design and operations.

The central theme in the vast majority of those researches has been part family and machine
cells formation. The most influential articles in this area that have received more than 220 citations
each (more than 10 citations per year since their publication as per Google Scholar) include Ballakur
and Steudel (1987), Chandrasekharan and Rajagopalan (1986), Choobineh (1988), Gongalves and
Resende (2004), Vakharia and Wemmerlove (1990) and Wemmerlév and Hyer (1986). Multi-period
cell formation with dynamic reconfiguration have also been proposed in literature. Prominent article
in this area with higher rate citations per year are Defersha and Chen (2006), Kioob et al. (2009)
and Safaei et al. (2008). The determination of the physical locations of the machines and the cells
has also been a subject of research since the 1990’s. To the best of our knowledge, the very first
mathematical model for an integrated facility layout and cell formation was proposed in Alfa et al.
(1992). The model attempts to determine the locations of the machines from a fixed reference point
and at the same time identify the cells to which the machines belong where the areas of the cells are
given a priory. Integrated cell formation and a linear or a u-shaped inter-cellular layout (without
detail layout of machines) was reported in Arvindh and Irani (1994). A mathematical model and
simulated annealing for cell formation and layout design was proposed in Wang et al. (1998) where
the main structure of the cellular system is given. Krishnan et al. (2012) developed hierarchial cell
formation and facility layout procedure. At the top level of the hierarchy, machine cells and part
families are identified. Based on the formed machine cells, a genetic algorithm is used to layout the
machines based on a simple S-shaped space filling curve (the concept of space filling curvets in facility
layout was initially introduced in Bozer et al. (1994)). There are also other numerous studies for
facility layout in cellular manufacturing. The most recent once include Kia et al. (2015), Forghani
et al. (2015) and Mohammadi and Forghani (2016). Kia et al. (2015) developed an integrated
cell formation and layout where the cells can have unequal areas. The cells are restricted to be
rectangular in shape. Forghani et al. (2015) combined the quadratic assignment problem (QAP)
with two-dimensional facility layout problem and then formulate an integrated cell formation and
layout problem and solve the problem using genetic algorithm. It was assumed machines in each cell
are arranged in a single row. This work was later expanded to an S-shaped layout in Mohammadi
and Forghani (2016).

Though cellular manufacturing systems are widely accepted as being superior to traditional pro-
cess layout, there are several studies that challenge those claims (see for example Suresh and Mered-
ith (1994), Flynn and Jacobs (1987) and Morris and Tersine (1990)). Primary concerns regarding

the suitability of CM is its inflexible to changes in demand and workload patterns (Kannan and

Ghosh, 1995). It is assumed that part spectrum and demand are almost stable for a considerable
long planning horizon (2-5 years) (Baykasoglu, 2003). However, when product demand and mix are
volatile, meaningful part families and machine cells cannot be identified. In such scenarios, other
layout methodologies, that do not require machine cells be identified and dedicated to distinct part
families, such as fractal and holography/distributed layouts were proposed with the objective of
minimizing part travel distance/time. The notion of fractal factory originated from Warnecke (1993)
in which the mathematical concept of fractal geometry, used to describe objects that replicate their
whole structure, is applied in managing organizations. The theory suggested that organizations
be structured using fractal units that are self-similar, self-organizing, self-optimizing entities. This
theory was first applied to facility layout by the name fractal layout in Venkatadri et al. (1997)
and Montreuil et al. (1999) where fractal cells (having roughly the same composition of machines,
factories within factory) are to be dispersed in the shop floor. The main objective is to reduce
material movements by forming small multifunction fractal cells capable of processing most of the
demanded products. Other studies on fractal layout can also be found in Aririguzo et al. (2013)
and Saad and M. (2004). Holography layout was introduced in (Montreuil et al., 1993; Montreuil
and Venkatadri, 1991) in which machines are to be randomly dispersed through the shop floor. The
assumption is when product mix changes and new parts are introduced, efficient routes can easily
be identified that minimizes travel distances. The idea of this type of layout get a sizable attention
in literature by a different name, distributed layout (see for instance Urban et al. (2000); Benjaafar
and Sheikhzadeh (2000); Baykasoglu (2003); Lahmer and Benjaafar (2005); Baykasoglu and Gogken
(2010); Hamedi et al. (2012); Nageshwaraniyer et al. (2013); Shafigh et al. (2017)). Urban et al.
(2000) proposed a model in which material flow requirements dictate the placement of machines
without following a functional or a cellular arrangement. Benjaafar and Sheikhzadeh (2000) showed
that creating replicates of the same department and distributing them throughout the plant floor
greatly reduce material handling cost in a stochastic product demand scenario. Lahmer and Benjaa-
far (2005) presented a procedure for the design of distributed layouts in settings with multiple periods
where product demand and product mix vary from period to period. Baykasoglu and Gécken (2010)
conducted a simulation study on distributed and factional layouts and the authors demonstrated
that distributed layout can greatly reduce material handling time. Semi-distrusted layout deign
procedure using genetic algorithm was presented in Hamedi et al. (2012). Nageshwaraniyer et al.
(2013) developed a metaheuristic by incorporating the features of symbiotic and clonal algorithms to
solve a model for distributed layout. Shafigh et al. (2017) develop a linear programming embedded
simulated annealing to solve model that combines distributed layout, dynamic reconfiguration and
production planning.

The assertion from the above literature review is that cellular manufacturing systems are ap-
plicable when demand and product mix are relatively stable, whereas fractal or distributed layouts
are for a very volatile (chaotic as per Montreuil et al. (1993)) environment. However, we argue that
a real life scenario may always lay within the spectrum of these two extremes. In this work, we
attempt to bridge this gap by developing a mathematical model that integrates distributed layout
design and machine cell formation. In developing the model, we consider two primary objectives, one
from each category. The main objective in distributed layout is the minimization of travel distance
of parts by distributing resources to increase their accessibility from different regions of the layout.

Whereas, in cellular layout, the main objective is the minimization of inter-cellular movement by

enabling all parts in a family be processed within a single dedicated cell as much as possible. The
proposed model is aimed at minimizing a weighted sum of these two objectives. Through distributing
the machines over the shop floor, the model attempts to minimize material handling cost. By iden-
tifying possible machine cells and part families, it attempts to minimize inter cellular movements.
At the same time, the model ensures that machines that belong to the same cell are laid out on
contiguous physical locations so that the advantages of cellula manufacturing systems can be fully
exploited. Moreover, through identifying the machine cells over the distributed layout, detail inter-
cellular and intra-cellular layout are obtained. Operations sequence, alternative routing, workload
balancing among cells and other pragmatic issues are also incorporated. The proposed model can
also be used for virtual cell formation and reconfiguration (without physical machine relocation) over
a given distributed layout with a unique advantage of forming each virtual cell with a group of ma-
chines on contiguous physical location. Experimental results show that solving the proposed model
using off-the-shelf optimization packages is difficult even for small size problems. To solve the model
efficiently, we develop a multiple search path simulated annealing. We further enhance the algorithm
using high performance parallel computation. The remainder of the paper is organized as follows.
In Section 2, we present the proposed mathematical model. The solution procedure is in Section 3.
Numerical examples are in Section 4, illustrating the feature of the model and the computational
performance of the proposed algorithm. Finally, in Section 5 are discussion, conclusion and feature

research.

2. Mathematical Model

In this section, we develop a new mathematical model for an integrated distributed layout and
cellular manufacturing systems design. In doing so, we draw concepts from (i) irregularly shaped
departments facility layout, (ii) distributed layout and (iii) machine cell formation. As it is the case
in many studies (see for example Baykasoglu and Gogken (2010); Hamedi et al. (2012); Lahmer and
Benjaafar (2005); Rosenblatt and Golany (1992)), we assume a rectangular factory floor divided into
grids in which machines are separated by one unit distance. Given this assumption, the problem

description, notations and mathematical formulation are detailed in the following subsections.

2.1. Problem description:

Consider a manufacturing facility processing P products using M machines installed on L loca-
tions (where L = M). Currently, it is assume that identical or similar machines are located close to
each other forming functional departments whereas each individual machine in the systems is given
a unique identifier (index) as m = 1, m = 2, ---, m = M. A product p can be processed along
R, alternative routes where an alternative route is defined as a sequence of machines required to
process a product from raw material to a finished good. For example, alternative routes for a typical
product can be given as Route-1: m =2 - 4 — 5 — 3, Route-2: m =2 — 4 — 7, and Route-3:
m = 2 — 4 — 8. This may be the case where the last two operations on machines 5 and 3 in Route-1
can be combined and performed on machine 7 if Route-2 is chosen, or on machine 8 if Route-3 is
chosen. Machines 7 and 8, in Route-2 and -3, respectively, may be two identical or similar machines.
The production volume of a product in the planing horizon can be split among its alternative routes.
Given L locations as shown in Figure 1-(a), the problem is to disaggregate the functional depart-

ments and distribute the machines (as shown in Figure 1-(b)) and identify machine cell (as shown in

4

Figure 1-(c)) in order to minimize the cost of material handling and the total number of inter-cellular
movements by all the parts. A particular location can be a member of a cell if it is adjacent (share
boundaries) with one or more locations in that cell. A cell should not have a disjoint sets of locations
(i.e. a single closed-loop boundary can be identified that contains all the locations of this cell and
none from other cells). This is to ensure that machines of a particular cell are laid out in contiguous
physical locations. Each machine has a capacity expressed in hours during the planning horizon and
therefore cannot be assigned a workload more than its capacity. The number of locations (machines)
that can be added to a particular cell has both lower and upper limits and the workload among the
cells need to be balanced. The notations used and the proposed mathematical model are presented

in the following subsections.

52 N
’ \
(L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 \

M8 M25 |M17 |Ml14 |MI11 M8 M25 |M17 |M14 (MI11
L6 L7 L8 L9 L10 L6 L7 L8 LY L10 L6 L7 L8 LY L10
M19 |M16 |M21 |M4 M2 M19 |M16 |M21 |[M4 M2
L11 L12 L13 L14 L15 L11 L12 L13 L14 L15 L11 L12 L13 L14 L15
M6 M1 M22 |M12 |M7 M6 M1 M22 |MI12 M7
L16 L17 L18 L19 L20 L16 L17 L18 L19 L20 L16 L17 L18 L19 L20
M13 |M3 M15 |M9 M5 M13 |M3 Mi15 | M9 M5
L21 L22 L23 L24 L25 L21 L22 L23 L24 L25 L21 L22 L23 L24 L25
M24 |M10 |M23 |MI8 |M20 M24 |MI10 |M23 |[M18 |M20
() (b) (©
L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5
M8 M25 |M17 |M14 M1l M8 M25 (M17 |M14 M1l M8 M25 |M17 |M14 |MIl1
L6 L7 L8 L9 L10 L6 L7 L8 L9 L10 L6 L7 L8 L9 L10
M19 |Ml6 |M21 |M4 M2 M19 |Ml16 |M21 |M4 M2 M19 |M16 |M21 |M4 M2
L11 L12

N

L16 W L18 W L20 L17 [L18 W L.20 % L17 |L18 L20
Mi3 Mi5 M5)/ M3 M5 M5 M3 |MI5)/ M5
121 |L22 %f L24 [L25 L21 % L24 [L25 g/ 122 L24 [L25
M24 |M10 M8 | M20 M24 /Mls M20 /Mlo Mi8 |M20

(@) (e ®
L1 L2 L3 L4 LS L1 L2 L3 L4 L5 L1 L2 L3 L4 L5
M8 M25 |M17 |M14 |M11 M8 M25 |M17 |Ml14 |MI11 M8 M25 |M17 |Ml14 |MI1

L6 |L7 é/ LY [LI0 L6 |L7 %/ Ly [LI0 L6 [L7 [L8 [L9 [L10

M19 |Mi6 /w M2 MI19 |M16 M4 M2 MI19 |MI6 |M21 M4 |M2

L (KB (W4 L1s L1 g/z’ L13 y(L15 L1t [Li2 [E13 L4 [L1s

M6 / M22 M7 M6 M22 M7 M6 M1 |M22 M1z |m7

s Ll |Lis %/ L20 % L17 [L18 L20 L6 o7 (L8 [L19 [L20

/ M3 |MI5 M5 M3 |MI5 M5 M13 (M3 |M15 M9 |ms
y

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
i L14 [LI5 L1l K ga/ L4 |L15 L1l %{ L4 [LI5 I
‘ M6 |MI M7 M6 / MI12 |M7 M6 MI12 |M7 ‘
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

%/ 122 W L24 |L25 122 |L23 5//,{/ L25 21 |22 (123 24 |i2s
K / M10 / M8 |M20 M10 |M23 M20 M24 |M10 [M23 [m1s |m20)
N (€3] (h) @) ;

Figure 1: A typical machine distribution and a cell formation process based on location adjacency

2.2. Notations
Input Data and Indexes

M Number of machines where machines are indexed by m = 1,2, ..., M.
P Number of products where products are indexed by p=1,2,..., P.
R, Number of alternative processing routes for product p where alternative processing routes

are indexed by r =1,2,..., R).

