

A mathematical model and a parallel multiple
search path simulated annealing for an integrated

distributed layout and machine cell formation

Published in 2017 in the Journal of

Manufacturing Systems, Vol. 43, 195 -212

Please cite this article as:

Defersha, F. M. and Hodiya, A. (2017). A mathematical

model and a parallel multiple search path simulated

annealing for an integrated distributed layout and

machine cell formation. Journal of Manufacturing

Systems, Vol. 43, 195-212.

The online version can be found at the following link:

http://www.sciencedirect.com/science/article/pii/S0278612517300407

http://www.sciencedirect.com/science/article/pii/S0278612517300407

A Mathematical Model and a Parallel Multiple Search Path
Simulated Annealing for an Integrated Distributed Layout Design

and Machine Cell Formation

Fantahun M. Defershaa,∗, Abenet Hodiyaa,b,

aSchool of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
bCurrent address: PowerCor Manufacturing (Linamar), 545 Elmira Rd N, Guelph, Ontario, Canada N1K 1C2

Abstract

Facility layout problem is a well-researched problem of finding configurations of departments and

machines on a plant floor with the objective of improving material handling efficiency. With this

objective, different techniques of configuring facilities have been documented in literature. Among

them are cellular and distributed layouts. Cellular layouts are applicable in scenarios where demand

and product mix are relatively stable and rational part families/machine cells can be identified. With

this assumption, the literature provides many techniques for their design. Distributed layout, on the

other hand, are recommended in volatile environments where product demand and mix are changing

very rapidly. However, we argue that a real-life scenario may lay within the spectrum of these

two extremes. In this paper, we attempt to bridge this gap by developing a mathematical model

that integrates distributed layout design and machine cell formation with an objective to minimize

a weighted sum of material handling and inter cellular movement costs. Through distributing the

machines over the shop floor, the model attempts to minimize material handling cost. By identifying

possible machine cells and part families, it attempts to minimize inter cellular movements. At the

same time, the model ensures that machines that belong to the same cell are laid out on contiguous

physical locations so that the advantages of cellular manufacturing systems can be fully exploited.

Operations sequence, alternative routing, workload balancing among cells and other pragmatic issues

are also incorporated in the model. We developed a parallel multiple search path simulated annealing

to solve the proposed model efficiently. Several numerical examples are presented to illustrated the

model and the computational performance of the developed algorithm.

Keywords: Mathematical Model; Distributed Layout; Cell Formation; Multiple Search Path
Simulated Annealing; High Performance Parallel Computing.

1. Introduction

Over the past 50 years, group technology and its implementation via cellular manufacturing sys-

tem (CMS) can be regarded as one of the most significant advances in the quest for faster, better,

cheaper production and delivery of manufactured goods (Askin, 2013). It is a production philos-

ophy aimed at increasing productivity by utilizing the similarities of products in their design and

manufacturing attributes. CMS in particular involves (i) grouping parts having similar processing

∗Corresponding author
Email address: fdefersh@uoguelph.ca (Fantahun M. Defersha)

Preprint submitted to Journal of Manufacturing Systems April 5, 2017

requirements into part families, and (ii) organizing dissimilar machines along other supporting re-

sources and operators into relatively autonomous cells such that each cell produces a part family

with at most efficiency. Surveys on CMS user industries were conducted by Askin and Estrada

(1999), Hyer and Wemmerlöv (1989), Wemmerlöv and Johnson (1997) and Wemmerlöve and Hyer

(1989) and all found astounding results. In some of these surveys, respondents reported on average

reductions of cycle time by 61%, setup time by 53%, distance/move time by 61%, response time

to customer by 50% and work-in-process inventory by 48%. Improvements in product quality and

job satisfaction, on average, by 31% and 27%, respectively, were also reported along with many

other benefits. To this end, since the early pioneer articles by McAuley (1972), Rajagopalan and

Batra (1975) and King (1980), CMSs have attracted more than 40 years intensive research in various

aspects of their design and operations.

The central theme in the vast majority of those researches has been part family and machine

cells formation. The most influential articles in this area that have received more than 220 citations

each (more than 10 citations per year since their publication as per Google Scholar) include Ballakur

and Steudel (1987), Chandrasekharan and Rajagopalan (1986), Choobineh (1988), Gonçalves and

Resende (2004), Vakharia and Wemmerlöve (1990) and Wemmerlöv and Hyer (1986). Multi-period

cell formation with dynamic reconfiguration have also been proposed in literature. Prominent article

in this area with higher rate citations per year are Defersha and Chen (2006), Kioob et al. (2009)

and Safaei et al. (2008). The determination of the physical locations of the machines and the cells

has also been a subject of research since the 1990’s. To the best of our knowledge, the very first

mathematical model for an integrated facility layout and cell formation was proposed in Alfa et al.

(1992). The model attempts to determine the locations of the machines from a fixed reference point

and at the same time identify the cells to which the machines belong where the areas of the cells are

given a priory. Integrated cell formation and a linear or a u-shaped inter-cellular layout (without

detail layout of machines) was reported in Arvindh and Irani (1994). A mathematical model and

simulated annealing for cell formation and layout design was proposed in Wang et al. (1998) where

the main structure of the cellular system is given. Krishnan et al. (2012) developed hierarchial cell

formation and facility layout procedure. At the top level of the hierarchy, machine cells and part

families are identified. Based on the formed machine cells, a genetic algorithm is used to layout the

machines based on a simple S-shaped space filling curve (the concept of space filling curvets in facility

layout was initially introduced in Bozer et al. (1994)). There are also other numerous studies for

facility layout in cellular manufacturing. The most recent once include Kia et al. (2015), Forghani

et al. (2015) and Mohammadi and Forghani (2016). Kia et al. (2015) developed an integrated

cell formation and layout where the cells can have unequal areas. The cells are restricted to be

rectangular in shape. Forghani et al. (2015) combined the quadratic assignment problem (QAP)

with two-dimensional facility layout problem and then formulate an integrated cell formation and

layout problem and solve the problem using genetic algorithm. It was assumed machines in each cell

are arranged in a single row. This work was later expanded to an S-shaped layout in Mohammadi

and Forghani (2016).

Though cellular manufacturing systems are widely accepted as being superior to traditional pro-

cess layout, there are several studies that challenge those claims (see for example Suresh and Mered-

ith (1994), Flynn and Jacobs (1987) and Morris and Tersine (1990)). Primary concerns regarding

the suitability of CM is its inflexible to changes in demand and workload patterns (Kannan and

2

Ghosh, 1995). It is assumed that part spectrum and demand are almost stable for a considerable

long planning horizon (2-5 years) (Baykasoglu, 2003). However, when product demand and mix are

volatile, meaningful part families and machine cells cannot be identified. In such scenarios, other

layout methodologies, that do not require machine cells be identified and dedicated to distinct part

families, such as fractal and holography/distributed layouts were proposed with the objective of

minimizing part travel distance/time. The notion of fractal factory originated from Warnecke (1993)

in which the mathematical concept of fractal geometry, used to describe objects that replicate their

whole structure, is applied in managing organizations. The theory suggested that organizations

be structured using fractal units that are self-similar, self-organizing, self-optimizing entities. This

theory was first applied to facility layout by the name fractal layout in Venkatadri et al. (1997)

and Montreuil et al. (1999) where fractal cells (having roughly the same composition of machines,

factories within factory) are to be dispersed in the shop floor. The main objective is to reduce

material movements by forming small multifunction fractal cells capable of processing most of the

demanded products. Other studies on fractal layout can also be found in Aririguzo et al. (2013)

and Saad and M. (2004). Holography layout was introduced in (Montreuil et al., 1993; Montreuil

and Venkatadri, 1991) in which machines are to be randomly dispersed through the shop floor. The

assumption is when product mix changes and new parts are introduced, efficient routes can easily

be identified that minimizes travel distances. The idea of this type of layout get a sizable attention

in literature by a different name, distributed layout (see for instance Urban et al. (2000); Benjaafar

and Sheikhzadeh (2000); Baykasoglu (2003); Lahmer and Benjaafar (2005); Baykasoğlu and Göçken

(2010); Hamedi et al. (2012); Nageshwaraniyer et al. (2013); Shafigh et al. (2017)). Urban et al.

(2000) proposed a model in which material flow requirements dictate the placement of machines

without following a functional or a cellular arrangement. Benjaafar and Sheikhzadeh (2000) showed

that creating replicates of the same department and distributing them throughout the plant floor

greatly reduce material handling cost in a stochastic product demand scenario. Lahmer and Benjaa-

far (2005) presented a procedure for the design of distributed layouts in settings with multiple periods

where product demand and product mix vary from period to period. Baykasoğlu and Göçken (2010)

conducted a simulation study on distributed and factional layouts and the authors demonstrated

that distributed layout can greatly reduce material handling time. Semi-distrusted layout deign

procedure using genetic algorithm was presented in Hamedi et al. (2012). Nageshwaraniyer et al.

(2013) developed a metaheuristic by incorporating the features of symbiotic and clonal algorithms to

solve a model for distributed layout. Shafigh et al. (2017) develop a linear programming embedded

simulated annealing to solve model that combines distributed layout, dynamic reconfiguration and

production planning.

The assertion from the above literature review is that cellular manufacturing systems are ap-

plicable when demand and product mix are relatively stable, whereas fractal or distributed layouts

are for a very volatile (chaotic as per Montreuil et al. (1993)) environment. However, we argue that

a real life scenario may always lay within the spectrum of these two extremes. In this work, we

attempt to bridge this gap by developing a mathematical model that integrates distributed layout

design and machine cell formation. In developing the model, we consider two primary objectives, one

from each category. The main objective in distributed layout is the minimization of travel distance

of parts by distributing resources to increase their accessibility from different regions of the layout.