Tp,m’

LB

UB

Number of operations of a product p along processing routes r where operations are

indexed by j =1,2,..., Jp,.

The index of the machine type used to process operation j of product p along processing

route r.

Processing time in minutes of operation j of product p along processing route r (on

machine M;y,).

Number of locations where locations are indexed by [= 1,2, ..., L.
Number of cells where cells are indexed by ¢ =1,2,...,C.
Minimum number of locations (machines) in a cell c.

Maximum number of locations (machines) in a cell LB = 1.

Same us UB where the order in which the locations are added to a cell is indexed by
i=1,2,...,1 = UB. (Note: Locations are added to a cell in certain order for the sake
of mathematical formulation. For example, one may say location [is the i*" location to
be added to cell c. However, the final solution is not impacted by the order in which

locations are added to a cell.)

Intercellular workload balancing factor.

A binary data which equals to 1 if location [and I” are adjacent, 0 otherwise;
Material handling distance between location [and I’.

Material handling cost per unit distance for a single product p.

Intercellular movement cost per a single product p .

Demand for product p during the planning horizon.

Capacity of machine type m in hours during the planning horizon.

Objective function weight factor for the total material transportation cost.
Objective function weight factor for the total intercellular movement cost.

Large positive number.

Binary variables:

am,l

Tl

nj’p?’r’C

qlyic

Ym,c

A binary variable which equals to 1 if machine m is in location I, 0 otherwise;
A binary variable which equals to 1 if location [is in cell ¢, 0 otherwise;

A binary variable which equals to 1 if operation j of product p along process plan r is

processed in cell ¢, 0 otherwise;

A binary variable which equals to 1 if location [is the i*" location to be added to cell ¢,

0 otherwise; (also see the definition of the notation I)

A binary variable which equals to 1 if machine m is in cell ¢, 0 otherwise;

Continuous variables:

Qp.r The production sublot size of product p along process plan r.

~

dpmj

process plan 7 are processed and multiplied by the sublot size oy, .

Qj@nc
a cell.

2.8. Model Formulation

The distance between the locations where consecutive operations of product p along

The operation of the production sublot size of product p according to process plan r in

Based on the problem description and notations, the mixed integer non-linear mathematical

model for integrated facility layout and cell formation is presented below.

Minimize:

z = 0121 + Og29

Where:

Subject to:

Tic < Z Ty c 3 v(la C)

{l'|Nl,l’:1}

i—1
Wic< Y. D awes Yic)|i>1

=1 {l'|N, y=1}

c I
YN aie=1; V()

c=1i=1

I
Z Qlic = Tl s V(l, C)
i=1
L
Y qie<1; V(o)
1=1

L
LB < thc <UB; Y
=1

C
Y ame=1; V()
c=1

Qm,l + Tl < Ym,c +1 ; V(Z, m, C)

L

Sami=1: (m) (10)
=1

M

Z Qm,| = 1) V(D (11)
m=1

C
Zym,c =1; V(m) (12)
c=1

Niprec = Ym,c 3 V(j,p, T, C) | (m = Mj,p,r) (13)

>y Ty < Kpi V(m) (14)
v(j7p7r)|Mj,p,’r:m

P R Jpr TP R Jpr C
DD Upre= 5D > DD Ypres V(o) (15)
p=1r=1 j=1 p=1r=1j=1c=1
Qj,p,r,c Z ap7T : Tp,’l",j - M(l - ym,c) ; v(j7 p? T? C) | (m = Mj,p,T) (16)
ijpv"‘zc S apur ' Tp,'r’,j + M(l - ym7c> 7 v(]? p? T? C) ‘ (m = MjJ’,T) (17)
Qj,p,r,c <M- Ym,c 5 v(j,P, T, C) ‘ (m = Mj,p,r) (18)

dp,rj > By % apy + M(amg + app) — 2M ;
V(j,p, rl, ll) ‘ (] < Jp,m m = Mj,p,r &m' = Mj-i—l,p,r) (19)

dprj < Epp X apy — M(amg + anep) +2M 5
VG, 0, LU) (G < Tpyry m= My & m' = Mjy1p,) (20)

Rp
Y apr=Dy; V(p) (21)
r=1

Am,ls Tles Ymer Miprer & Qie are binary. (22)

The objective function in Eq. (1) is a weighted sum of the number of the material handling cost
(z1) between all pairs of locations and intercellular movements cost (z2). The first term represents
the sum of the costs for the distances travelled from machine to machine by all the parts while being
processed from raw pieces to finished goods. As it can be seen in Benjaafar and Sheikhzadeh (2000),
this cost term can be minimized even without cell formation by simply distributing the machines over
the shop floor. Thus, this term is well aligned with the objective of distrusted layout design. The
second term of the objective function measures how well the system is disaggregated into relatively
independent cells which conforms with the main objective of cellular manufacturing system design.
Hence, in proposing this model, we are attempting to unify the concepts of distributed layouts and
cellular manufacturing systems with the objective of handling manufacturing scenarios that may not
be well addressed by either layout concepts independently.

The constraint in Eq. (2) states that a particular location [can be in cell ¢ if it is adjacent
to one or more locations that belong to the same cell c. However, this constraint alone will not
prevent a cell from having two or more non-adjacent sets of locations as long as each set has more

than one location. In order to model the constraints that will prevent a cell from being disjoint, we

assume locations are added to a cell in a certain order as defined by the variable ¢; ; . and a location
can be added to a cell if it is adjacent to one or more locations that are already added to the cell.
This is enforced by the constraint in Eq. (3) and is illustrated in Figure 1(d)-(i). For example, in
Figure 1(d), location L18 is assumed to be the first location being added to a cell. The potential
locations that can be the second addition to the cell are L13, .17, L19 and L23 as indicated by
the cross-hatch. Let Location L17 is the 2nd location to be added to the cell as shown in Figure
1(e) where the potential location for the 3rd addition are cross-hatched. This process continue in
a similar fashion and terminates when the number of locations added to a cell are within the lower
and upper limits. Eq. (4) states that a particular location [will be added exactly to one cell ¢ in
one addition step i. The logical relationship between ¢;; . and z;. is enforced by the constraint in
Eq. (5). In a particular addition cycle of a location to a cell, at most one location can be added
to the cell as stated by Eq. (6). The constraint in Eq. (7) is to enforce the lower and upper limits
on the size of a cell. A location [can be added to exactly one cell and this is enforced by Eq. (8).
The constraint in Eq. (9) enforces a logical relationship among the binary variable a,,;, z;. and
Ym,c- A machine can occupy exactly one location, a location can be assigned to exactly one machine,
and a machine can belong to exactly one cell as enforced by Egs. (10), (11) and (12), respectively.
The constraint in Eq. (13) defines the logical relationship between the binary variables 7;, . and
Ym,c. Machine capacity constraint is enforced by Eq. (14). The constraint in Eq. (15) is to enforce
workload balancing among the cells where the factor T € (0, 1) is used to determine the degree of the
workload balance. This constraint is similar to the workload balancing constraint appeared for the
first time in Defersha and Chen (2006). If the number of cells is C', the minimum allowable workload
of a cell is % x 100% of the total workload of the systems in terms of processing time. If T is chosen
close to 1.0, the allowable workload of each cell will be close to the average workload given by 1—80%
of the total workload of the systems. The constraints in Egs. (16), (17) and (18) are to calculate
the workload in cell ¢ because of the j** operation along the r** processing route of product p. The
total distance traveled by product p along its route r for the processing of its consecutive operation
j and j + 1 is calculated by Eqgs. (19) and (20). The constraint in Eq. (21) states that the sum
of the sublots of product p along all of its processing routes should be equal to its total production

demand for the planning period. The integrality constraints are in Eq. (22).

2.4. Linearizing the Model

The proposed mathematical model is non-linear because of the absolute value in the objective
function. This term can be linearized in two steps. First, the absolute value | j41pr.c — Njpre |
is substituted by a binary variable z;, .. with the additional constraints in Eqgs. 23-25. Second,
the resulting quadratic term (o, - zj,pmc) is replaced by a continuous variable wj . with another
set of additional constraints given in Eqgs. 26-28. Here it is important to note that absolute value
| Nj+1pre — Njpre | can be equal to 1 for at most one value of c¢. Hence, the subscript ¢ can be
(and should be) dropped from 2y, , . and wj, . and these variables have to be replaced by z;, , and

wjpr, Tespectively, in Egs. 23-28.

77j+1,p,r,c - njupvr)c S Zj7p1r7c ; v<j7p7 T’ C) ’ (-7 < J 77’) (23)
- nj+17p7rvc + T]j,p,r,c S Zj,p,r‘,c ; v(]? p? T’ C) | (.] < J 7T) (24)
Zj,p,T',C G {1’ 0} ; \v/(j7 p7 T? C) | (] < J 7T) (25)

wj7p77‘7c > ap7r + M ’ Zj,pm,c - M ; V(],p, T? C) | (j < J 7T) (26)

wj,p,r,c g ap,r ; v(j?p7r7 C) ‘ (] < J 7"‘) (27)

wj,p,T,C S M ’ zj1p7T7c ; v(]7p7 r? c) | (] < pr'r) (28)

3. Solution Procedure

Despite the importance and magnitude of the effort that has been put into computational science,
in many ways the construction of new algorithms remains more of an art than a science (Knoll et al.,
2005). Preexisting theories give little or no guidance for the choice of solution representation and
the design of search operators for new problems (Moraglio, 2007). In light of these and other similar
assertions from literature and based on our experience, we argue that a new problem usually requires a
new design of solution representation, initialization technique, implementation strategies, and search
operators. Many of these important components have been detailed in the following subsections in

relation to developing a simulated annealing for the proposed mathematical model.

3.1. Solution Representation

Solution representation is the first and the most important step in applying a metaheuristic algo-
rithm. It must be designed in such a way that all feasible solutions are accessible to the search process
and model constraints are encoded in it. The solution representation designed to solve the proposed
model is depicted in Figure 2. The left-hand-side segment (LHS-Segment) encodes the cell formation
through assigning a cell index ¢; € {1,2,---,C} to each location [. This encodes the variable z.; and
the constraint in Eq. (8). The constraints in Eqgs. (2)-(7) are being taken care by the initialization
process and the search operators as explained in the subsections 3.2 and 3.4. The middle-segment
(MDL-Segment) encodes the distributed layout design aspect of the mathematical model by assign-
ing a location index [, € {1,2,---, L} to each machine m. In this segment, {l1,l2,l3,- - ,lps=1} is
a permutation of the indices of M = L locations. Hence, an index of a particular location appears
exactly once to grantee the constraints in Eqgs. (10) and (11). The RHS-Segment encodes the sizes
of the sublots ay,,. The element 60, , takes a binary value to indicate whether route r of product p
is used or not. In this segment, the summation Zfﬁl Op, for each p should be kept to be greater
or equal to 1 to ensure that at least one route is opened. The size of a sublot of product p along
one of its route r is calculated using Eq. (29). This equation along with the requirement on the
RHS-segment that Zfﬁl 0y > 1 grantees the constraint in Eq. (21).

ep,r X /87“
R
Zr/p:1(9p,r’ X Bp,r’)

x Dy, (29)

Qpr =

3.2. Initialization

Initializing the LHS-Segment: Randomly assigning a cell index ¢; € {1,2,--- ,C} to each
location [in the LHS-Segment of an initial solution will not provide a layout with cells that can be
demarcated from one another as shown in Figure 3-(f). In order to ensure that an initial solution
has cells that can be demarcated from one antother, we develop a simple initialization procedure.
The pseudocode of this procedure is provided in Pseudocode 1 and its implementation is exemplified

in Figure 3 where a total of 56 locations are to be demarcated into five cells. First, we arbitrarily

10

LHS-Segment MDL-Segment RHS-Segment

=1 |[=2 |[=3 =L [m=1|m=2|m=3 m=M
)) p=1 |p=2 | p=3) p=P
C2 C3 CL ‘ll lZ l} lM

CI takes the index of the
cell to which location /
is added

details for product p =1

p=1
Im takes the index of the
location on which machine m r=1 r=2 r=3 r=Ri
is installed e oo
o11 \‘ pri N 0.2 | prz | 613 ‘ pLs3 OLR | PLRI
6. r takes a birany value 0 or 1 to indicate /3, takes a real value between 0 and 1
wether route 7 of product p is used or not to indicate the size of the sublot
. along route r S

Figure 2: Solution representation for an integrated cell formation and distributed layout

assign five locations as the starting locations for the five cells as shown in Figure 3-(a). This is in
line-(3) of Pseudocode 1 after setting a variable Feasible = False. In the first execution of the
“for-loop” (i.e. Iteration 1) from line-(5), the first location that can be added to a cell is location 3
as it is adjacent to location 11 that has already been added to cell 5 in a previous iteration (in this
case iteration-start). Location 4 cannot be added to a cell as it is not adjacent to any location that
has already been added to a cell in a previous iteration. This process continues up to [= 56 and
the result from this iteration is shown in Figure 3-(b). Since all the locations are not yet added to
the cells, the “while-loop” in line-4 calls for a second execution of the inner “for-loop” (i.e Iteration
2). Now let us examine this iteration when [= 35 (see Figure 3-(c)), in which case the location is
adjacent to two locations that were added to two different cells in the previous iteration (location 35
is adjacent to location 34 in cell 4 and to location 36 in cell 2). At this stage of the current iteration,
locations 17 and 26 have been already added to cell 4 making the total number of locations added
to this cell to be 6, and location 28 has been already added to cell 2 making the number of locations
added to cell 2 to be 6 as well. Since the number of location so far added to these cells are equal,
location 35 can be added to either cell 4 or cell 2. This tie is broken arbitral and the location is
added to cell 2. When this iteration continues and reaches | = 42, more locations have already been
added to cell 2 than to cell 4. Hence, location 42 is added to cell 4. This process continues to provide
the complete result of Iteration-2 as shown in Figure 3-(d). During the third iteration (see Figure
3-(e)), locations 1 and 5 can only be added to cell 5, locations 6 and 8 to cell 1. Location 29 can be
added either to cell 1 or 2. However, cell 2 has the smaller number of locations added so far than
cell 1, hence location 29 has to go to cell 2. By the same analysis, location 50 is added to cell 4.
At Iteration-4, all the locations are added to the cells as shown in Figure 3-(f) at which point the
inner “while-loop” exits, sending the control to line-16 (see Pseudocode 1). The number of locations
added to each cell are compared to the set lower and upper bounds (LB and UB). If one or more
cells do not meet this condition, the control will go back to line-3 and the whole process repeats. If
all the cells generated respect the bound limits, a solution can be initialized by coping the the final
location-cell assignments to the LHS-Segment as shown in Figure 3-(g).

Initializing the MDL- and RHS-Segments: Unlike that of the LHS-Segment, the initial-

11

Pseudocode 1: LHS-Segment Initialization

1 set Feasible = False

2 while Feasible=False do

3 start Arbitrarily identify C locations as a starting locations for the formation of the C

cells.

4 while there are locations that are not yet assigned to a cell do

5 for | =1 to L do

6 if location [not yet assigned to a cell then

7 Identify all the cells that location [can be added

8 /* Before the current executions of this "for loop", if a cell has
one or more locations already added to it that are adjacent to
location [, then this cell is a potential cell to which location !
can be added. Locations added to a cell in the current execution
of this "for-loop" are not used for adjacency test to add a new
location to this cell, but are added to the locations count which
can be used for tie braking in the following "if-statement". */

9 if there are one or more cells to which location | can be add then

10 Assign location [to the cell that has the smallest number of locations

assigned to far; break ties arbitrarily.

11 Increase the number of locations assigned to this cell by one.

12 end

13 end

14 end

15 end

16 if the number of locations added to cell each is within the lower and upper limits then

17 set Feasible = True

18 end

19 end

izations of the MDL- and RHS-Segments are quite intuitive. The MDL-Segment can be initialized
by randomly permutating the indices of M = L locations and copy the resulting permutation,
[l1,02,13, - |l # LY (m £ m') & 1y, € {1,2,--+, L}], to this segment. RHS-Segment is initial-
ized in such a way that the 6 and the § corresponding to each route r of a product p are assigned (i)
a binary value 0 or 1 and (ii) a real value between 0 and 1, respectively. In this initialization process,
corresponding to each product p, one has to make sure that at least one of its 8’ is set to 1 to ensure
the opening of at least one route for this product. The overall initialization procedure takes only few
minutes to generate several thousands of starting solutions for large size problems. Hence, it incurs

no computational burden on the algorithm.

3.3. Evaluation

The purpose of evaluation in a metaheuristic is to measure the relative goodness of candidate
solutions with respect to the objective function and the constraints of the model to be solved. The
solution representation along with the initialization procedure discussed in the previous subsections
and the search operators (see subsection 3.4) satisfy many of the model constraints. The only
constraints that may be violated by a randomly generated solution are the machine capacity and the

workload balancing constraints in Eqgs. (14) and (15), respectively. Hence, a measure of goodness

12

2 3 4 s e 7 I8 T 2 [3 [+ [s J6 [7 |8 T 2 B]+ s 6 [7 s N
([cs Jes s Cl \
N CRNECIN I [ER TR TR FER S o [0 Jit |2z [13 |14 [15 |16 o [0 | |12 |13 |14 [i5 Jie !
C5 cs fes s 1 cs Jos |es |cs Jos e Ja |a
‘ 17 |18 [19 |20 |21 |22 [23 Jo4 17 |18 [19 |20 |21 |22 23 |24 17 [18 1o Ja0 |ar 22 |23 |24 ‘
| Cl & [ST (S [e] c4 |c5 |es Jos Ja Jer ja | |
bofas f26 |27 28 [20 [30 [31 |32 25 |26 [27 |28 |29 [30 [31 |32 25 26 [27 |28 |20 [30 31 [32 !
‘ c4 ci e o |os |ea c o Ja ‘
VBT [[3e [[[30 [e0 33 J34 [35 [36 (37 [38 [39 40 33 [32 35 [36 [37 [38 [0 J4o |
I (<] c4 Jca C2 C3 c4 |ca |co]e2 c3 |
a1 |42 |43 [a& 45 |46 [T |48 ar |42 (43 a4 |45 |46 [47 |48 ar [2 [43 |44 |45 [46 |47 |48
‘ 2 C3 c4 @ |2 Je2 |3 Jo3 |3 C4 c2 |2 |c2 Jo3 |3 |3 ‘
bofe T [so [st [s2 |53 [s4 [55|s6 49 [50 [s51 52 [s3 [s4 [55 |56 49 |50 [51 |52 [53 |54 [55 [s6 }
‘ 2 c3 C2 C3 ‘
‘ (a) Start (b) Iteration-1 (c) Iteration-2 up to /=35 ‘
| |
‘ T 2 B 1+ [5 6 [7 |8 T 213 12 1 |6 F _Js T]2 3 14 |5 [6 |7 |8 ‘
‘ cs Jes s C1 cs Jos |cs |cs Jos |a Jar |a cs |cs |cs |cs | s el | | ‘
ofo o i 12 i3 [14 [i5 [ie 9 |10 |11 |12 [13 Ji4 |15 |16 9 [0 [|1z |13 |4 [15 |16 I
‘ cs |es o5 |os s el Ja Ja cs |c5 |cs |cs [cs Jar fel |cl cs |cs |cs |cs | cs Jer |c1 el ‘
17 [18 Jio J2o |21 227 |23 |24 17 |18 [19 |20 [ar |22 [23 |24 17 Jis 19 [20 [ar |22 [23 |24
volea Jos os Jes |er fear Jer et c4 Jcs |cs |cs Jei je el |c1 c4 Jcs |cs |cs Jei je1 |c1 |c1 i
25 J26 |27 |28 |20 [30 |31 [32 25 26 J27 [28 [29 [0 [31 |32 25 26 J27 287 29 [0 [31 |32
‘ c4 fca |5 |e2 cr et Ja c4 |ca fes Jea Je2 Jar o |a c4 |ca |es Je2 |e2 Jer |a |a ‘
I3 34 I35 e 17 38 [0 [4o 33 [34 [35 |36 [37 |38 |39 |40 33 (34 I35 |36 [37 38 [39 |40 !
! c4 |c4 |2 Je2 J€2 |C3 o3 |43 c4 |c4 Jez |2 €2 |3 |3 |C3 c4 |c4 Je2 |c2 €2 €3 |c3 |C3 !
‘ a1 [42 [43 |44 |45 [46 |47 |48 a1 |42 43 [a4 |45 J46 |47 a8 ar |42 43 [a4 |45 46 |47 |48 ‘
v s |4 Je2 e |e2 o3 |3 [c3 c4 |C4 Je2 |2 |2 |e3 |c3 |c3 c4 |C4 Je2 |2 |2 |e3 |c3 |e3 I
oTao [0 st 52 [5B[4 55 [s6 49 50 I51 |52 [s3 |54 [55 |56 49 [s0 51 [52 [s3 |54 [55 |se !
‘ c4 2 |2 Je2 |3 fes o3 c4 Jaar Je2 |2 |2 Ja3 |3 |e3 c4 | | |2 @2 Ja | | ‘
! (d) Iteration-2 completed (e) Iteration-3 (f) Iteration-4 !
! LHS-Segment !
| |
|[1=1 |1=2 |1=3 |I=4 |I=5 |i=6 |I=7 |I=8 |I=9 |I=10 1=51|1=52| 1=53| I=54| =55 | I=56 |
| oo o0 |
il 5 5 5 5 5 1 1 1 5 5 2 2 2 3 3 3 i
\\ (g) Initialization /J

Figure 3: Initialization of the LHS-Segment where an iteration is a single execution of the “for-loop” of Pseudocode 1

of a solution should involve penalty terms proportional to any violations of these constraints. This
measure of goodness is give in Eq. (30). In this equation, the first two terms are the two terms of
the objective function of the mathematical model. The last two terms are penalties for violations of

machine capacity and workload balancing constraints, respectively.

E = 0121 + 0929 + O323 + O424 (30)
Where:

Jp,r—1 Ry

P
:Z ZFdep”

p=1 j=1 r=1

c P
22 = (5) Z Z : (Voxapr | (Mj+1prme = Nipire) |)

M
23:Zmax 0, Z apr - Tpri| — Km
m V(dp,r) My pr=m
C T P R Jpr P R Jpr
2= max | 0, gZZZZQW 2> Ynre
c p=1r=1 j=1c'=1 p=1r=1 j=1

In order to evaluate the measure of goodness given in Eq. (30), it is not necessary to explicitly

decode all the variable 7;, ,, dp,r,jv and €;, . from a solution under consideration and apply

13

the equations. Instead, one can take advantage of the structure of the solution representation and
compute the measure without explicitly decoding these variables as shown in Pseudocodes 2 and 3.
In these pseudocode, it is assumed that a solution X is a data structure that can be dot operated to
access its member data. For example, the index of the cell ¢; to which location [is assigned and the
index of the location [,,, on which machine m is installed can be accessed from this solution using a dot
operator as X.LHS-Segment.Location[l].c; and X.MDL-Segment.Machine[m].l,,, repsectively
(see Figure 2 for the solution strucutre). Similarly, X.RHS-Segment.Product[p].Route[r] can
be dot operated in order to access the values of 6, and §.. With this assumption, the pseudocodes
for evaluating Eq. (30) are partly explained as follows.