Whereas, in cellular layout, the main objective is the minimization of inter-cellular movement by

3

enabling all parts in a family be processed within a single dedicated cell as much as possible. The

proposed model is aimed at minimizing a weighted sum of these two objectives. Through distributing

the machines over the shop floor, the model attempts to minimize material handling cost. By iden-

tifying possible machine cells and part families, it attempts to minimize inter cellular movements.

At the same time, the model ensures that machines that belong to the same cell are laid out on

contiguous physical locations so that the advantages of cellula manufacturing systems can be fully

exploited. Moreover, through identifying the machine cells over the distributed layout, detail inter-

cellular and intra-cellular layout are obtained. Operations sequence, alternative routing, workload

balancing among cells and other pragmatic issues are also incorporated. The proposed model can

also be used for virtual cell formation and reconfiguration (without physical machine relocation) over

a given distributed layout with a unique advantage of forming each virtual cell with a group of ma-

chines on contiguous physical location. Experimental results show that solving the proposed model

using off-the-shelf optimization packages is difficult even for small size problems. To solve the model

efficiently, we develop a multiple search path simulated annealing. We further enhance the algorithm

using high performance parallel computation. The remainder of the paper is organized as follows.

In Section 2, we present the proposed mathematical model. The solution procedure is in Section 3.

Numerical examples are in Section 4, illustrating the feature of the model and the computational

performance of the proposed algorithm. Finally, in Section 5 are discussion, conclusion and feature

research.

2. Mathematical Model

In this section, we develop a new mathematical model for an integrated distributed layout and

cellular manufacturing systems design. In doing so, we draw concepts from (i) irregularly shaped

departments facility layout, (ii) distributed layout and (iii) machine cell formation. As it is the case

in many studies (see for example Baykasoğlu and Göçken (2010); Hamedi et al. (2012); Lahmer and

Benjaafar (2005); Rosenblatt and Golany (1992)), we assume a rectangular factory floor divided into

grids in which machines are separated by one unit distance. Given this assumption, the problem

description, notations and mathematical formulation are detailed in the following subsections.

2.1. Problem description:

Consider a manufacturing facility processing P products using M machines installed on L loca-

tions (where L = M). Currently, it is assume that identical or similar machines are located close to

each other forming functional departments whereas each individual machine in the systems is given

a unique identifier (index) as m = 1, m = 2, · · · , m = M . A product p can be processed along

Rp alternative routes where an alternative route is defined as a sequence of machines required to

process a product from raw material to a finished good. For example, alternative routes for a typical

product can be given as Route-1: m = 2 → 4 → 5 → 3, Route-2: m = 2 → 4 → 7, and Route-3:

m = 2→ 4→ 8. This may be the case where the last two operations on machines 5 and 3 in Route-1

can be combined and performed on machine 7 if Route-2 is chosen, or on machine 8 if Route-3 is

chosen. Machines 7 and 8, in Route-2 and -3, respectively, may be two identical or similar machines.

The production volume of a product in the planing horizon can be split among its alternative routes.

Given L locations as shown in Figure 1-(a), the problem is to disaggregate the functional depart-

ments and distribute the machines (as shown in Figure 1-(b)) and identify machine cell (as shown in

4

Figure 1-(c)) in order to minimize the cost of material handling and the total number of inter-cellular

movements by all the parts. A particular location can be a member of a cell if it is adjacent (share

boundaries) with one or more locations in that cell. A cell should not have a disjoint sets of locations

(i.e. a single closed-loop boundary can be identified that contains all the locations of this cell and

none from other cells). This is to ensure that machines of a particular cell are laid out in contiguous

physical locations. Each machine has a capacity expressed in hours during the planning horizon and

therefore cannot be assigned a workload more than its capacity. The number of locations (machines)

that can be added to a particular cell has both lower and upper limits and the workload among the

cells need to be balanced. The notations used and the proposed mathematical model are presented

in the following subsections.

L11

M8

L10

L14

M21

M1

M24

L9

L18

L6

L25

M13

M19

M23

L7

L11

M2

M3 M5

L15

M25

M12

L24

L3L1

M11

M18

M15

L4 L5

L8

L13

M22

L2

L17

M14

M4

L19

L21

M17

M16

M6

M9

L16

M10

L12

L23 L24

M7

M20

L20

L6

M16

L3

M13 M9

L23

M5

M1

M2

M6

L9

M3

L12

L17

M19

L4

L13

M12

M4

L11

L19

M11

L1

M17

M7

L16

L8 L10

L17

L25

M22

L14

M24

L15

M10

L20

M8

L18

M21

(d)

M20M23

L5

L7

L2

M15

M18

M14

L22L21

L1L4

M16

M18

M12

M5

L15L12

L5

M13

M14

L19

M1

L21

L17

L23

M3

L1

M6

M23

L3

M25

L7

(c)

M4

L11

L8

M22

L14

L24

M20

L9

M21

L22

M17 M11

L20

M15

L10

L22

M7

M10

M8

M19

L25

M2

L2

(e)

L16

M24

L13

M9

L18

M5

L6 L7

M21

M23

L10

M11

M4M19 M16

M24

M13

L15

L22

M12

M17

M2

L3

M8

L16

L25

M6

L24

L17

L9

L19

M9

L18

L5

M1

L2

M20

L20

L13

M10

L14

M18

M7

M14

L8

M25

L11

M15

M22

L12

M3

L21

L6

L4

L23

M24

L18

M22

L15

M1

M3

L1

M20

L6

M2

(g)

L23

M12

M8

M10

M21

L25

M18

L10

L24

M14

M4

L9

M25

M16

M9M15M13

L5

L12

L22

L2

L21

M17

L20

L4

M5

L3

L13

L7

L16

L14

M23

M6 M7

M11

L17

L8

M19

L19

L11

M24

M1

M4

L13

L1

M25

L16

L6

M9

M23

(h)

M13

M7M12

L12

L17

M10

L2

M19

L25

M17

L11

L18

L10

L4

L15

M14

L3

M3

L9L7

M20

M16

L14

M2

M15

M6

L23

L5

M11M8

L22

L8

M21

L21

L19

M18

L20

M22

L24

M5

L1

L11

L5

L16

L10

M8

M9

L15

L8

(i)

L3

L21

M7

L9

M18

L12

M20

(f)

M10

L14

M22M1

M19

M15 M5

L13

M17

L23

M25

L18

M11

L6

L4

L22

M23

M14

M21

M13 M3

L19

M12

L7

L20L17

M16

M24

L2

M2

L24

M4

L25

M6

L12

L2

L9

L22

L17

L6

L23

L20

L10

L21

L8

L11

L10

L15L14

L3

L18

L25

L1

L19

L4

(a)

L5

L7

L13

L16

L6

L14

M2M4

M24

M17

M1

L20

M22

M11

L4

M20

M8

M23

L1 L2

M16

L24

M5M9

M19 M21

M10

L7

M7

L15

M6

M18

M12

L16

L22 L23

L3

M14

M13

L18

M25

L21 L25

M15

L9L8

L19

L24

(b)

L12

M3

L5

M25

L13

Figure 1: A typical machine distribution and a cell formation process based on location adjacency

2.2. Notations

Input Data and Indexes

M Number of machines where machines are indexed by m = 1, 2, ...,M .

P Number of products where products are indexed by p = 1, 2, ..., P .

Rp Number of alternative processing routes for product p where alternative processing routes

are indexed by r = 1, 2, ..., Rp.

5

Jp,r Number of operations of a product p along processing routes r where operations are

indexed by j = 1, 2, ..., Jp,r.

Mj,p,r The index of the machine type used to process operation j of product p along processing

route r.

Tp,r,j Processing time in minutes of operation j of product p along processing route r (on

machine Mj,p,r).

L Number of locations where locations are indexed by l = 1, 2, ..., L.

C Number of cells where cells are indexed by c = 1, 2, ..., C.

LB Minimum number of locations (machines) in a cell c.

UB Maximum number of locations (machines) in a cell LB = I.

I Same us UB where the order in which the locations are added to a cell is indexed by

i = 1, 2, ..., I = UB. (Note: Locations are added to a cell in certain order for the sake

of mathematical formulation. For example, one may say location l is the ith location to

be added to cell c. However, the final solution is not impacted by the order in which

locations are added to a cell.)

Υ Intercellular workload balancing factor.

Nl,l′ A binary data which equals to 1 if location l and l′ are adjacent, 0 otherwise;

El,l′ Material handling distance between location l and l′.

Fp Material handling cost per unit distance for a single product p.

Vp Intercellular movement cost per a single product p .

Dp Demand for product p during the planning horizon.

Km Capacity of machine type m in hours during the planning horizon.

Θ1 Objective function weight factor for the total material transportation cost.

Θ2 Objective function weight factor for the total intercellular movement cost.

M Large positive number.

Binary variables:

am,l A binary variable which equals to 1 if machine m is in location l, 0 otherwise;

xl,c A binary variable which equals to 1 if location l is in cell c, 0 otherwise;

ηj,p,r,c A binary variable which equals to 1 if operation j of product p along process plan r is

processed in cell c, 0 otherwise;

ql,i,c A binary variable which equals to 1 if location l is the ith location to be added to cell c,

0 otherwise; (also see the definition of the notation I)

ym,c A binary variable which equals to 1 if machine m is in cell c, 0 otherwise;

6

Continuous variables:

αp,r The production sublot size of product p along process plan r.

d̂p,r,j The distance between the locations where consecutive operations of product p along

process plan r are processed and multiplied by the sublot size αp,r .

Ωj,p,r,c The operation of the production sublot size of product p according to process plan r in

a cell.

2.3. Model Formulation

Based on the problem description and notations, the mixed integer non-linear mathematical

model for integrated facility layout and cell formation is presented below.