Pseudocode 2 is for calculating the costs of material handling z; and the inter cellular movement
zo. In lines 6 and 7 of this pseudocode, two locations (I and !) of two machines (M, , ; and My, i11)
required to process two consecutive operation (j and j + 1) along an opened route r of product p
are obtained from a solution. Then, in line 8, the material haling cost between these two locations is
recursively added to z;1. In lines 9 and 10, the cell indices (¢ and ¢’) are obtained in which these two
consecutive operations are performed. If these two indices are not equal, then intercellular movement
cost is recursively added to zo in line 12. The machine capacity and workload balancing constraints
violations are computed in Pseudocode 3. In line 10, the load to process operation j of product
p along an opened route r is recursively added to the total system load. This operation is to be
performed on machine M, , ; and the load on this machine is incremented in line 10. The location
[on which this machine is installed is obtained in line 12 and, in line 13, the cell index ¢ to which
this location is assigned is obtained. Then, the load on this cell is incremented. Once the loads on
the system, on each machine and on each cell are calculated, the violation of machine capacity and

workload balancing constraints are recursively computed in lines 22 and 28, respectively.

Pseudocode 2: Calculating z; and zo of a solution X
Input: Using Eq. (29), calculate oy, for each p € {1,2,--- ,P} and r € {1,2,--- ,R,}

1 for p =1to P do

2 for r =1to R, do

3 if X.RHS-Segment.Product[p].Route[r].f, =1 then
4 for j =1 to J,, —1do

5 | = X.MDL-Segment.Machine[M,,, ;].lm

6 I = X.MDL-Segment.Machine[M,, , i1 1].lm,

7 21 =21+ (Fp X Eu/ X Ocpr)

8 ¢ = X.LHS-Segment.Location|[l].¢

9 ¢ = X.LHS-Segment.Location[l'].¢

10 if ¢ # ¢ then

11 ‘ 29 =20+ (Vp X apy)

12 end

13 end

14 end

15 end

16 end

17 /* For many of the notation, see Section 2.2 and Section 3.1. %/

14

Pseudocode 3: Calculating z3 and z4 of a solution X
Input: Using Eq. (29), calculate oy, , for each p € {1,2,--- ,P} and r € {1,2,--- , Ry}

1 float LoadOnMachine[M] /* Load on machine m=1,2,--- , M */
2 float LoadOnCell[C] /* Load on cell ¢=1,2,---,C %/
3 float TotalSystemLoad; /* Total workload on the system */
4 /* Calculate the load on each machine, the load on each cell, and the total

workload on the system */

5 for p =1 to P do

6 for r =1to R, do

7 if X.RHS-Segment.Product[p].Route[r].f, =1 then

8 for j =1 to J,, do

9 TotalSystemLoad = TotalSystemLoad + T}, ; X o

10 LoadOnMachine[M,, , ;| = LoadOnMachine[M,, , ;] + Tprj X apr
11 [= X.MDL-Segment.Machine[M,,, ;].l,,

12 ¢ = X.LHS-Segment.Location[l].¢

13 LoadOnCell[c] = LoadOnCell[c] + T}, ,j X oy r

14 end

15 end

16 end

17 end

18 /* Calculate machine capacity constraint violation */

19 for m = 1 to M do
20 if LoadOnMachine[m| > K, then

21 z3 = z3+LoadOnMachine[m| - K,

22 end

23 end

24 /* Calculate workload balancing constraint violation */

25 for ¢ =1 to C do
26 if LoadOnCell[c] < %xTotalSystemLoad then

27 z4 = z4+ (% x TotalSystemLoad — LoadOnCell[c])

28 end

29 end

30 /* For many of the notation, see Section 2.2 and Section 3.1. */

3.4. Search Operators

A typical solution encodes the decisions regarding the boundaries of the cells, the distribution of
machines on shop floor, and the sizes of the sublots of the products. Thus, in searching the solution
space, operators are needed that can alter the traits of a solution that determined these interre-
lated decisions while respecting model constraints. These operators are described in the following

subsections.

3.4.1. Cell Boundary Perturbation Operator

Cell boundary perturbation operator (CBPO) modifies the boundaries of the cells by changing
the cell assignments of locations. CBPO, while achieving boundary perturbation, is also required
to ensure that all the locations of a particular cell are always within a single closed-loop boundary
and respect the lower and upper bounds on the sizes of the cell. In applying this operator, the

information in the LHS-Segment of the solution is first mapped into a rectangular greed of the specific

15

layout problem being solved. Once the perturbation operator is applied, the resulting cellular layout
is copied back to the LHS-Segment. In order to describe this operator, additional notations and
definitions are given here under where the examples are based on Figure 4 in which there are five
cells with their sizes being limited between LB =4 and UB = 6.

Additional Notations and Definitions (Refer to Figure 4-(a) for the examples):

NALOC(l) Number of Adjacent Locations to location ! that are Outside the Cell to which location
[belongs. If NALOC(l) > 0, location [in a given cell shares boundary with other
location(s) in another cell(s). E.g., NALOC(18) = 0; NALOC(17) = 2.

NALWC(l) Number of Adjacent Locations to location [that are Within the same Cell to which
location ! also belongs. E.g. NALWC(18) = 4; NALWC(19) = 1.

NL(¢) Number of locations in cell c¢. E.g. NL(1) = 5, NL(3) = 6.
Donor A donor cell is a cell that release a location for an adjacent cell when CBPO is applied.
Recipient A recipient cell is a cell that receive an additional location from an adjacent cell when

CBRO is applied.

Donatable A location is said to be debatable if it can be donated to an adjacent cell without
causing the donor cell be fragmented. A cell is fragmented if a single closed-loop
boundary cannot be identified that contains all member locations of this cell and none

from other cells.

Bond(l, ¢) The set of edges that a given location [in cell ¢ is adjacent with other locations that
belong to the same cell ¢ where an edge is identified as North(N), East(E), West(W)
or South(S) edge. E.g. Bond(1, 1) = {E}; Bond(3, 1) = {S, W}; Bond(18, 3) = {N,
E, S, W}; Bond(1, 2) is undefined since location 1 is not in cell 2.

NE(I) The location situated in the NE corner of location I. E.g. NE(6) = 2; NE(13) = 9;
NE(3) is undefined.

NW(1) The location situated in the NW corner of location . E.g. NW(7) = 1; NW(24) = 18;
NW(16) is undefined.

SE(1) The location situated in the SE corner of location [. E.g. SE(13) = 19; SE(14) =20;
SE(20) is undefined.

SW(1) The location situated in the SW corner of location I. E.g. SW(13) = 17; SW(14) =
18; SW(16) is undefined.

Given the above definitions, Table 1 provides the different sets of conditions for a location to be
donatable. For location [in cell ¢ to be donatable, condition Set-0 and one of the conditions set from
the remaining 9 sets must be satisfied. Condition Set-0 states that for a location to be donatable, (a)
it must lie along a cell boundary and be adjacent to another cell (mathematically NALOC(I) > 0),
and (b) the size of the donor cell should be higher than the lower bound (i.e. NL(c) > LB). Give

the conditions in Set-0, if one of the conditions set from Set-1 to Set-9 is also satisfied, the donor

16

cell will not be fragmented if the location is donated to a recipient cell. For a cell to be recipient, it
should have lesser number of locations than the upper bound (NL(¢') < UP) and be adjacent to a
donatable location from the donor cell. Figure 4 illustrates examples of allowable and not allowable
boundary perturbations. For example, the move from (a) to (b) is allowed since location L6 from
the donor cell C5 satisfies conditions Set-0 and Set-1 and the recipient cell C1 satisfies the conditions
NL(1) < UP. The move from (c) to (d) is not allowed because the size of recipience cell C1 is already
equal to upper bound and adding more locations to this cell will violate upper bound constraint. The
move from (e) to (f) is not allowed because location L16 salsifies only Set-0 (and none from Set-1 to
Set-9). Moving this location to cell C3 will cause cell C2 be fragmented. The CBPO operator always
perform only allowable boundary changes. Now let as consider the procedure how this operator was
applied for the move from (a) to (b). First a list of donatable locations are generated as shown
in the first column of Table 2. The corresponding conditions that these locations stratify to be
donatable are indicated in the second column of this table. Once, the list of donatable locations are
generated, potential recipient cells are determined for each donatable location as shown in the third
column. The last step is then to arbitrarily select one of the donatable locations that have recipient
cell and assign this location to its recipient cell (if there are more than once recipient cells, select
one arbitrarily). In this first application, location 6 was chosen arbitrarily from the many donatable
locations and it was assigned to cell 1. This decision is indicated in fourth column of Table 2 and
the resulting configuration is depicted in Figure 4-(b)). A second application of CBPO (the layout
in Figure 4-(b) as a starting configuration) is illustrated in the last four columns of Table 2 and the
resulting configuration is shown in Figure 4-(c). In the search process, this operator is applied on a

solution with a probability ;.

Table 1: Conditions for a given location [in a given cell ¢ to be donatable to other adjacent cell.

Conditions Set Descriptions of Conditions ‘ Conditions Set Descriptions of Conditions
(a) NALOC(I) >0) NALWC(l) = 2
0 (b) NL(¢) > LB 5 b) Bond(l,¢) = {S, E}

¢) SE(I) is also in cell ¢
NALWC(l) =

b) Bond(l,c) = {N7 E, W}

¢) NE(1) and NW(Z) are also in cell ¢

(a) NALWC(I) =

(a
(
(
(a
(
(
NALWC(]) = E
(
(a
(
(
(a
(

)
)
)
)
)
@ @) NALWCO(l) =
2 (b) Bond(l,c) = {N W} 7 b) Bond(l,¢c) = {N, E, S}
() NW (1) is also in cell ¢ ¢) NE(I) and SE(l) are also in cell ¢
(a) NALWC(I) =) NALWC(l) =
3 (b) Bond(l,c) = {N E} b) Bond(l,c) = {N7 W, S}
(¢) NE(I) is also in cell c ¢) NW(l) and SW() are also in cell ¢
(a) NALWC(l) =) NALWC(l) =
4 (b) Bond(l,c) = {S W} b) Bond(l,c) = {S, E, W}

(¢) SW(1) is also in cell ¢

(¢) SE(l) and SW(!) are also in cell ¢

NOTE: A donatable location must satisfy conditions Set-0 and one set from the remaining 9 sets.

3.4.2. Other Search Operators

The other operators need to be developed are for perturbing a solution to alter location as-
signments of the machines and sizes of sublot. These operators are named as Machine-Location,
Alternative-Route, and Sublot-Size Perturbation Operators (MLPO, ARPO and SSPO, respectiv-
ley). MLPO operates in the MDL-Segment of a solution by arbitrarily selecting two machines and

17

. N
(LB=4and UP=6 \
[1 9] L2 L3 L4 Ls L1 L2 L3 L4 L5 L1 L2 L3 L4 Ls L1 L2 L3 L4 Ls !
‘ C1 C1 C1 Cc4 C4 C1 C1 C1 c4 c4 C1 C1 C1 c4 Cc4 C1 C1 C1 C1 Cc4 ‘
1 |Le L7 L8 L9 L10 L6 L7 L8 L9 L10 L6 L7 L8 L9 L10 L6 L7 L8 L9 L10 |
‘ 2 C1 C1 Cc4 C4 C1 C1 C1 c4 C4 C1 C1 C1 c4 C4 C1 C1 C1 Cc4 C4 ‘
1 jLi L12 L13 L14 L15 L11 L12 L13 L14 L15 L11 L12 L13 L14 LI5S L11 L12 L13 L14 L15 |
‘ C2 C2 C3 C4 C5 C2 C2 C3 C4 5 C2 C2 Cc3 C4 C5 C2 C2 C3 C4 C5 ‘
1 [L16 L7 L18 L19 L20 L16 L7 L1 L19 L20 L16 L7 L18 L19 L20 L16 L17 LI18 L19 L20 |
‘ C2 c3 c3 C3 Cs c2 c3 C3) C3 Cs c2 c3 C3 C3 Cs 2 c3 C3 C3 cs ‘
[L3¢ L22 L23 L24 L25 L21 L22 L23 L24 L25 L21 L22 L23 L24 L25 L21 L22 L23 L24 L25 |
‘ C2 C3 C3 C5 C5 C2 C3 C3 C5 C5 C2 C3 C5 C5 C5 C2 C3 C5 C5 C5 ‘
| |
| @ W) — e~ =@ |
to g -
! Not allowed: {L4 satisfies !
ed: sfies Set- L23 to C5 L4 to C1

‘ A“;zctd 1 {LG(:M]:JSI‘:ICF 5<th.0 Allowed: {L23 satisfies Set-0 Set:0 and Set-1} & fhut ‘
. and Set-1} and {NL(1) < 6} owed: { satisfies Set-! NL(1) not < 6} .
‘ and Set-2} & {NL(5) <6}

L19 to C4 ‘

Allowed: {L7 satisfies Set-0
[Allowed: {L19 satisfies Set- L7 to C2 o St 6; & INL) < 6 ‘
‘ 0 and Set-1} & {NL(1) < 6} ‘
| |
‘ L1 |2 (L3[4 [Ls L (L2 (L3[4 [is L1 (L2 (L3 4 [Ls L1 (L2 (L3 L4 [Ls ‘
1 |€1 C1 C1 Cc4 Cc4 C1 C1 C1 c4 c4 C1 C1 C1 C4 Cc4 C1 C1 C1 Cc4 Cc4 |
‘ L6 L7 L8 L9 L10 L6 L7 L8 L9 L10 L6 L7 L8 L9 L10 L6 L7 L8 L9 L10 ‘
o |c2 C1 C1 Cc4 C4 C1 C1 C1 c4 C4 c2 C1 C1 C1 C4 C1 2 C1 Cc4 C4 |
‘ L1 L12 L13 L14 L15 L11 L12 L13 L14 L15 L11 L12 L13 L14 L15 L11 L12 L13 L14 L15 ‘
€2 C2 C3 Cc4 Ccs C2 C2 c3 c4 Cs5 c2 C2 a3 c4 Cs5 2 C2 c3 C4 Cs5 |
‘ L16 L17 L18 L19 L20 L16 L17 L18 L19 L20 L16 L17 L18 L19 L20 L16 L17 L18 L19 L20 ‘
o |c2 Cc3 C3 C4 C5 C3 3 Cc3 C4 5 c2 c3 c3 C4 cs 2 c3 Ccs (&) Cs |
‘ L21 L22 L23 L24 L25 L21 L22 L23 L24 L25 L21 L22 L23 L24 L25 L21 L22 L23 L24 L25 ‘
Lolez C3 C3 C5 C5 C2 C3 C3 C5 C5 C2 C3 C3 C5 C5 C2 C3 C3 C5 C5 |
! ©@— " M ©® 0} ‘
‘ 1L.16 to C3 Not allowed: {L16 satisfies only Set- ‘
0 but none from Set-1 to Set-9}
| |
L9 to C1 Not allowed:{L9 satisfies only Set-
0 but none from Set-1 to Set-9}
N s
~_

Figure 4: Examples of allowed and not allowed cell boundary changes: In each allowed move, (i) the location from the
donor cell satisfies conditions Set 0 and one set of conditions from the remaining 9 sets of Table 1, and (ii) the size of
the recipient cell is lower than the upper limit

swapping their location assignments with a small probability do. ARPO applied with a small proba-
bility d3 on each 6, in the RHS-Segment of a solution to flip its value from 0 to 1 or vice versa. In
applying this operator, it is also necessary to keep Zf”; Opr > 1 so that each product p has at least
one of its route opened for its processing. SSPO applied with a small probability d4 on each 3, , to
arbitrarily step-up or down its value with a step amount ¢ using equation £, = min{l, S,, + ¢}
or By, = max{0, f,, — ¢}, respectively. Each time this operator is applied, the step amount ¢ is
determined with the equation ¢ = @mme, X Rand() where @nmmq, € (0, 1) is algorithm parameter and
Rand() is a function generating a random number in (0, 1).

3.5. Simulated Annealing

The design of the components of the solution procedure presented in the previous subsections
are unique to solving the newly proposed mathematical model. However, the fundamental concept
of simulated annealing (SA) is the same across domains. The name and inspiration came from a
technique called annealing in metallurgy, used to reduce the hardness of a metal by heating and
gradual cooling. This gradual cooling is interpreted as a gradual decrease in the probability of
accepting worse solutions as the SA explores a search space in which a particular solution X is
analogous to a state a physical system and a function E(X) to the internal energy of that system at
that state. The goal of the search is to bring the system from an arbitrary initial state Xy of high
internal energy FE to a state where this energy is at its minimum possible. In doing so, the algorithm

visits a sequence of solutions X, X1, -+, X5, Xnt1, -+, Xy where this sequence of visitation is

18

Table 2: Procedure of the applications of CBPO for the moves from (a)-(b) and (b)-(c) in Figure 4

First application: Figure-4(a) to Figure-4(b) Second application: Figure-4(b) to Figure-4(c)
Condition sets Potential Arbitrarily Condition sets ~ Potential Arbitrarily
Donatable satisfied recipient chosen Donatable satisfied recipient chosen
location Set-0 & Set- cell(s) move location Set-0 & Set- cell(s) move
1 1 2 3 4 4
3 4 4 4 5 None*
4 5 1 6 3 2
6 1 1 L6—C1 7 6 2
7 3 2 8 2 4
8 2 4 10 2 5
10 2 5 13 1 4
12 1 1 14 1 5
13 1 1, 2, 4%* 17 5 2
14 1 5 19 1 4,5
17 5 2 22 3 2
19 1 4,5 23 2 5 L23—C5
21 1 None*
22 3 2
23 2 5

*The size of the only adjacent recipient cell is already at the upper bound.
**If location 13 were to be donated, one of the three recipient cells will be selected arbitrarily.

guided by Eq. (31). In this equation, X is a neighborhood solution generated by slightly perturbing
X,. The parameter T}, is the temperature at the n'" iteration. The corresponding sequence of
T, is generated in such a way that 1,41 < T}, with its value approaching to zero as n increases.
This sequence of temperature is called cooling schedule and the common approach is to keep the
temperature at the same level for @Q number of iteration and then reduce its value with an equation
T, = T4 = NT;—1. The subscript ¢ is incremented by one every () iterations. The coefficient A, called

the cooling exponent, has a value close to but less than one.
X), i B(X)) < E(X,)

Xni1 =< X! with a probability of <exp [wb (31)

n n

X, otherwise

In the basic SA discussed above, a single search path (Xo, X1, -+, Xpn, Xnt1, -+, Xn) is
followed which is also a common implementation approach in literature. However, from the point of
view of performance, following a single search path may not be necessary or advisable (Lee and Lee,
1996). In this paper, we adopt an implementation of SA similar to those reported in Defersha and
Chen (2008) and Defersha (2015) which involves multiple search paths and parallel computation as
illustrated in Figure 5. In this figure, X, , , is the solution at the nt iteration along the st* search
path in the p' process (a process is an instance of SA with S search paths that is being executed
by one computing unit, core, or cpu). For better result, the search paths within a process may
communicate every Zj iteration to start the search from the best solution so far known within that
process at the current temperature level. Moreover, the processes may communicate every Zs > 7,
iteration to restart their search paths from the best solution so far known across all the processes.

SA was chosen over genetic algorithm (GA) because it was not possible to design a meaning-

ful crossover operator that cuts the LHS-segment into sub-segments and exchange between parent

19

()
p=0 s=1 X1,1,0aX1,1,1aX1,1,2’X1,1,3s--- Xl,l,n’Xl,],n+]9"' ’X],I,N
X020 X120 X102 X103 Xio Xio s Xy
XI,SO’XISI’XIS,z’XlS3""XlSn’XIS,nH’""XlS,N

Xt X o1 X1 X g ise Xos Xy s Xy

XZ,Z,O’ X2,2,1’ X2,2,2’ X2,2,3’ X2,2,n7 X2,2,n+17 2 XZ,I,N

X2,S,0’ X2,S,l’ X2,S,29 X2,S,3’ X2,S,n’ XZ,S,n+17 trr X2,S,N

p=P 5= X p oo X piw Xpio X pigee Xp s Xp s Xpyy
@ 5228 Xpaos X pop Xpop Xposee Xpos Xpoyursos Xpyy
L 5= 1 Xpsos Xpso Xpso Xpssy- Xpsn Xpsasis-s Xpsn)

Figure 5: Schematics of a multiple search path parallel simulated annealing (the search paths are allowed to
communicate within and across processors periodically).

chromosomes, since such exchange will generate solutions with disjoint cells (violating model con-
straints). Nevertheless, we tried to retain the global search capability of the population based GA by
following multiple search path in which at each iteration many solution points are considered. It is
also important to note that SA is better known for its local search capability. As such, the proposed
multiple search path SA also retains this local search capability as each search path represents a
simple SA. Overall, the proposed parallel multiple search path SA attempts to benefit from both
global search (like GA) and local improvement strategies (like SA).

3.6. Computer Implementation

All the components of the algorithm (solution representation, initialization, search operators,
evaluation) and its parallel implementation were coded in C++ programming language in which
MPI message-passing library was used for communication. The code was tested in a parallel compu-
tation platforms of Calcul Québec (http://www.calculquebec.ca/en/). The particular computing
environments where we test our code consists of several thousands of computing cores (20176 cores
in a cluster named guillimin and 30984 cores in another cluster named mp2). The test problems were
run using up to 384 cores. Each core excuses its own process! where a process is a single instance
of SA with S search paths and uses separately seeded pseudo-random number generator to enable
exploring different parts of the search space. The process with rank 0 (see footnote 2), in addition to
excusing its own S search paths, is designated to periodically gather the best solution know in each
process and determine the overall best and broadcast this solution to all the other processes. The

steps of the parallel multiple search path SA and the notations used to describe them are presented.

In computing, a process is an instance of a computer program that is being executed. It contains the program code
and its current activity.

2In parallel computation using MPI (massage passing interface), processes that are concurrently running for a give
computational job are ranked from 0 to P — 1 where P is the total number processes.

20

http://www.calculquebec.ca/en/

Notations:

p

BS,
BS

Rand()

Process Rank, p =0, 2, ..., P—1 where P is the number of concurrently running processes
(a process is an instance of SA with S search paths that is being executed by one computing

unit, core, or cpu)

Index of search paths, s =1, 2, ..., § where S is the number of search paths followed by

each process.

Iteration counter, n =1, 2, ..., N where N is the maximum number of iterations in each

search path.

The solution at the n'”* iteration along the s** search path in the p* process.
Cooling schedule coefficient.

Index for the temperature levels in the cooling schedule.

Temperature at the ¢ level, Ty =AxTy_1 =N xTp.

Number of iterations to be performed in each search path at each temperature level.

Number of iterations performed in each search path in each processor before a processor
restarts all of its search paths (at the current level of temperature) from the best solution

it has found so far.

Global Communication frequency factor where Zo = F' x Z7 is the number of iterations to

be performed by each search path before communication is effected among the processors.
Best solution so far found in the p** processor.
Best solution so far found by all the processors

Random number generator. Each processor uses a different seed for the random number

generator.

Algorithm Steps:

Step 0.

Step 1.

Initialization
Set p = My_Process_Rank

Initialize counter: n = 0 and ¢ = 0. Initialize the Best-Individual BI, with a null value.

If p =0, set the Best-Individual BI so far found with a null value too.

Generate initial solution points X, 10, Xp20, -+ Xp g0 by applying the initialization

technique presented in Section 3.2.

For s =1 to S : Determine E(X) 0,) using the method presented in Section 3.3.