Minimize:

z = Θ1z1 + Θ2z2 (1)

Where:

z1 =
P∑

p=1

Jp,r−1∑
j=1

Rp∑
r=1

Fp × d̂p,r,j

z2 = (
1

2
)

C∑
c=1

P∑
p=1

Jp,r−1∑
j=1

Rp∑
r=1

(Vp×αp,r | (ηj+1,p,r,c − ηj,p,r,c) |)

Subject to:

xl,c ≤
∑

{l′|Nl,l′=1}

xl′,c ; ∀(l, c) (2)

ql,i,c ≤
i−1∑
i′=1

∑
{l′|Nl,l′=1}

ql′,i′,c ; ∀(l, i, c) | i > 1 (3)

C∑
c=1

I∑
i=1

ql,i,c = 1 ; ∀(l) (4)

I∑
i=1

ql,i,c = xl,c ; ∀(l, c) (5)

L∑
l=1

ql,i,c ≤ 1 ; ∀(i, c) (6)

LB ≤
L∑
l=1

xl,c ≤ UB ; ∀(c) (7)

C∑
c=1

xl,c = 1 ; ∀(l) (8)

am,l + xl,c ≤ ym,c + 1 ; ∀(l,m, c) (9)

7

L∑
l=1

am,l = 1 ; ∀(m) (10)

M∑
m=1

am,l = 1 ; ∀(l) (11)

C∑
c=1

ym,c = 1 ; ∀(m) (12)

ηj,p,r,c = ym,c ; ∀(j, p, r, c) | (m = Mj,p,r) (13)∑
∀(j,p,r)|Mj,p,r=m

αp,r · Tp,r,j ≤ Km ; ∀(m) (14)

P∑
p=1

R∑
r=1

Jp,r∑
j=1

Ωj,p,r,c ≥
Υ

C

P∑
p=1

R∑
r=1

Jp,r∑
j=1

C∑
c′=1

Ωj,p,r,c ; ∀(c) (15)

Ωj,p,r,c ≥ αp,r · Tp,r,j −M(1− ym,c) ; ∀(j, p, r, c) | (m = Mj,p,r) (16)

Ωj,p,r,c ≤ αp,r · Tp,r,j +M(1− ym,c) ; ∀(j, p, r, c) | (m = Mj,p,r) (17)

Ωj,p,r,c ≤M · ym,c ; ∀(j, p, r, c) | (m = Mj,p,r) (18)

d̂p,r,j ≥ El,l′ × αp,r +M(am,l + am′,l′)− 2M ;

∀(j, p, r, l, l′) | (j < Jp,r, m = Mj,p,r & m′ = Mj+1,p,r) (19)

d̂p,r,j ≤ El,l′ × αp,r −M(am,l + am′,l′) + 2M ;

∀(j, p, r, l, l′) | (j < Jp,r, m = Mj,p,r & m′ = Mj+1,p,r) (20)

Rp∑
r=1

αp,r = Dp ; ∀(p) (21)

am,l, xl,c, ym,c, ηj,p,r,c, & ql,i,c are binary. (22)

The objective function in Eq. (1) is a weighted sum of the number of the material handling cost

(z1) between all pairs of locations and intercellular movements cost (z2). The first term represents

the sum of the costs for the distances travelled from machine to machine by all the parts while being

processed from raw pieces to finished goods. As it can be seen in Benjaafar and Sheikhzadeh (2000),

this cost term can be minimized even without cell formation by simply distributing the machines over

the shop floor. Thus, this term is well aligned with the objective of distrusted layout design. The

second term of the objective function measures how well the system is disaggregated into relatively

independent cells which conforms with the main objective of cellular manufacturing system design.

Hence, in proposing this model, we are attempting to unify the concepts of distributed layouts and

cellular manufacturing systems with the objective of handling manufacturing scenarios that may not

be well addressed by either layout concepts independently.

The constraint in Eq. (2) states that a particular location l can be in cell c if it is adjacent

to one or more locations that belong to the same cell c. However, this constraint alone will not

prevent a cell from having two or more non-adjacent sets of locations as long as each set has more

than one location. In order to model the constraints that will prevent a cell from being disjoint, we

8

assume locations are added to a cell in a certain order as defined by the variable ql,i,c and a location

can be added to a cell if it is adjacent to one or more locations that are already added to the cell.

This is enforced by the constraint in Eq. (3) and is illustrated in Figure 1(d)-(i). For example, in

Figure 1(d), location L18 is assumed to be the first location being added to a cell. The potential

locations that can be the second addition to the cell are L13, L17, L19 and L23 as indicated by

the cross-hatch. Let Location L17 is the 2nd location to be added to the cell as shown in Figure

1(e) where the potential location for the 3rd addition are cross-hatched. This process continue in

a similar fashion and terminates when the number of locations added to a cell are within the lower

and upper limits. Eq. (4) states that a particular location l will be added exactly to one cell c in

one addition step i. The logical relationship between ql,i,c and xl,c is enforced by the constraint in

Eq. (5). In a particular addition cycle of a location to a cell, at most one location can be added

to the cell as stated by Eq. (6). The constraint in Eq. (7) is to enforce the lower and upper limits

on the size of a cell. A location l can be added to exactly one cell and this is enforced by Eq. (8).

The constraint in Eq. (9) enforces a logical relationship among the binary variable am,l, xl,c and

ym,c. A machine can occupy exactly one location, a location can be assigned to exactly one machine,

and a machine can belong to exactly one cell as enforced by Eqs. (10), (11) and (12), respectively.

The constraint in Eq. (13) defines the logical relationship between the binary variables ηj,p,r,c and

ym,c. Machine capacity constraint is enforced by Eq. (14). The constraint in Eq. (15) is to enforce

workload balancing among the cells where the factor Υ ∈ (0, 1) is used to determine the degree of the

workload balance. This constraint is similar to the workload balancing constraint appeared for the

first time in Defersha and Chen (2006). If the number of cells is C, the minimum allowable workload

of a cell is Υ
C × 100% of the total workload of the systems in terms of processing time. If Υ is chosen

close to 1.0, the allowable workload of each cell will be close to the average workload given by 100
C %

of the total workload of the systems. The constraints in Eqs. (16), (17) and (18) are to calculate

the workload in cell c because of the jth operation along the rth processing route of product p. The

total distance traveled by product p along its route r for the processing of its consecutive operation

j and j + 1 is calculated by Eqs. (19) and (20). The constraint in Eq. (21) states that the sum

of the sublots of product p along all of its processing routes should be equal to its total production

demand for the planning period. The integrality constraints are in Eq. (22).

2.4. Linearizing the Model

The proposed mathematical model is non-linear because of the absolute value in the objective

function. This term can be linearized in two steps. First, the absolute value | ηj+1,p,r,c − ηj,p,r,c |
is substituted by a binary variable zj,p,r,c with the additional constraints in Eqs. 23-25. Second,

the resulting quadratic term (αp,r · zj,p,r,c) is replaced by a continuous variable wj,p,r,c with another

set of additional constraints given in Eqs. 26-28. Here it is important to note that absolute value

| ηj+1,p,r,c − ηj,p,r,c | can be equal to 1 for at most one value of c. Hence, the subscript c can be

(and should be) dropped from zj,p,r,c and wj,p,r,c and these variables have to be replaced by zj,p,r and

wj,p,r, respectively, in Eqs. 23-28.

ηj+1,p,r,c − ηj,p,r,c ≤ zj,p,r,c ; ∀(j, p, r, c) | (j < Jp,r) (23)

− ηj+1,p,r,c + ηj,p,r,c ≤ zj,p,r,c ; ∀(j, p, r, c) | (j < Jp,r) (24)

zj,p,r,c ∈ {1, 0} ; ∀(j, p, r, c) | (j < Jp,r) (25)

9

wj,p,r,c ≥ αp,r +M · zj,p,r,c −M ; ∀(j, p, r, c) | (j < Jp,r) (26)

wj,p,r,c ≤ αp,r ; ∀(j, p, r, c) | (j < Jp,r) (27)

wj,p,r,c ≤M · zj,p,r,c ; ∀(j, p, r, c) | (j < Jp,r) (28)

3. Solution Procedure

Despite the importance and magnitude of the effort that has been put into computational science,

in many ways the construction of new algorithms remains more of an art than a science (Knoll et al.,

2005). Preexisting theories give little or no guidance for the choice of solution representation and

the design of search operators for new problems (Moraglio, 2007). In light of these and other similar

assertions from literature and based on our experience, we argue that a new problem usually requires a

new design of solution representation, initialization technique, implementation strategies, and search

operators. Many of these important components have been detailed in the following subsections in

relation to developing a simulated annealing for the proposed mathematical model.

3.1. Solution Representation

Solution representation is the first and the most important step in applying a metaheuristic algo-

rithm. It must be designed in such a way that all feasible solutions are accessible to the search process

and model constraints are encoded in it. The solution representation designed to solve the proposed

model is depicted in Figure 2. The left-hand-side segment (LHS-Segment) encodes the cell formation

through assigning a cell index cl ∈ {1, 2, · · · , C} to each location l. This encodes the variable xc,l and

the constraint in Eq. (8). The constraints in Eqs. (2)-(7) are being taken care by the initialization

process and the search operators as explained in the subsections 3.2 and 3.4. The middle-segment

(MDL-Segment) encodes the distributed layout design aspect of the mathematical model by assign-

ing a location index lm ∈ {1, 2, · · · , L} to each machine m. In this segment, {l1, l2, l3, · · · , lM=L} is

a permutation of the indices of M = L locations. Hence, an index of a particular location appears

exactly once to grantee the constraints in Eqs. (10) and (11). The RHS-Segment encodes the sizes

of the sublots αp,r. The element θp,r takes a binary value to indicate whether route r of product p

is used or not. In this segment, the summation
∑Rp

r=1 θp,r for each p should be kept to be greater

or equal to 1 to ensure that at least one route is opened. The size of a sublot of product p along

one of its route r is calculated using Eq. (29). This equation along with the requirement on the

RHS-segment that
∑Rp

r=1 θp,r ≥ 1 grantees the constraint in Eq. (21).