Fors=1to S
Move: Using the perturbation operators presented in Section 3.4, perturb X, , , to
get X, ¢ -

21

Evaluate: Determine E(X/ ;).

p7s7n

Decide: If B(X],,) <E(Xpsn), then X, 114 =X/

p,s,n D,8,n

Else If exp { [E(Xz’oym) — E(Xpsn)| /Ty} > Rand(), then X, 41, = X} on
Else Xp,s7n+1 = Xp,syn

Update: If E(X)sn+1) < E(BI,), then BI, = X}, s n+1
Step 2. Setn=mn-+1.

If n mod Q =0, thenset g=¢+1,and T, = A x T,

If (n < N+1) AND (n mod Z3 # 0) go to Step 1.

If (n < N+1) AND (n mod Z3 = 0) go to Step 3.

If n =N +1, STOP.
Step 3. Ifp# 1, send BI, to the process whose Process_Rank = 0.

If p = 0, receive the best solutions found by each process and determine BI and send this

solution to all the other processors.
If p#£ 0, receive BI from the process whose Process_Rank = 0.

Set X, sn = BI for all s and go to Step 1.

4. Numerical Examples

In this section we consider several numerical examples to illustrate the model and the performance
of the proposed algorithm. For this purpose, we generate several problem instances with varying
sizes. The general features of these problems are in Table 3. The objective function weight factors,
©1 and O3, were set in such a way that the two terms of the objective function have comparable
values in the final solutions so that both terms are optimized. The number of cells and their size
limits (LB and UB) are to be set at the discretion of the designer based on several design factors.

Thus the values indicated in the table are arbitrary values.

4.1. Model Illustration
In this example we attempted to illustrate the applicability of the proposed model in design-

ing both distributed layouts and cellular manufacturing systems. For this illustration we choose
Problem-1 (see Table 3) having 30 part types and 25 machines. The assumed initial departmental-
ized functional layout is given in Figure 6-(a). The data D, V,, and F), are in Table 4. We further
subdivide this problem into two problems (Problem-1a and Problem-1b). In Problem-1a, processing
routing were generated with a controlled randomness in such a way that rational part families based
on similarities in manufacturing requirements can be identified. The part routings for this problem
are given in columns 3 to 7 of Table 5. This problem may represent a scenario in which cellular
manufacturing systems are appropriate. Whereas, the processing routings for Problem-1b, given in

Table 6, were generated purely randomly and part families may not exist and cellular manufacturing

22

Table 3: General features of the problems considered

Problem No.
Attribute 1 2 3 4
Number of Parts P 30 60 320 600
Number of machines M 25 40 120 192
Layout shape 5x5 8 x5 12 x 10 16 x 12
Number of cells C 4 6 10 12
Cell size LB 5 6 10 12
Cell size UB 7 8 14 20
Max number of Routes 2 2 3 3
Max number of operations 5 8 12 60
Min number of operations 3 4 6 8
Workload balancing factor Y 0.85 0.9 0.9 0.9
Objective Term factors (01, O2) (0.1, 2) (0.1, 2) (0.1, 1000) (0.1, 1000)

Note: Max number of Routes = maxv,{R,}; Max (min) number of operations = maxvy,r{Jp.»} (minv, {Jpr})

Table 4: Part data for Problems la and 1b

p D, Ve Fy p D, Vo Fy p D, Ve Fy
1 1300 1.2 2 11 1300 1.9 1 21 1200 1.6 2
2 1100 1.5 2 12 1100 1.6 1 22 1300 1.7 2
3 1100 1.5 3 13 1000 1.8 3 23 1400 1.1 3
4 1000 1.6 1 14 1200 1.7 1 24 1100 1.8 2
5 1100 1.6 2 15 1200 1.2 2 25 1100 1.4 1
6 1000 2.0 1 16 1200 1.5 1 26 1300 1.9 2
7 1000 1.6 2 17 1500 1.8 1 27 1100 1.6 2
8 1400 1.9 1 18 1100 2.0 2 28 1400 1.2 2
9 1100 1.6 3 19 1200 1.7 1 29 1300 1.9 1
10 1500 1.2 2 20 1100 2.0 1 30 1100 1.1 3

systems may not be appropriate. The inter-departmental movements of the parts in these two prob-
lems, based on the layout in Figure 6-(a), were indicated in columns 8 of Tables 5 and 6, respectively,
and are comparable.

With the objective of reducing material handling and inter-cellular movement, the two problems
were solved using the proposed algorithm. The proposed cellular/distributed layouts are given in Fig-
ures 6-(b) and 6-(c) and the corresponding intercellular movement are indicated in the last columns
of Tables 5 and 6. In Figure 7-(a), it can be seen that there are substantial material handling cost re-
ductions in both problems by distributing the machines over the shop floor. As such, the advantages
of reduced material handling through distributed layout can be achieved in both problems. However,
the intercellular movement in Problem-1b is substantially higher than that in Problem-1a as shown
in Figure 7-(b). Thus, added advantages of cellular manufacturing (such as group setup, ease of
scheduling, team sprit, operators accountability and satisfaction) may happen only in Problem-1a
since most parts in this problem are processed in one cell only. Here it is important to note that,
in literature, it has been asserted that cellular manufacturing systems are applicable in scenarios
where demand is more stable and logical part families can be identified. With this assumption, a
tremendous amount of models and algorithms have been developed for cellular manufacturing sys-
tems design. Distributed layout, on the other hand, are recommended in volatile environments where
product demand and mix are changing very rapidly and many research articles are published in this
area as well. However, we argue that a real life scenarios may lie at any point within the spectrum

of these two extreme scenarios. Thus, the work in this paper bridges the research gap by integrating

23

distributed layout and cellular manufacturing in a single model/algorithm that can be applied in all
possible scenarios along this spectrum. The model provides detail layout of the system at a machine
level which we call it a distributed layout. Moreover, by assigning location to cells, it simultaneously
determines both the inter and intra cellular layout and ensures machines of a particular cell lie in
contiguous physical locations so that the advantages of cellula manufacturing systems can be fully
exploited.

(Dept.l Dept. 2 Cell 1 Cell 4 Cell1 Cell 2 Cell 4 W

N N\

T1 |T2 |T3 |B4 |B5 T1 |MI6) G24 |B10 [M17,

T6 |T7 |T8 |B9 |B10 M18|G24 M16(M13|B9

M16/M17\M18|G19 |G20 G20 [M22|T2 |T6 |M21 M15|M12|G20

M21\M22|G23 |G24 |G25 G25|G19 |B14|G23 |B10 M1 [M1§Ml14

/\/

|
|
. |M11|M12|M13|B14 |B15 M11|B15 [M13 T8 T6 |M22|BS
|
|

! Dept.3 Dept.4 Cell2 Cell 3 Cell 3
L (a) Initial Funtional (b) Cellular/Distributed (c) Cellular/Distributed J
Layout Layout for Problem-1a Layout for Problem-1b |

Figure 6: Initial functional layout and proposed cellular/distributed layouts for problems la and 1b).

Functional Layout
@ Cellular/Distributed Layout 2 100000
800000 g 90000
& 700000 £ 80000
S 600000 g 70000
£ 500000 g 60000
TE“ 400000 £ soo00
T < 40000
S 300000 T 30000
g 3
£ 200000 g 20000
= 100000 £ 10000
0 0
Problem 1a Problem 1b Problem 1a Problem 1b
(a) (b)

Figure 7: Cost savings in problems la and 1b).

4.2. Algorithm Performance
4.2.1. SA vs CPLEX in Solving a Small Problem

As the proposed model and the algorithm are new, we are not able to compare computational
performances against published results. Instead, we attempted to show the relative performance of
the algorithm against the state-of-the-art general purpose optimization package, IBM ILOG CPLEX
(version 12.6). Figure 8-(a) shows a 25-hour convergence history of CPLEX in solving Problem-1
with the linearized objective function terms of the model. The first feasible solution with an objective
function value of 263,330 was found after about 50 minutes of computation on a desktop PC having
Intel Xeon CPU (3.2 Hz, 16.0 GB Ram). This solution kept on gradually improving, for instance
to 63,350 at 7:28:25. The least value of the objective function found using CPLEX was 60,008 at

24

Table 5: The routing information for Problem la and partial solution

Required machine and processing time Sequence of Sequence of
(Mj p,r, Tp,r,;) for operation j Dept. visitation cell visitation
p r 1 2 3 4 5 in layout Fig. 6-a in layout Fig. 6-b
1 1 (12,9) (16,8) (18,8) (15,7) D3-D1 C4-C1-C4
2 1 (2,3) (14,4) (22,4) (19,4) (22,3) D1-D2-D3-D4-D1 C2
3 1 (3,13) (7,12) (17,13) D1-D3 c4
4 1 (8,9) (21,8) (23,7) (6,8) D1-D3-D4-D1 C3
5 1 (20,13) (24,11) (12,12) D4-D3 C2-C1-C4
6 1 (11,3) (16,4) (24,5) (20,5) (15,3) D3-D4-D2 C1-C2
7 1 (9,11) (3,12) (9,12) * C4
2 (7,9) (5,8) (17,8) (9,8) D1-D2-D3-D2 *
8 1 (17,4) (5,3) (4,4) (9,5) (17,4) D3-D2-D3 C4
9 1 (2,8) (19,7) (25,8) (19,7) D1-D4 C2
10 1 (22,9) (19,9) (14,7) (19,7) D3-D4-D2-D4 C2
11 1 (7,13) (4,12) (5,13) D1-D2 C4
12 1 (24,3) (18,3) (24,4) (16,3) (1,4) D4-D3-D4-D3-D1 C1
13 1 (19,4) (14,5) (22,4) (19,5) (14,4) D4-D2-D3-D4-D2 C2
14 1 (13,9) (24,9) (15,8) (13,7) D3-D4-D2-D3 C1
15 1 (11,7) (20,8) (18,8) (16,8) D3-D4-D3 C1-C2-C1
16 1 (10,11) (6,12) (21,12) D2-D1-D3 C3
17 1 (7.8) (9,7) (17,9) (5,8) D1-D2-D3-D2 C4
18 1 (13,8) (15,7) (11,9) (18,8) D3-D2-D3 C1
19 1 (19,7) (14,9) (22,7) (25,7) D4-D2-D3-D4 C2
20 1 (21,12) (10,13) (23,11) D3-D2-D4 C3
21 1 (4,7) (3,9) (4,7) (17,8) D2-D1-D2-D3 C4
22 1 (11,11) (20,13) (15,12) D3-D4-D2 C1-C2-C1
23 1 (23,3) (10,5) (8,4) (6,3) (21,4) D4-D2-D1-D3 C3
24 1 (12,11) (16,12) (15,12) D3-D2 C4-C1
25 1 (21,12) (6,12) (21,11) D3-D1-D3 C3
26 1 (21,11) (6,12) (2,12) D3-D1 C3-C1
27 1 (12,7) (13,8) (15,9) (1,7) D3-D2-D1 C4-C1
28 1 (8,8) (21,7) (8,7) (6,8) D1-D3-D1 C3
2 (23,3) (8,4) (23,4) (6,4) (8,3) * *
29 1 (21,4) (10,4) (8,4) (21,4) (10,4) D3-D2-D1-D3-D2 C3
30 1 (21,9) (6,8) (8,9) (10,8) D3-D1-D2 C3

22:23:04. After about 25 hours, CPLEX stopped computing as the size of the node file generated
exceeds the available memory of 750 GB in a working directory that we were able to allocate for this
computation. This clearly demonstrates the difficulty of solving the proposed model, even for a small
size problem, using the state-of-the-art general purpose optimization package. Whereas, as shown
in Figure 8-(b), the proposed algorithm converged very quickly within 90 seconds (40,000 iterations
using 1200 search paths) and found a solution better than the one found using CPLEX after 22 hours
of computation. This illustrates the potential of the algorithm in solving large size problems. Figure
9 shows the computational time to perform 10,000 iteration using 1500 search path as the size of
Problem-1 is increased in terms of the number machines and the number of parts. As it can be seen
from this figure, the computational time increases close to linearly as the function of the problem
size. This contrasts with the exact algorithm in CPLEX (branch-and-cut) of which computational
time may increase exponentially as the problem size increases. This further illustrate the suitability

of the algorithm in solving large size problems.

25

Table 6: The routing information for Problem 1b and partial solution

Required machine and processing time
(Mj p,r, Tp,r,;) for operation j

Sequence of
Dept. visitation

Sequence of
cell visitation

p r 1 2 3 4 5 in layout Fig. 6-a in layout Fig. 6-c
1 1 (6,9) (15,8) (20,8) (12,7) D1-D2-D4-D3 C1-C3-C2-C3
2 1 (2,3) (4,4) (9,3) (5,5) (16,4) D1-D2-D3 C4-C2-C1
4 1 (8,4) (21,3) (3,3) (11,3) (4,5) D4-D3-D1 C4
5 1 (6,3) (22,5) (24,3) (7,4) (20,4) D1-D3-D2-D1-D4
6 1 (17,12) (25,13) (21,13) D1-D3-D2-D1-D4 C1-C3-C4-C2
7 1 (5,11) (20,11) (2,12) D2-D1 C2-C1-C4
2 (16,4) (17,5) (13,4) (9,5) (13,4) * *
8 1 (5,9) (3,8) (4,8) (19,9) D2-D1-D2-D4 C2-C4
9 1 (6,4) (1,4) (14,3) (15,4) (12,4) D1-D2-D3 C1-C3
10 1 (13,12) (22,13) (20,12) D3-D4 C1-C2
11 1 (3,13) (6,12) (17,11) D3-D1-D3 C1-C2
12 1 (5,8) (20,8) (3,7) (5,9) D2-D4-D1-D2 C2
13 1 (2,12) (4,11) (21,12) D1-D2-D3 C4
14 1 (20,4) (14,5) (8,4) (18,4) (1,4) D4-D2-D1-D3-D1 C2-C3
15 1 (14,4) (9,3) (17,4) (12,3) (5,5) D2-D3 C3-C2-C3-C2
16 1 (15,8) (12,8) (6,8) (16,7) D2-D3-D1-D3 C3-C1
17 1 (23,9) (2,8) (24,9) (10,9) D4-D1-D4-D2 C3-C4-C1
18 1 (18,8) (12,8) (6,8) (16,7) D3-D1-D3 C3-C1
19 1 (1,8) (8,8) (13,8) (23,8) D1-D3-D4 C3-C1-C3
20 1 (17,9) (11,8) (7,8) (19,9) D3-D1-D4 C2-C4
21 1 (14,5) (12,4) (4,4) (2,5) (3,3) D2-D3-D2-D1 C3-C4-C2
22 1 (14,7) (3,7) (22,9) (12,8) D2-D1-D3 C3-C2-C1-C3
23 1 (23,3) (12,5) (5,4) (9,4) (2,5) D4-D2-D1 C3-C2-C4
24 1 (5,8) (22,8) (13,8) (10,7) D2-D3-D2 C2-C1
25 1 (23,3) (12,4) (14,4) (1,5) (7,5) D4-D3-D2-D1 C3-C4
26 1 (18,4) (2,4) (7,3) (10,4) (14,5) D3-D1-D2 C3-C4-C1-C3
27 1 (10,12) (6,12) (20,11) D2-D1-D4 C1-C2
28 1 (9,11) (25,12) (3,11) D2-D4-D1 C2-C4-C2
29 1 (22,3) (2,3) (11,4) (25,4) (13,3) D3-D1-D3-D4-D3 C1-C4-C1
30 1 (14,8) (18,8) (12,8) (10,7) D2-D3-D2 C3-C1

4.2.2. Empirical Studies

Empirical studies on the computational behaviour of both sequential and parallel multiple search
path SAs for cell formation (without layout consideration) have been conducted in Defersha and
Chen (2008). Defersha (2015), later demonstrated the suitability of similar implementation of SA
for flowshop scheduling. As the implementation strategies followed in this paper are similar to those
found in Defersha and Chen (2008); Defersha (2015), we are not presenting detail empirical studies
of the computational behavior of the proposed algorithm. However, a limited empirical study is
essential since the algorithm developed is specific to the proposed model with new solution represen-
tation, new initialization techniques and new move operators. This empirical study is to demonstrate
the algorithm performance improvements achieved through (1) following multiple search paths, (2)
interaction of search paths and (3) high performance parallel computation. For the demonstrations
(1) and (2), the problem with 60 part types and 40 machines (Problem 2) is considered. This problem
was first solved using a single search path SAs in which the algorithm runs for 150,000,000 iterations
(for about 2 hours using 2.1 GHz cpu). The algorithm was executed for eight complete runs by
changing the seed of the random number generator (of the programming language used, c++) and
then the average value of the objective function of the final solutions was computed. We repeat this

experiment for a multiple search path SA by increasing the number of the search paths at a time

26

300000 300000
25 hours convergence history 90 seconds convergence
250000 of CPLEX in solving Problem-1 250000 history of the propsosed SA in
solving Problem-1
c
.2 200000 i Y 200000
© i The least objective function i c - \
E ' value determined by CPLEX is ! _g ; TheIeaftobjective.functinnvalu.e i
o 150000 | 60,007 and it happens after22 | S 150000 determined by SAis 58,573 and it |
E { hour of computation ; = happens in just 40 sec of i
@ . s tati i
-2 100000 g 100000 | computation J
(7]
=
50000 o 50000
[o o e e L o o o L e s o o e 0 T T T T T T
8 3 5 8 8 2 3 1 R 8 8 8 8 8 8 8
Time Time
(a) CPLEX (b) SA

Figure 8: Convergence histories of CPLEX and the proposed SA in solving problem-1

Computational
Time minutes
o = N w H (8,] [<)] ~
1

i N3 A3
7 % Z /,60 ! /10 ! /%Q ! /QQ ! QQ !
W NS NS N

Problem Size

Figure 9: Time required to perform 10,000 iteration using 1500 search paths as a function of problem size (M =
number of machines, P = Number of Parts).

from 2 to 5, to 10 e.t.c. As we increase the number of search paths in each test, each search path
is shortened to keep the computational time and the total number of iteration remain the same as
that of the single search path SA. The averages values of the objective function are plotted in Figure
10. From this figure it can be seen that as the number of search paths is increased from 1 to 20, the
quality of the final solution generally keeps on improving. This clearly demonstrates the benefit of
excusing multiple short SA runs instead of a single long run.

However, as the number of search paths is further increased for the same total number of it-
erations, the qualities of the final solutions start to deteriorate since each search path cannot get
enough run length to converge within a given time limit. A technique that will enable a large num-
ber of search paths to run to convergence within the given time can be parallel computing. In this
case, the search paths are to be divided in to smaller batches and allocated to concurrently available
processors. For better performance, the search paths within and across processes can interact period-
ically. In those interactions, the best solutions found from all the search paths are collected and the
overall best (winner) solution is distributed to all the search paths and each search path continues

its search from this solution. Figure 11 shows the convergence history in eight runs without search

27

path interaction and in another eight runs with search path interaction of the 15-search path SA in
solving Problem 2. The result clearly demonstrates a substantial performance improvement both in
convergence rate and final solution quality as a result of search paths interaction. Moreover, from
this convergence graph, the final solution qualities form the eight runs of the multiple search path
SA with interaction are more or less the same regardless of the starting sets of solution.

In order to illustrate the algorithm performance improvement that can be achieved using parallel
computation, we consider Problems 3 and 4 (see Table 3) as these problems are very large in size
and may represent real life scenarios with greater computational challenge. Figure 12 shows the
convergence history of the process with rank 0 in solving Problem 3 as the number of processes
is increased from 1, 8, 24, 48, to 96. In these computations, the number of search paths in each
process was kept at 500 and each search path runs for 50,000 iterations. The search paths were
allowed to interact every 1000 iterations within a process and every 25,000 iterations across the
processes. The computational time remains at about 2 hours and it is not impacted as the number
of processes is increased as each process is excused in its own assigned CPU in the parallel computing
environment. The abrupt change in convergence history in the process with rank 0 (or in any given
process) happens when all the processes communicate to determine the winer solution and continue
their respective iterations from this solution. As it can be seen from this convergence history, there
is a 32% improvement in the final solution quality by using parallel computation with search path
interactions. The level of improvement is even bigger in Problem 4, which is at 58% as shown in
Figure 13 as the number of process is increased from 1, 8, -- -, to 384 for a fixed computation time
(which was 6 hours and 12 minutes in this problem). This clearly demonstrate that, though SA is
generally able to find good solutions for small size problems, the search process is likely to become
trapped in a local optima when solving large size problems. In this case, as illustrated by these

examples, the best alternative can be the use of high performance parallel computation.

1.4E+06
1.2E+06
1.0E+06
Y 8.0E+05
5
& 6.0E+05
o
© 4.0E+05
2.0E+05
0.0E+00
i o~ wn o wn o o o o o o o o o o
— - ~ (a2} < o 0 o o o o o
- o wn 8
NUMBER OF SEARCH PATHES

Figure 10: The effect of increasing the number of search paths on the final solution quality for the same total number
of iteration

5. Discussion and Conclusions

CMS involves the grouping of parts having similar processing requirements into part families, and
organizing machines along other supporting recourses into cells such that each cell produces a part
family with at most efficiency. Several industrial surveys in literature found that system performance

improvements achieved through CMS implementations are astounding, and the area draws enormous

28

Objective function

1.60E+06

1.40E+06

1.20E+06

1.00E+06

8.00E+05

6.00E+05

4.00E+05

2.00E+05

0.00E+00

‘/4 1 - Without search pathes interation

0

1000000 2000000 3000000
Iteration

4000000

5000000

Figure 11: The effect of search paths interaction on the convergence of 15-search-path SA in solving Problem 2 during

the first 500000 iterations (One hour computational time)

2.0E+09

1.8E+09

1.6E+09

1.4E+09

!
1
1
1
l

The processor with rank 0 receiving the
best solution from others processors at
iteration 25000 & 50,000

e o o

a-1processor SA
(Sequential SA)

b - 8 processors SA

c - 24 processors SA
d - 48 processors SA
e - 96 processors SA

S
g
- N a S
o T S,
2 126409 T S
! F—_b g
o ! ! 710
1 H [
1.0E+09 [/d,e Y 32%
\\ A / | :', reduction in
"
~ 3/ objective
8.0E+08) A
0000000000000 Q2Q209 function value
RN - R-E-R-R- R -R-R- - RN - - - -]
O ANMNMTOWORNRIAOANMNTINON O R as a result of
ONTSOXOANTONI=EHMINNOOEONOLN D
parallel
Iteration 10,000 to 50,200 computing

Figure 12: The convergence history of the process with rank 0 in the parallel SA in solving Problem 3. The abrupt
change in convergence in a given process happens when all the processes communicate to determine the winer
solution and continue their respective iteration from this solution.

research. However, there are some studies that challenge the claims, the primary concerns being CMS
are not applicable in today’s volatile environments where demand and product mix change rapidly.
To address this issue, distributed layout has been emerging as an alternative to cellular layouts and
it is gaining traction in literature. However, we argue that changes in product demand and mix in a
real life system may always lay within the spectrum of being stable and volatile. This paper bridges
this gap by providing a mathematical model and a solution procedure that integrate distributed
layout design and machine cell formation. The mathematical model:

1. Minimizes material handling cost through distributing the machines over the shop floor both

in stable or volitive (or any given scenario) as it was demonstrated in the numerical example.
Minimizes intercellular movement by identifying cells and part families whenever possible.

Ensures that machines that belong to the same cell are laid out on contiguous physical locations

so that the advantages of cellula manufacturing systems can be fully exploited.

Provides detail layout at a machine level and determine both inter-cellular and intra-cellular
configurations.

Incorporates many pragmatic issues such as operations sequence, alternative routing, lot split-

ting, workload balancing among cells and constraints on machine capacity.