αp,r =
θp,r × βr∑Rp

r′=1(θp,r′ × βp,r′)
×Dp (29)

3.2. Initialization

Initializing the LHS-Segment: Randomly assigning a cell index cl ∈ {1, 2, · · · , C} to each

location l in the LHS-Segment of an initial solution will not provide a layout with cells that can be

demarcated from one another as shown in Figure 3-(f). In order to ensure that an initial solution

has cells that can be demarcated from one antother, we develop a simple initialization procedure.

The pseudocode of this procedure is provided in Pseudocode 1 and its implementation is exemplified

in Figure 3 where a total of 56 locations are to be demarcated into five cells. First, we arbitrarily

10

l

m

32

3

m=l=Ll= 2l=
1... m=M

L

r =

p=Pp=
2c 3c

cell to which location

 takes the index of the

LHS-Segment

m=l= 2 3

lM

1m=

3l

p =

r =

RHS-Segment

r =

l

lc
...

2

c

1
p=p=

1

is added

l

3

takes the index of the

details for product
c

is installed

location on which machine

1

...
MDL-Segment

1m

2

l

1

p=

1

qp, r takes a birany value 0 or 1 to indicate
wether route r of product p is used or not

... r = R1

q1,1 b1,1 q1,2 b1,2 q1,3 b1,3 b1,R1q1,R1

bp, r takes a real value between 0 and 1
to indicate the size of the sublot
along route r

Figure 2: Solution representation for an integrated cell formation and distributed layout

assign five locations as the starting locations for the five cells as shown in Figure 3-(a). This is in

line-(3) of Pseudocode 1 after setting a variable Feasible = False. In the first execution of the

“for-loop” (i.e. Iteration 1) from line-(5), the first location that can be added to a cell is location 3

as it is adjacent to location 11 that has already been added to cell 5 in a previous iteration (in this

case iteration-start). Location 4 cannot be added to a cell as it is not adjacent to any location that

has already been added to a cell in a previous iteration. This process continues up to l = 56 and

the result from this iteration is shown in Figure 3-(b). Since all the locations are not yet added to

the cells, the “while-loop” in line-4 calls for a second execution of the inner “for-loop” (i.e Iteration

2). Now let us examine this iteration when l = 35 (see Figure 3-(c)), in which case the location is

adjacent to two locations that were added to two different cells in the previous iteration (location 35

is adjacent to location 34 in cell 4 and to location 36 in cell 2). At this stage of the current iteration,

locations 17 and 26 have been already added to cell 4 making the total number of locations added

to this cell to be 6, and location 28 has been already added to cell 2 making the number of locations

added to cell 2 to be 6 as well. Since the number of location so far added to these cells are equal,

location 35 can be added to either cell 4 or cell 2. This tie is broken arbitral and the location is

added to cell 2. When this iteration continues and reaches l = 42, more locations have already been

added to cell 2 than to cell 4. Hence, location 42 is added to cell 4. This process continues to provide

the complete result of Iteration-2 as shown in Figure 3-(d). During the third iteration (see Figure

3-(e)), locations 1 and 5 can only be added to cell 5, locations 6 and 8 to cell 1. Location 29 can be

added either to cell 1 or 2. However, cell 2 has the smaller number of locations added so far than

cell 1, hence location 29 has to go to cell 2. By the same analysis, location 50 is added to cell 4.

At Iteration-4, all the locations are added to the cells as shown in Figure 3-(f) at which point the

inner “while-loop” exits, sending the control to line-16 (see Pseudocode 1). The number of locations

added to each cell are compared to the set lower and upper bounds (LB and UB). If one or more

cells do not meet this condition, the control will go back to line-3 and the whole process repeats. If

all the cells generated respect the bound limits, a solution can be initialized by coping the the final

location-cell assignments to the LHS-Segment as shown in Figure 3-(g).

Initializing the MDL- and RHS-Segments: Unlike that of the LHS-Segment, the initial-

11

Pseudocode 1: LHS-Segment Initialization

1 set Feasible = False
2 while Feasible=False do
3 start Arbitrarily identify C locations as a starting locations for the formation of the C

cells.
4 while there are locations that are not yet assigned to a cell do
5 for l = 1 to L do
6 if location l not yet assigned to a cell then
7 Identify all the cells that location l can be added
8 /* Before the current executions of this "for loop", if a cell has

one or more locations already added to it that are adjacent to

location l, then this cell is a potential cell to which location l
can be added. Locations added to a cell in the current execution

of this "for-loop" are not used for adjacency test to add a new

location to this cell, but are added to the locations count which

can be used for tie braking in the following "if-statement". */

9 if there are one or more cells to which location l can be add then
10 Assign location l to the cell that has the smallest number of locations

assigned to far; break ties arbitrarily.
11 Increase the number of locations assigned to this cell by one.

12 end

13 end

14 end

15 end
16 if the number of locations added to cell each is within the lower and upper limits then
17 set Feasible = True
18 end

19 end

izations of the MDL- and RHS-Segments are quite intuitive. The MDL-Segment can be initialized

by randomly permutating the indices of M = L locations and copy the resulting permutation,

[l1, l2, l3, · · · , lM |lm 6= lm′∀(m 6= m′) & lm ∈ {1, 2, · · · , L}], to this segment. RHS-Segment is initial-

ized in such a way that the θ and the β corresponding to each route r of a product p are assigned (i)

a binary value 0 or 1 and (ii) a real value between 0 and 1, respectively. In this initialization process,

corresponding to each product p, one has to make sure that at least one of its θ’ is set to 1 to ensure

the opening of at least one route for this product. The overall initialization procedure takes only few

minutes to generate several thousands of starting solutions for large size problems. Hence, it incurs

no computational burden on the algorithm.

3.3. Evaluation

The purpose of evaluation in a metaheuristic is to measure the relative goodness of candidate

solutions with respect to the objective function and the constraints of the model to be solved. The

solution representation along with the initialization procedure discussed in the previous subsections

and the search operators (see subsection 3.4) satisfy many of the model constraints. The only

constraints that may be violated by a randomly generated solution are the machine capacity and the

workload balancing constraints in Eqs. (14) and (15), respectively. Hence, a measure of goodness

12

C3

C5

29

C5

C2

C3

C1

C4

3 5

38

11

34

10 15

82

14

1

9

6

18 22

12

C5

2119

16

17 23 2420

26

37

27 2630 31 3228

34

45

3533 38 39 4036

42

35

4341 46 47 4844

50 535149 54

14

51

C5 C5 C1 C1

C2

C4

C5 C1 C1

C2

C3

C4

9 53

(a) Start

20

(b) Iteration-1

...

C3

55

3

3

LHS-Segment

5 55

1l= 2

45

l=

5

l=4

5

l=l=

1

l=6

1

l=7

1

l=8

5

10l=

C3

l=

C5

2

l=51

2

l=52

2

C5

C4

3

l=54

C4C3

C3C3C2

56l=

3

C3

C3

3

54

13

56

26

C3

25

C2

19

55

15

C1

C2

45

22

7

C5

3

41

28

11

31

21

52

5

30

7

C3

7

39

C4

23

44

1

C1

C5

13

38

10

18

C1

5

14

46

26

33

27

6

C3

12

17

C4

C2

C5

5149

C5

4842

20

46

52

11

37

12

54

8

C5

29

36

55

22

C1 C1

4

C4

C4

20

C2

35

4

C2

32

C3

C3

29

46

C5C5

37

48

C1C1

C1

5

C3

2725

C2

18

C2

C2

C2

C1

C3

C2

C4

10

51

18

C3

C1

42

C3

C4

24

37 40

l=

C2

47

C3

C5

7

32

2120

38

C1

6

25

C5

C5

C2

3

C1

43

50

C5

9

23

13

C1

52

C5

C3

4

C2

C1

C3

C5

C5

C2

C1

16

46

36

53

C5C5

C2

8

29

39

C2

C3

C1

11

27

5

56

C5

C4

C4

31

C2

C1

41

35

45

14

49

C1

C4

12

30

2

C2

44

C4

33

17

C1

C1

C4

C2

54

C5

C1C5

C3

34

C4

28

C5

C4
48

15

C1

C5

55

C2

19 17

C1

C1

11

56

C4

42

C5

50

C1

C3

37

6

15

40

4

C1

50

45 47

7

23

16

29

44

38

41

C5

22

C1

41

31

C5

8

C4

C5

28

10

43

C2 C3

C1 C1

C2

9

53

C5

C2

C3

13

34

19

12

C2

30

C4

C5

25

C2

32

1

C1

49

C4

C5

22

39

C4

24

C2

C5

C3

36

52

C5

2

33

C3

20

C4

C5

C3

17

C3

9

5

C3

53

42

25

2 8

C5

14

43

16

19

C2

C4

28

C5

15

C5C4

C4

53

C2

C5

30

C3

10

C2

16

40

21

C5

45

32

55

C3

33

C1

23

C5

C2

27

44

5156

24

C5

40

C1

C4

34

C2

C1

C1

1

5249

9

18

C1

C5

36

C1

35

C1

48

C1

C4C1

C2

C5

43

C5

56

21

2 4

31

63

24

13

C1

C1

C2

C4

C5

5

C5

C1

C4 C4

C3

50

C3

C2

47

C1

47

C1

39

C5

C4

C2

C3

55

C3

40

C4

39

C3

C2

10

47

6 8

41

51

18

2

23

26

55

44 48

C1

1

35

4

21

C2

16

32

17

15

C3

29

9

C4

11 13

31

C1

C1

C4

34

7

25

46

C2

54

22

C2

C3

14

3

C3

5

28

3633

C5

42

C5

C5 C5

26 27

C4

12

43

C5

24

52

37

C2

30

5350

1

C3

19

38

5649

C5

C1

C1

l=

54

(g) Initialization

(f) Iteration-4(e) Iteration-3(d) Iteration-2 completed

C2??

(c) Iteration-2 up to l = 35

Figure 3: Initialization of the LHS-Segment where an iteration is a single execution of the “for-loop” of Pseudocode 1

of a solution should involve penalty terms proportional to any violations of these constraints. This

measure of goodness is give in Eq. (30). In this equation, the first two terms are the two terms of

the objective function of the mathematical model. The last two terms are penalties for violations of

machine capacity and workload balancing constraints, respectively.

E = Θ1z1 + Θ2z2 + Θ3z3 + Θ4z4 (30)

Where:

z1 =
P∑

p=1

Jp,r−1∑
j=1

Rp∑
r=1

Fp × d̂p,r,j

z2 = (
1

2
)

C∑
c=1

P∑
p=1

Jp,r−1∑
j=1

Rp∑
r=1

(Vp×αp,r | (ηj+1,p,r,c − ηj,p,r,c) |)

z3 =
M∑
m

max

0,

 ∑
∀(j,p,r)|mj,p,r=m

αp,r · Tp,r,j

−Km


z4 =

C∑
c

max

0,
Υ

C

P∑
p=1

R∑
r=1

Jp,r∑
j=1

C∑
c′=1

Ωj,p,r,c −
P∑

p=1

R∑
r=1

Jp,r∑
j=1

Ωj,p,r,c


In order to evaluate the measure of goodness given in Eq. (30), it is not necessary to explicitly

decode all the variable ηj,p,r,c, d̂p,r,j , and Ωj,p,r,c from a solution under consideration and apply

13

the equations. Instead, one can take advantage of the structure of the solution representation and

compute the measure without explicitly decoding these variables as shown in Pseudocodes 2 and 3.

In these pseudocode, it is assumed that a solution X is a data structure that can be dot operated to

access its member data. For example, the index of the cell cl to which location l is assigned and the

index of the location lm on which machine m is installed can be accessed from this solution using a dot

operator as X.LHS-Segment.Location[l].cl and X.MDL-Segment.Machine[m].lm, repsectively

(see Figure 2 for the solution strucutre). Similarly, X.RHS-Segment.Product[p].Route[r] can

be dot operated in order to access the values of θr and βr. With this assumption, the pseudocodes

for evaluating Eq. (30) are partly explained as follows.

Pseudocode 2 is for calculating the costs of material handling z1 and the inter cellular movement

z2. In lines 6 and 7 of this pseudocode, two locations (l and l′) of two machines (Mp,r,j and Mp,r,j+1)

required to process two consecutive operation (j and j + 1) along an opened route r of product p

are obtained from a solution. Then, in line 8, the material haling cost between these two locations is

recursively added to z1. In lines 9 and 10, the cell indices (c and c′) are obtained in which these two

consecutive operations are performed. If these two indices are not equal, then intercellular movement

cost is recursively added to z2 in line 12. The machine capacity and workload balancing constraints

violations are computed in Pseudocode 3. In line 10, the load to process operation j of product

p along an opened route r is recursively added to the total system load. This operation is to be

performed on machine Mp,r,j and the load on this machine is incremented in line 10. The location

l on which this machine is installed is obtained in line 12 and, in line 13, the cell index c to which

this location is assigned is obtained. Then, the load on this cell is incremented. Once the loads on

the system, on each machine and on each cell are calculated, the violation of machine capacity and

workload balancing constraints are recursively computed in lines 22 and 28, respectively.

Pseudocode 2: Calculating z1 and z2 of a solution X

Input: Using Eq. (29), calculate αp,r for each p ∈ {1, 2, · · · , P} and r ∈ {1, 2, · · · , Rp}
1 for p = 1 to P do
2 for r = 1 to Rp do
3 if X.RHS-Segment.Product[p].Route[r].θr = 1 then
4 for j = 1 to Jp,r − 1 do
5 l = X.MDL-Segment.Machine[Mp,r,j].lm
6 l′ = X.MDL-Segment.Machine[Mp,r,j+1].lm
7 z1 = z1 + (Fp × El,l′ × αpr)
8 c = X.LHS-Segment.Location[l].cl
9 c′ = X.LHS-Segment.Location[l′].cl

10 if c 6= c′ then
11 z2 = z2 + (Vp × αp,r)
12 end

13 end

14 end

15 end

16 end
17 /* For many of the notation, see Section 2.2 and Section 3.1. */

14

Pseudocode 3: Calculating z3 and z4 of a solution X

Input: Using Eq. (29), calculate αp,r for each p ∈ {1, 2, · · · , P} and r ∈ {1, 2, · · · , Rp}
1 float LoadOnMachine[M] /* Load on machine m = 1, 2, · · · ,M */

2 float LoadOnCell[C] /* Load on cell c = 1, 2, · · · , C */

3 float TotalSystemLoad; /* Total workload on the system */

4 /* Calculate the load on each machine, the load on each cell, and the total

workload on the system */

5 for p = 1 to P do
6 for r = 1 to Rp do
7 if X.RHS-Segment.Product[p].Route[r].θr = 1 then
8 for j = 1 to Jp,r do
9 TotalSystemLoad = TotalSystemLoad + Tp,r,j × αp,r

10 LoadOnMachine[Mp,r,j] = LoadOnMachine[Mp,r,j] + Tp,r,j × αp,r

11 l = X.MDL-Segment.Machine[Mp,r,j].lm
12 c = X.LHS-Segment.Location[l].cl
13 LoadOnCell[c] = LoadOnCell[c] + Tp,r,j × αp,r

14 end

15 end

16 end

17 end
18 /* Calculate machine capacity constraint violation */

19 for m = 1 to M do
20 if LoadOnMachine[m] > Km then
21 z3 = z3+LoadOnMachine[m] - Km

22 end

23 end
24 /* Calculate workload balancing constraint violation */

25 for c = 1 to C do

26 if LoadOnCell[c] < Υ
C×TotalSystemLoad then

27 z4 = z4 +
(

Υ
C × TotalSystemLoad− LoadOnCell[c]

)
28 end

29 end
30 /* For many of the notation, see Section 2.2 and Section 3.1. */

3.4. Search Operators

A typical solution encodes the decisions regarding the boundaries of the cells, the distribution of

machines on shop floor, and the sizes of the sublots of the products. Thus, in searching the solution

space, operators are needed that can alter the traits of a solution that determined these interre-

lated decisions while respecting model constraints. These operators are described in the following

subsections.

3.4.1. Cell Boundary Perturbation Operator

Cell boundary perturbation operator (CBPO) modifies the boundaries of the cells by changing

the cell assignments of locations. CBPO, while achieving boundary perturbation, is also required

to ensure that all the locations of a particular cell are always within a single closed-loop boundary

and respect the lower and upper bounds on the sizes of the cell. In applying this operator, the

information in the LHS-Segment of the solution is first mapped into a rectangular greed of the specific

15

layout problem being solved. Once the perturbation operator is applied, the resulting cellular layout

is copied back to the LHS-Segment. In order to describe this operator, additional notations and

definitions are given here under where the examples are based on Figure 4 in which there are five

cells with their sizes being limited between LB = 4 and UB = 6.

Additional Notations and Definitions (Refer to Figure 4-(a) for the examples):

NALOC(l) Number of Adjacent Locations to location l that are Outside the Cell to which location

l belongs. If NALOC(l) > 0, location l in a given cell shares boundary with other

location(s) in another cell(s). E.g., NALOC(18) = 0; NALOC(17) = 2.

NALWC(l) Number of Adjacent Locations to location l that are Within the same Cell to which

location l also belongs. E.g. NALWC(18) = 4; NALWC(19) = 1.

NL(c) Number of locations in cell c. E.g. NL(1) = 5, NL(3) = 6.

Donor A donor cell is a cell that release a location for an adjacent cell when CBPO is applied.

Recipient A recipient cell is a cell that receive an additional location from an adjacent cell when

CBRO is applied.

Donatable A location is said to be debatable if it can be donated to an adjacent cell without

causing the donor cell be fragmented. A cell is fragmented if a single closed-loop

boundary cannot be identified that contains all member locations of this cell and none

from other cells.

Bond(l, c) The set of edges that a given location l in cell c is adjacent with other locations that

belong to the same cell c where an edge is identified as North(N), East(E), West(W)

or South(S) edge. E.g. Bond(1, 1) = {E}; Bond(3, 1) = {S, W}; Bond(18, 3) = {N,

E, S, W}; Bond(1, 2) is undefined since location 1 is not in cell 2.

NE(l) The location situated in the NE corner of location l. E.g. NE(6) = 2; NE(13) = 9;

NE(3) is undefined.

NW(l) The location situated in the NW corner of location l. E.g. NW(7) = 1; NW(24) = 18;

NW(16) is undefined.

SE(l) The location situated in the SE corner of location l. E.g. SE(13) = 19; SE(14) =20;

SE(20) is undefined.

SW(l) The location situated in the SW corner of location l. E.g. SW(13) = 17; SW(14) =

18; SW(16) is undefined.