29

1.5E+10
58% improvement of the final solution quality was achieved while
1.3E+10 solving Problem 5 when the number of processes is increased from 1 to
384. The number of search paths of the of the sequential SA is 500. This
1.1E+10 number is increase to 192,000 using 384 concurrently running CPUs.
The computational time remains the same at about 6.2 hours both in
° 9.0E+09 the sequential and the parallel SA.
=2
©
QO 7.0E+09] Effect of the interactions of search =
_OQ paths across processes (CPUs) 9]
5.0E+09 g
I [
>
{ | o
3.0E+09) s
. £
Nz =
1.0E+09 ¥ x
o 7]

Iteration

Figure 13: The convergence history of the process with rank 0 in the parallel SA in solving Problem 5 as the number
of concurrently running processes is increased from 1, to 8, 24, 48, 96, 192, and to 384.

6. If a distribute layout is given, enables the formation and reconfiguration of virtual cells over
this layout with a unique advantage of forming each virtual cell with a group of machines
on contiguous physical location. From a solution procedure point of view, this is possible by
populating the MDL-Segment of the solution representation using the information obtained
from the given distributed layout and search for the cell boundaries while keeping the machine

configuration unchaged.

Numerical example showed that solving the proposed model using off-the-shelf optimization pack-
age is difficult even for small size problems. To this end, we develop an efficient SA based algorithm.
The SA follows multiple search paths with interactions. From the results of the test problems, it is
evident that instead of excusing a single long SA run, it is much preferable to execute multiple short
runs. The interaction of the search paths also resulted in substantial improvement of the convergence
speed of the algorithm. The parallel implementation of the algorithm demonstrated substantial im-
provement in final solution quality when solving large problems. These clearly demonstrate that,
though SA is generally able to find good solutions for small size problems, the search process is likely
to become trapped in a local optima when solving large size problems. In this case, as illustrated by
these examples, the best alternative can be the use of high performance parallel computation. Our
future work in this area include extensive simulation based investigation of manufacturing systems
based on non-conventional layouts and developing algorithms and methods for production scheduling

of these non-conventional manufacturing systems where there is a limited research.

Acknowledgements:
This research is supported by the Discovery Grant from the National Science and Engineering

Research Counsel of Canada, NSERC. We would like to thank Compute Canada (https://www.
computecanada.ca/) and its Consortiums specially Calcul Québec (http://www.calculquebec.

ca/en/) for providing access to high performance parallel computing infrastructure.

References

Alfa, A. S., Chen, M., and Heragu, S. S., 1992. Integrating the grouping and layout problem in
cellular manufacturing. Comuters and Industrial Engineering, 23 (1-4), 55-58.

30

https://www.computecanada.ca/
https://www.computecanada.ca/
http://www.calculquebec.ca/en/
http://www.calculquebec.ca/en/

Aririguzo, J. C., Saad, S. M., and Nkwogo, U. O., 2013. A genetic algorithm approach to design-
ing and modelling of a multi-functional fractal manufacturing layout. Proceedings of the 11th
International Conference on Manufacturing Research (ICMR2013). Cranfield, UK, pp. 399-404.

Arvindh, B. and Irani, S. A., 1994. Cell formation: the need for an integrated solution of the
subproblems. International Journal of Operations Research, 32 (5), 1197-1218.

Askin, R. G.,; 2013. Contributions to the design and analysis of cellular manufacturing systems.
International Journal of Production Research, 51, 6778-6784.

Askin, R. G. and Estrada, S., 1999. An investigation of cellular manufacturing practices. Wiley, New
York, pp. 25-34.

Ballakur, A. and Steudel, H. J., 1987. A within-cell utilization based heuristic for designing cellular

manufacturing systems. International Journal of Production Research, 25, 639-665.

Baykasoglu, A., 2003. Capability-based distributed layout approach for virtual manufacturing cells.
International Journal of Production Research, 41, 2597-2618.

Baykasoglu, A. and Gogken, M., 2010. Capability-based distributed layout and its simulation based
analyses. Journal of Intelligent Manufacturing, 21 (4), 471-485.

Benjaafar, S. and Sheikhzadeh, S., 2000. Design of flexible plant layouts. IIF Transactions, 32,
309-322.

Bozer, Y. Z., Meller, R. D., and Erlebacher, S. J., 1994. An improvement-type layout algorithm for
single and multiple-floor facilities. Management Science, 40, 918-932.

Chandrasekharan, M. P. and Rajagopalan, R., 1986. An ideal seed non-hierarchical clustering algo-

rithm for cellular manufacturing. International Journal of Production Research, 24, 451-464.

Choobineh, F., 1988. A framework for the design of cellular manufacturing systems. International
Journal of Production Research, 26, 1161-1172.

Defersha, F. M., 2015. A simulated annealing with multiple-search paths and parallel computation for
a comprehensive flowshop scheduling problem. International Transactions in Operations Research,
22, 669691.

Defersha, F. M. and Chen, M., 2006. A comprehensive mathematical model for the design of cellular

manufacturing systems. International Journal of Production Economics, 103, 767-783.

Defersha, F. M. and Chen, M., 2008. A parallel multiple markov chain simulated annealing for multi-
period manufacturing cell formation problems. International Journal of Advanced Manufacturing
Technology, 37, 140156.

Flynn, B. B. and Jacobs, R. R., 1987. An experimental comparison of cellular (group technology)
layout with process layout. Decision Sciences, 18, 562-581.

Forghani, K., Mohammadi, M., and Ghezavati, V., 2015. Integrated cell formation and layout prob-
lem considering multi-row machine arrangement and continuous cell layout with aisle distance.
International Journal of Advanced Manufacturing Technology, T8, 687-705.

31

Gongalves, J. F. and Resende, M. G. C., 2004. An evolutionary algorithm for manufacturing cell
formation. Computers & Industrial Engineering, 47, 247-273.

Hamedi, M., Ismailand, N. B., Esmaeilian, G. R., and Ariffin, M., 2012. Developing a method
to generate semi-distributed layouts by genetic algorithm. International Journal of Production
Research, 50 (4), 953-975.

Hyer, N. L. and Wemmerlov, U., 1989. Groupt technology in the us manufacturing industry: A

survey of current practice. International Journal of Production Research, 27, 1287-1304.

Kannan, V. R. and Ghosh, S., 1995. Using dyanamic cellular manufacturing to simply scheduling
in cell based production system. Omega, The International Journal of Management Science, 23,
443-452.

Kia, R., Shirazi, H., Javadian, N., and Tavakkoli-Moghaddam, R., 2015. Designing group layout of
unequal-area facilities in a dynamic cellular manufacturing system with variability in number and
shape of cells. International Journal of Production Research, 53, 3390-3418.

King, J., 1980. Machine-component grouping in pfa: an approach using a rank-order clustering

algorithm. International Journal of Production Research, 18, 213-232.

Kioob, S. A., Bulgak, A. A., and Bektas, T., 2009. Integrated cellular manufacturing systems design
with production planning and dynamic system reconfiguration. Furopean Journal of Operational
Research, 192, 414-428.

Knoll, D., Morel, J., Margolin, L., and Shashkov, M., 2005. Physically motivated discretization
methods. Los Alamos Sience, 26, 188-212.

Krishnan, K. K., Mirzaei, S., Venkatasamy, V., and Madhusudanan, P. V., 2012. A comprehensive
approach to facility layout design and cell formation. Intranational Journal of Advanced Manufac-
turing Technology, 59, 737-573.

Lahmer, M. and Benjaafar, S., 2005. Design of distributed layouts. IIE Transactions, 37, 303-318.

Lee, S.-Y. and Lee, K. G., 1996. Synchronous and asynchronous parallel simulated annealing with
multiple markov chains. , 7, 903-1007.

McAuley, J., 1972. Machine grouping for efficient production. Production Engineering, 51, 53-57.

Mohammadi, M. and Forghani, K., 2016. Designing cellular manufacturing systems considering s-

shaped layout. Computers & Industrial Engineering, 98, 221-236.

Montreuil, B., LeFrancois, P., Marcotte, S., and Venkatadri, U., 1993. Holographic layout of manu-

facturing systems operating in chaotic environments. Tech. rep., Technical Report.

Montreuil, B. and Venkatadri, U., 1991. Strategic interpolative design of dynamic manufacturing

systems layout. Management Science, 37, 682—-694.

Montreuil, B., Venkatadri, U., and Rardin, R. L., 1999. Fractal layout organization for job shop

environments. International Journal of Production Research, 37, 501521.

32

Moraglio, A., 11 2007. Towards a gemoetric unification of evolutionary algorithms. Ph.D. thesis,

Department of Computer Science, University of Esssex.

Morris, J. S. and Tersine, R. J., 1990. A simulation analysis of factors influencing the attractiveness

of group technology cellular layouts. Management Science, 36, 1567-1578.

Nageshwaraniyer, S., Khilwani, N., Tiwari, M., Shankar, R., and Ben-Arieh, D., 2013. Solving the de-
sign of distributed layout problem using forecast windows: A hybrid algorithm approach. Robotics
and Computer-Integrated Manufacturing, 29 (1), 128-138.

Rajagopalan, R. and Batra, J., 1975. Design of cellular production systems—a graph theoretic ap-

proach. International Journal of Production Research, 13, 56—68.

Rosenblatt, M. J. and Golany, B., 1992. A distance assignment approach to the facility layout
problem. European Journal of Operational Research, 57, 253-270.

Saad, S. M. and M., L. A., 2004. Layout design in fractal organization. International Journal of
Production Research, 42, 3529-3550.

Safaei, N., Saidi-Mehrabad, M., and Jaba-Ameli, M. S., 2008. A hybrid simulated annealing for solv-
ing an extended model of dynamic cellular manufacturing system. Furopean Journal of Operational
Research, 185, 563-592.

Shafigh, F., Defersha, F. M., and Moussa, S. E., 2017. A linear programming embedded simulated
annealing in the design of distributed layout with production planning and systems reconfiguration.
International Journal of Advanced Manufacturing Technology, 88, 11191140.

Suresh, N. C. and Meredith, J. R., 1994. Coping with the loss of pooling synergy in cellular manu-
facturing systems. Management Science, 40, 466—483.

Urban, T., Chiang, W. C., and Russel, R. A., 2000. The integrated machine allocation and layout
problem. International Journal of Production Research, 38 (13), 2911-2930.

Vakharia, A. J. and Wemmerlove, U., 1990. Designing a cellular manufacturing system: a materials

flow approach based on operation sequences. IIE Transactions, 22, 84-97.

Venkatadri, U., Rardin, R. L., and Montreuil, B., 1997. A design methodology for fractal layout
organization. ITF Transactions, 29, 911924.

Wang, T.-Y., Lin, H.-C., and Wu, K.-B., 1998. An improved simulated annealing for facility layout

problems in cellular manufacturing systems. Computers and Industrial Engineering, 34, 309-319.
Warnecke, H. J., 1993. The Fractal Company A Revolution in Corporate Culture. Springer, Berlin,

Wemmerlév, U. and Hyer, N. L., 1986. Procedures for part-family /machine group identification

problem in cellular manufacturing. Journal of Operations Management, 6, 125-145.

Wemmerl6v, U. and Johnson, D., 1997. Cellular manufacturing at 46 user plants: implementation
experiences and performance improvements. International Journal of Production Research, 35,
29-49.

33

Wemmerléve, U. and Hyer, N. M. L., 1989. Cellular manufacturing in the US industry: A survey of

users. International Journal of Production Research, 27, 1511-1530.

34

	Fantahun_Abnet.pdf
	1 Introduction
	2 Mathematical Model
	2.1 Problem description:
	2.2 Notations
	2.3 Model Formulation
	2.4 Linearizing the Model

	3 Solution Procedure
	3.1 Solution Representation
	3.2 Initialization
	3.3 Evaluation
	3.4 Search Operators
	3.4.1 Cell Boundary Perturbation Operator
	3.4.2 Other Search Operators

	3.5 Simulated Annealing
	3.6 Computer Implementation

	4 Numerical Examples
	4.1 Model Illustration
	4.2 Algorithm Performance
	4.2.1 SA vs CPLEX in Solving a Small Problem
	4.2.2 Empirical Studies

	5 Discussion and Conclusions
	References