Given the above definitions, Table 1 provides the different sets of conditions for a location to be

donatable. For location l in cell c to be donatable, condition Set-0 and one of the conditions set from

the remaining 9 sets must be satisfied. Condition Set-0 states that for a location to be donatable, (a)

it must lie along a cell boundary and be adjacent to another cell (mathematically NALOC(l) > 0),

and (b) the size of the donor cell should be higher than the lower bound (i.e. NL(c) > LB). Give

the conditions in Set-0, if one of the conditions set from Set-1 to Set-9 is also satisfied, the donor

16

cell will not be fragmented if the location is donated to a recipient cell. For a cell to be recipient, it

should have lesser number of locations than the upper bound (NL(c′) < UP) and be adjacent to a

donatable location from the donor cell. Figure 4 illustrates examples of allowable and not allowable

boundary perturbations. For example, the move from (a) to (b) is allowed since location L6 from

the donor cell C5 satisfies conditions Set-0 and Set-1 and the recipient cell C1 satisfies the conditions

NL(1) < UP . The move from (c) to (d) is not allowed because the size of recipience cell C1 is already

equal to upper bound and adding more locations to this cell will violate upper bound constraint. The

move from (e) to (f) is not allowed because location L16 salsifies only Set-0 (and none from Set-1 to

Set-9). Moving this location to cell C3 will cause cell C2 be fragmented. The CBPO operator always

perform only allowable boundary changes. Now let as consider the procedure how this operator was

applied for the move from (a) to (b). First a list of donatable locations are generated as shown

in the first column of Table 2. The corresponding conditions that these locations stratify to be

donatable are indicated in the second column of this table. Once, the list of donatable locations are

generated, potential recipient cells are determined for each donatable location as shown in the third

column. The last step is then to arbitrarily select one of the donatable locations that have recipient

cell and assign this location to its recipient cell (if there are more than once recipient cells, select

one arbitrarily). In this first application, location 6 was chosen arbitrarily from the many donatable

locations and it was assigned to cell 1. This decision is indicated in fourth column of Table 2 and

the resulting configuration is depicted in Figure 4-(b)). A second application of CBPO (the layout

in Figure 4-(b) as a starting configuration) is illustrated in the last four columns of Table 2 and the

resulting configuration is shown in Figure 4-(c). In the search process, this operator is applied on a

solution with a probability δ1.

Table 1: Conditions for a given location l in a given cell c to be donatable to other adjacent cell.

Conditions Set Descriptions of Conditions Conditions Set Descriptions of Conditions

0
(a) NALOC(l) > 0

5
(a) NALWC(l) = 2

(b) NL(c) > LB (b) Bond(l, c) = {S, E}
(c) SE(l) is also in cell c

1
(a) NALWC(l) = 1

6
(a) NALWC(l) = 3
(b) Bond(l, c) = {N, E, W}
(c) NE(l) and NW(l) are also in cell c

2
(a) NALWC(l) = 2

7
(a) NALWC(l) = 3

(b) Bond(l, c) = {N, W} (b) Bond(l, c) = {N, E, S}
(c) NW(l) is also in cell c (c) NE(l) and SE(l) are also in cell c

3
(a) NALWC(l) = 2

8
(a) NALWC(l) = 3

(b) Bond(l, c) = {N, E} (b) Bond(l, c) = {N, W, S}
(c) NE(l) is also in cell c (c) NW(l) and SW(l) are also in cell c

4
(a) NALWC(l) = 2

9
(a) NALWC(l) = 3

(b) Bond(l, c) = {S, W} (b) Bond(l, c) = {S, E, W}
(c) SW(l) is also in cell c (c) SE(l) and SW(l) are also in cell c

NOTE: A donatable location must satisfy conditions Set-0 and one set from the remaining 9 sets.

3.4.2. Other Search Operators

The other operators need to be developed are for perturbing a solution to alter location as-

signments of the machines and sizes of sublot. These operators are named as Machine-Location,

Alternative-Route, and Sublot-Size Perturbation Operators (MLPO, ARPO and SSPO, respectiv-

ley). MLPO operates in the MDL-Segment of a solution by arbitrarily selecting two machines and

17

NL(1) not < 6}

and Set-6} & {NL(2) < 6}

C2

and Set-1} and {NL(1) < 6}

L9 to C1

C5

C1

L14

C2 C3

L23

C1

C2

C4

L16

L9

C3

L12

L6

C2

L4

L13

C4

C4

L11

L19

C4

L1

C1

C5

C1

L8

C2

L10

L25

C3

L24

C2

L15

C3

L20

C1

L18

L3

L17

C5C3

L5

L7

L2

C3

C5

C4

L22L21

(a)

L23

L12

C1

L21

C3

L2

C5

C2

L17

L13

L19

C1

L4

C4

L22

C2

L1

C5

L6

L15

C5

L20

L11

C1

C3

C1 C4

C1

L7

C3

C3

(b)

L9

L5

C4

C4

C3

C5

L16

L25

L18

C3

C1

L10

C4

L24

C2

L14

C2

L8

L3

L6

C1

L7

L16

C3

L13

C4

C3

C1

L24

C4

C4

L1

C3 C5

L21

L11

L10

L17

C4

L3 L4

C2 C5

L9

L12

L20

C4

C2

L19

C1

C5

L25

C1

L5

C2

L22

(c)

L23

C5

L18

L2

C1

C3

C1

L8

C5

L14

 = 4 and

Allowed: {L23 satisfies Set-0

L7 to C2

C2

L15

C3

L6 to C1

 = 6

L23 to C5

C4

L17

L22

L16

L9

C3 C5

L6

L19

C4

C2

L18

L13

C1

C1C1

L20

L5

L23

L12

C3

C3C2

C1

L24

C5

L11

C3

C5

C1

C4

L25

C2

L14

L1

C2

L3 L4

L21

C5

L15

C5

C4

L8 L10

L2

C4

C4

(e)

C3

L7

L1

L6 L6

L1

C4

L5

(f)

C1

C4

C4

L21

C5

L23

L4

C3

L18 L16

L11

C5

L18

C3

L13

C3

C4

L12

C1

C3 C3

L14

C2

L17

C1

C1

C3

C5

L20

L24

C3

L22

C1

L7

L16

C4

L2 L5

C4

C4

L3

C3

C1 C4

C4

L8

C2

L15L15

C1 C1

C5

C2 C3

C2

C4

L10

L20L19

L23

C1

L9

L13

C5

L2

L8

L12

L17

L25

C1

L25

C2

(i)

C5

L11

C2

C5

L4

C2

L22

C1

L3

L9

C4

L21

C3

C1

L24

L10

C5

Set-0 and Set-1} & {but

L19

C5

L7

C2

L14

L4 to C1

Not allowed:{L9 satisfies only Set-

L1

L21

C5

L10

L4

L23

L6

C2

C2 C3 C5

L14

C4

C5

L2

C1

C3

C2

L22

L17

C4

C1

L24

(d)

C5

L16

L9

L15

C4

L3 L5

C1

L20

C1

C3

C4C1

C5

L11

C2

C1

L25

L7

L12

L18

L13

L19

C3

C1

Allowed: {L19 satisfies Set-

L8

L20

C2

L1

C3

C5

C3

C4

(g)

C4

L13

L9

C1

C1

L16

L6

L5

C3

L4

L23

L18

C5

L10L7

L22

C2

L14

C1

L24

C4

C3

C2

L8

C2

C5

C4

C1

C1

C5C3

C3

L15L11

L21

L2

L25

C2

C4

L17 L19

L12

L3

UP

and Set-2} & {NL(5) < 6}

Allowed: {L7 satisfies Set-0

0 and Set-1} & {NL(1) < 6}

L16 to C3

Allowed: {L6 satisfies Set-0

0 but none from Set-1 to Set-9}

LB

Not allowed:{L4 satisfies

Not allowed:{L16 satisfies only Set-

0 but none from Set-1 to Set-9}

L19 to C4

Figure 4: Examples of allowed and not allowed cell boundary changes: In each allowed move, (i) the location from the
donor cell satisfies conditions Set 0 and one set of conditions from the remaining 9 sets of Table 1, and (ii) the size of
the recipient cell is lower than the upper limit

swapping their location assignments with a small probability δ2. ARPO applied with a small proba-

bility δ3 on each θp,r in the RHS-Segment of a solution to flip its value from 0 to 1 or vice versa. In

applying this operator, it is also necessary to keep
∑Rp;

r θp,r ≥ 1 so that each product p has at least

one of its route opened for its processing. SSPO applied with a small probability δ4 on each βp,r to

arbitrarily step-up or down its value with a step amount ϕ using equation βp,r = min{1, βp,r + ϕ}
or βp,r = max{0, βp,r − ϕ}, respectively. Each time this operator is applied, the step amount ϕ is

determined with the equation ϕ = ϕmax × Rand() where ϕmax ∈ (0, 1) is algorithm parameter and

Rand() is a function generating a random number in (0, 1).

3.5. Simulated Annealing

The design of the components of the solution procedure presented in the previous subsections

are unique to solving the newly proposed mathematical model. However, the fundamental concept

of simulated annealing (SA) is the same across domains. The name and inspiration came from a

technique called annealing in metallurgy, used to reduce the hardness of a metal by heating and

gradual cooling. This gradual cooling is interpreted as a gradual decrease in the probability of

accepting worse solutions as the SA explores a search space in which a particular solution X is

analogous to a state a physical system and a function E(X) to the internal energy of that system at

that state. The goal of the search is to bring the system from an arbitrary initial state X0 of high

internal energy E to a state where this energy is at its minimum possible. In doing so, the algorithm

visits a sequence of solutions X0, X1, · · · , Xn, Xn+1, · · · , XN where this sequence of visitation is

18

Table 2: Procedure of the applications of CBPO for the moves from (a)-(b) and (b)-(c) in Figure 4

First application: Figure-4(a) to Figure-4(b) Second application: Figure-4(b) to Figure-4(c)
Condition sets Potential Arbitrarily Condition sets Potential Arbitrarily

Donatable satisfied recipient chosen Donatable satisfied recipient chosen
location Set-0 & Set- cell(s) move location Set-0 & Set- cell(s) move

1 1 2 3 4 4
3 4 4 4 5 None*
4 5 1 6 3 2
6 1 1 L6→C1 7 6 2
7 3 2 8 2 4
8 2 4 10 2 5
10 2 5 13 1 4
12 1 1 14 1 5
13 1 1, 2, 4** 17 5 2
14 1 5 19 1 4, 5
17 5 2 22 3 2
19 1 4, 5 23 2 5 L23→C5
21 1 None*
22 3 2
23 2 5

*The size of the only adjacent recipient cell is already at the upper bound.
**If location 13 were to be donated, one of the three recipient cells will be selected arbitrarily.

guided by Eq. (31). In this equation, X ′n is a neighborhood solution generated by slightly perturbing

Xn. The parameter Tn is the temperature at the nth iteration. The corresponding sequence of

Tn is generated in such a way that Tn+1 ≤ Tn with its value approaching to zero as n increases.

This sequence of temperature is called cooling schedule and the common approach is to keep the

temperature at the same level for Q number of iteration and then reduce its value with an equation

Tn = Tq = λTq−1. The subscript q is incremented by one every Q iterations. The coefficient λ, called

the cooling exponent, has a value close to but less than one.

Xn+1 =



X ′n if E(X ′n) ≤ E(Xn)

X ′n with a probability of
(

exp
[
E(Xn)−E(X′n)

Tn

])
Xn otherwise

(31)

In the basic SA discussed above, a single search path (X0, X1, · · · , Xn, Xn+1, · · · , XN) is

followed which is also a common implementation approach in literature. However, from the point of

view of performance, following a single search path may not be necessary or advisable (Lee and Lee,

1996). In this paper, we adopt an implementation of SA similar to those reported in Defersha and

Chen (2008) and Defersha (2015) which involves multiple search paths and parallel computation as

illustrated in Figure 5. In this figure, Xp,s,n is the solution at the nth iteration along the sth search

path in the pth process (a process is an instance of SA with S search paths that is being executed

by one computing unit, core, or cpu). For better result, the search paths within a process may

communicate every Z1 iteration to start the search from the best solution so far known within that

process at the current temperature level. Moreover, the processes may communicate every Z2 � Z1

iteration to restart their search paths from the best solution so far known across all the processes.

SA was chosen over genetic algorithm (GA) because it was not possible to design a meaning-

ful crossover operator that cuts the LHS-segment into sub-segments and exchange between parent

19

Nnn XXXXXXX ,1,11,1,1,1,13,1,12,1,11,1,10,1,1 ,,,,,,,  

Nnn XXXXXXX ,1,11,2,1,2,13,2,12,2,11,2,10,2,1 ,,,,,,,  

NSnSnSSSSS XXXXXXX ,,11,,1,,13,,12,,11,,10,,1 ,,,,,,,  

..
.

Nnn XXXXXXX ,1,21,1,2,1,23,1,22,1,21,1,20,1,2 ,,,,,,,  

Nnn XXXXXXX ,1,21,2,2,2,23,2,22,2,21,2,20,2,2 ,,,,,,,  

NSnSnSSSSS XXXXXXX ,,21,,2,,23,,22,,21,,20,,2 ,,,,,,,  

NPnPnPPPPP XXXXXXX ,1,1,1,,1,3,1,2,1,1,1,0,1, ,,,,,,,  

NPnPnPPPPP XXXXXXX ,1,1,2,,2,3,2,2,2,1,2,0,2, ,,,,,,,  

NSPnSPnSPSPSPSPSP XXXXXXX ,,1,,,,3,,2,,1,,0,, ,,,,,,,  

..
.

p = 0

p = 1

p = P-1

s = 1

s = 2

s = S

s = 1

s = 2

s = S

s = 1

s = 2

s = S

..
.

..
.

..
.

..
.

..
.

..
.

Figure 5: Schematics of a multiple search path parallel simulated annealing (the search paths are allowed to
communicate within and across processors periodically).

chromosomes, since such exchange will generate solutions with disjoint cells (violating model con-

straints). Nevertheless, we tried to retain the global search capability of the population based GA by

following multiple search path in which at each iteration many solution points are considered. It is

also important to note that SA is better known for its local search capability. As such, the proposed

multiple search path SA also retains this local search capability as each search path represents a

simple SA. Overall, the proposed parallel multiple search path SA attempts to benefit from both

global search (like GA) and local improvement strategies (like SA).

3.6. Computer Implementation

All the components of the algorithm (solution representation, initialization, search operators,

evaluation) and its parallel implementation were coded in C++ programming language in which

MPI message-passing library was used for communication. The code was tested in a parallel compu-

tation platforms of Calcul Québec (http://www.calculquebec.ca/en/). The particular computing

environments where we test our code consists of several thousands of computing cores (20176 cores

in a cluster named guillimin and 30984 cores in another cluster named mp2). The test problems were

run using up to 384 cores. Each core excuses its own process1 where a process is a single instance

of SA with S search paths and uses separately seeded pseudo-random number generator to enable

exploring different parts of the search space. The process with rank 0 (see footnote 2), in addition to

excusing its own S search paths, is designated to periodically gather the best solution know in each

process and determine the overall best and broadcast this solution to all the other processes. The

steps of the parallel multiple search path SA and the notations used to describe them are presented.

1In computing, a process is an instance of a computer program that is being executed. It contains the program code
and its current activity.

2In parallel computation using MPI (massage passing interface), processes that are concurrently running for a give
computational job are ranked from 0 to P − 1 where P is the total number processes.

20

http://www.calculquebec.ca/en/

Notations:

p Process Rank, p = 0, 2, ..., P −1 where P is the number of concurrently running processes

(a process is an instance of SA with S search paths that is being executed by one computing

unit, core, or cpu)

s Index of search paths, s = 1, 2, ..., S where S is the number of search paths followed by

each process.

n Iteration counter, n = 1, 2, ..., N where N is the maximum number of iterations in each

search path.

Xp,s,n The solution at the nth iteration along the sth search path in the pth process.

λ Cooling schedule coefficient.

q Index for the temperature levels in the cooling schedule.

Tq Temperature at the qth level, Tq = λ× Tq−1 = λq × T0.

Q Number of iterations to be performed in each search path at each temperature level.

Z1 Number of iterations performed in each search path in each processor before a processor

restarts all of its search paths (at the current level of temperature) from the best solution

it has found so far.

F Global Communication frequency factor where Z2 = F × Z1 is the number of iterations to

be performed by each search path before communication is effected among the processors.

BSp Best solution so far found in the pth processor.

BS Best solution so far found by all the processors

Rand() Random number generator. Each processor uses a different seed for the random number

generator.

Algorithm Steps:

Step 0. Initialization

Set p = My Process Rank

Initialize counter: n = 0 and q = 0. Initialize the Best-Individual BIp with a null value.

If p = 0, set the Best-Individual BI so far found with a null value too.

Generate initial solution points Xp,1,0, Xp,2,0, · · · Xp,S,0 by applying the initialization

technique presented in Section 3.2.

For s = 1 to S : Determine E(Xp,s,0,) using the method presented in Section 3.3.

Step 1. For s = 1 to S

Move: Using the perturbation operators presented in Section 3.4, perturb Xp,s,n to

get X ′p,s,n.

21

Evaluate: Determine E(X ′p,s,n).

Decide: If E(X ′p,s,n) ≤ E(Xp,s,n), then Xn+1,sp = X ′p,s,n
Else If exp

{[
E(X ′p,s,n)− E(Xp,s,n)

]
/Tq
}
> Rand(), then Xn+1,sp = X ′p,s,n

Else Xp,s,n+1 = Xp,s,n

Update: If E(Xp,s,n+1) < E(BIp), then BIp = Xp,s,n+1

Step 2. Set n = n+ 1.

If n mod Q = 0, then set q = q + 1, and Tq = λ× Tq−1

If (n < N + 1) AND (n mod Z2 6= 0) go to Step 1.

If (n < N + 1) AND (n mod Z2 = 0) go to Step 3.

If n = N + 1, STOP.

Step 3. If p 6= 1 , send BIp to the process whose Process Rank = 0.

If p = 0, receive the best solutions found by each process and determine BI and send this

solution to all the other processors.

If p 6= 0 , receive BI from the process whose Process Rank = 0.

Set Xp,s,n = BI for all s and go to Step 1.

4. Numerical Examples

In this section we consider several numerical examples to illustrate the model and the performance

of the proposed algorithm. For this purpose, we generate several problem instances with varying

sizes. The general features of these problems are in Table 3. The objective function weight factors,

Θ1 and Θ2, were set in such a way that the two terms of the objective function have comparable

values in the final solutions so that both terms are optimized. The number of cells and their size

limits (LB and UB) are to be set at the discretion of the designer based on several design factors.

Thus the values indicated in the table are arbitrary values.

4.1. Model Illustration

In this example we attempted to illustrate the applicability of the proposed model in design-

ing both distributed layouts and cellular manufacturing systems. For this illustration we choose

Problem-1 (see Table 3) having 30 part types and 25 machines. The assumed initial departmental-

ized functional layout is given in Figure 6-(a). The data Dp, Vp and Fp are in Table 4. We further

subdivide this problem into two problems (Problem-1a and Problem-1b). In Problem-1a, processing

routing were generated with a controlled randomness in such a way that rational part families based

on similarities in manufacturing requirements can be identified. The part routings for this problem

are given in columns 3 to 7 of Table 5. This problem may represent a scenario in which cellular

manufacturing systems are appropriate. Whereas, the processing routings for Problem-1b, given in

Table 6, were generated purely randomly and part families may not exist and cellular manufacturing

22

Table 3: General features of the problems considered

Problem No.
Attribute 1 2 3 4

Number of Parts P 30 60 320 600
Number of machines M 25 40 120 192
Layout shape 5× 5 8× 5 12× 10 16× 12
Number of cells C 4 6 10 12
Cell size LB 5 6 10 12
Cell size UB 7 8 14 20
Max number of Routes 2 2 3 3
Max number of operations 5 8 12 60
Min number of operations 3 4 6 8
Workload balancing factor Υ 0.85 0.9 0.9 0.9
Objective Term factors (Θ1,Θ2) (0.1, 2) (0.1, 2) (0.1, 1000) (0.1, 1000)

Note: Max number of Routes = max∀p{Rp}; Max (min) number of operations = max∀p,r{Jp,r} (min∀p,r{Jp,r})

Table 4: Part data for Problems 1a and 1b

p Dp Vp Fp p Dp Vp Fp p Dp Vp Fp

1 1300 1.2 2 11 1300 1.9 1 21 1200 1.6 2
2 1100 1.5 2 12 1100 1.6 1 22 1300 1.7 2
3 1100 1.5 3 13 1000 1.8 3 23 1400 1.1 3
4 1000 1.6 1 14 1200 1.7 1 24 1100 1.8 2
5 1100 1.6 2 15 1200 1.2 2 25 1100 1.4 1
6 1000 2.0 1 16 1200 1.5 1 26 1300 1.9 2
7 1000 1.6 2 17 1500 1.8 1 27 1100 1.6 2
8 1400 1.9 1 18 1100 2.0 2 28 1400 1.2 2
9 1100 1.6 3 19 1200 1.7 1 29 1300 1.9 1
10 1500 1.2 2 20 1100 2.0 1 30 1100 1.1 3

systems may not be appropriate. The inter-departmental movements of the parts in these two prob-

lems, based on the layout in Figure 6-(a), were indicated in columns 8 of Tables 5 and 6, respectively,

and are comparable.

With the objective of reducing material handling and inter-cellular movement, the two problems

were solved using the proposed algorithm. The proposed cellular/distributed layouts are given in Fig-

ures 6-(b) and 6-(c) and the corresponding intercellular movement are indicated in the last columns

of Tables 5 and 6. In Figure 7-(a), it can be seen that there are substantial material handling cost re-

ductions in both problems by distributing the machines over the shop floor. As such, the advantages

of reduced material handling through distributed layout can be achieved in both problems. However,

the intercellular movement in Problem-1b is substantially higher than that in Problem-1a as shown

in Figure 7-(b). Thus, added advantages of cellular manufacturing (such as group setup, ease of

scheduling, team sprit, operators accountability and satisfaction) may happen only in Problem-1a

since most parts in this problem are processed in one cell only. Here it is important to note that,

in literature, it has been asserted that cellular manufacturing systems are applicable in scenarios

where demand is more stable and logical part families can be identified. With this assumption, a

tremendous amount of models and algorithms have been developed for cellular manufacturing sys-

tems design. Distributed layout, on the other hand, are recommended in volatile environments where

product demand and mix are changing very rapidly and many research articles are published in this

area as well. However, we argue that a real life scenarios may lie at any point within the spectrum

of these two extreme scenarios. Thus, the work in this paper bridges the research gap by integrating

23

distributed layout and cellular manufacturing in a single model/algorithm that can be applied in all

possible scenarios along this spectrum. The model provides detail layout of the system at a machine

level which we call it a distributed layout. Moreover, by assigning location to cells, it simultaneously

determines both the inter and intra cellular layout and ensures machines of a particular cell lie in

contiguous physical locations so that the advantages of cellula manufacturing systems can be fully

exploited.

G20

B10

T7T6

T7

B10

M18

M11

T2B14

B4 B5

Cell 1

G19

G24

B5

M16

M22

T3

B9

G20

G25 M14

Cell 2

T6

M13

M17

T2

T8

B15

T1

M21G25

B4

M13

Cell 2

B14G23

T1 M17

G24

G19G24

M11

B10

M11

G19

G20 M23

M8

M16

G23

M22T6

M15T2

B15

M18

G25

Cell 4

M13 T3

Cell 1

M22M17

M12

M21

M16 B9

T8

M12

M1

M12

Cell 3

M18

M21

Cell 3

B9T7

T3

B4 B5

Initial Funtional
Layout

Cellular/Distributed
Layout for Problem-1a

Cellular/Distributed
Layout for Problem-1b

Cell 4Dept. 1

(c)(b)(a)

Dept. 4Dept. 3

Dept. 2

Figure 6: Initial functional layout and proposed cellular/distributed layouts for problems 1a and 1b).

0

100000

200000

300000

400000

500000

600000

700000

800000

Problem 1a Problem 1b

M
at

e
ri

al
 H

an
lin

g
C

o
st

Functional Layout
Cellular/Distributed Layout

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Problem 1a Problem 1b

In
te

r-
ce

llu
la

r
m

o
ve

m
en

t
co

st

(a) (b)
Figure 7: Cost savings in problems 1a and 1b).

4.2. Algorithm Performance

4.2.1. SA vs CPLEX in Solving a Small Problem

As the proposed model and the algorithm are new, we are not able to compare computational

performances against published results. Instead, we attempted to show the relative performance of

the algorithm against the state-of-the-art general purpose optimization package, IBM ILOG CPLEX

(version 12.6). Figure 8-(a) shows a 25-hour convergence history of CPLEX in solving Problem-1

with the linearized objective function terms of the model. The first feasible solution with an objective

function value of 263,330 was found after about 50 minutes of computation on a desktop PC having

Intel Xeon CPU (3.2 Hz, 16.0 GB Ram). This solution kept on gradually improving, for instance

to 63,350 at 7:28:25. The least value of the objective function found using CPLEX was 60,008 at

24

Table 5: The routing information for Problem 1a and partial solution

Required machine and processing time Sequence of Sequence of
(Mj,p,r, Tp,r,j) for operation j Dept. visitation cell visitation

p r 1 2 3 4 5 in layout Fig. 6-a in layout Fig. 6-b

1 1 (12,9) (16,8) (18,8) (15,7) D3-D1 C4-C1-C4
2 1 (2,3) (14,4) (22,4) (19,4) (22,3) D1-D2-D3-D4-D1 C2
3 1 (3,13) (7,12) (17,13) D1-D3 C4
4 1 (8,9) (21,8) (23,7) (6,8) D1-D3-D4-D1 C3
5 1 (20,13) (24,11) (12,12) D4-D3 C2-C1-C4
6 1 (11,3) (16,4) (24,5) (20,5) (15,3) D3-D4-D2 C1-C2
7 1 (9,11) (3,12) (9,12) * C4

2 (7,9) (5,8) (17,8) (9,8) D1-D2-D3-D2 *
8 1 (17,4) (5,3) (4,4) (9,5) (17,4) D3-D2-D3 C4
9 1 (2,8) (19,7) (25,8) (19,7) D1-D4 C2
10 1 (22,9) (19,9) (14,7) (19,7) D3-D4-D2-D4 C2
11 1 (7,13) (4,12) (5,13) D1-D2 C4
12 1 (24,3) (18,3) (24,4) (16,3) (1,4) D4-D3-D4-D3-D1 C1
13 1 (19,4) (14,5) (22,4) (19,5) (14,4) D4-D2-D3-D4-D2 C2
14 1 (13,9) (24,9) (15,8) (13,7) D3-D4-D2-D3 C1
15 1 (11,7) (20,8) (18,8) (16,8) D3-D4-D3 C1-C2-C1
16 1 (10,11) (6,12) (21,12) D2-D1-D3 C3
17 1 (7,8) (9,7) (17,9) (5,8) D1-D2-D3-D2 C4
18 1 (13,8) (15,7) (11,9) (18,8) D3-D2-D3 C1
19 1 (19,7) (14,9) (22,7) (25,7) D4-D2-D3-D4 C2
20 1 (21,12) (10,13) (23,11) D3-D2-D4 C3
21 1 (4,7) (3,9) (4,7) (17,8) D2-D1-D2-D3 C4
22 1 (11,11) (20,13) (15,12) D3-D4-D2 C1-C2-C1
23 1 (23,3) (10,5) (8,4) (6,3) (21,4) D4-D2-D1-D3 C3
24 1 (12,11) (16,12) (15,12) D3-D2 C4-C1
25 1 (21,12) (6,12) (21,11) D3-D1-D3 C3
26 1 (21,11) (6,12) (2,12) D3-D1 C3-C1
27 1 (12,7) (13,8) (15,9) (1,7) D3-D2-D1 C4-C1
28 1 (8,8) (21,7) (8,7) (6,8) D1-D3-D1 C3

2 (23,3) (8,4) (23,4) (6,4) (8,3) * *
29 1 (21,4) (10,4) (8,4) (21,4) (10,4) D3-D2-D1-D3-D2 C3
30 1 (21,9) (6,8) (8,9) (10,8) D3-D1-D2 C3

22:23:04. After about 25 hours, CPLEX stopped computing as the size of the node file generated

exceeds the available memory of 750 GB in a working directory that we were able to allocate for this

computation. This clearly demonstrates the difficulty of solving the proposed model, even for a small

size problem, using the state-of-the-art general purpose optimization package. Whereas, as shown

in Figure 8-(b), the proposed algorithm converged very quickly within 90 seconds (40,000 iterations

using 1200 search paths) and found a solution better than the one found using CPLEX after 22 hours

of computation. This illustrates the potential of the algorithm in solving large size problems. Figure

9 shows the computational time to perform 10,000 iteration using 1500 search path as the size of

Problem-1 is increased in terms of the number machines and the number of parts. As it can be seen

from this figure, the computational time increases close to linearly as the function of the problem

size. This contrasts with the exact algorithm in CPLEX (branch-and-cut) of which computational

time may increase exponentially as the problem size increases. This further illustrate the suitability

of the algorithm in solving large size problems.

25

Table 6: The routing information for Problem 1b and partial solution

Required machine and processing time Sequence of Sequence of
(Mj,p,r, Tp,r,j) for operation j Dept. visitation cell visitation

p r 1 2 3 4 5 in layout Fig. 6-a in layout Fig. 6-c

1 1 (6,9) (15,8) (20,8) (12,7) D1-D2-D4-D3 C1-C3-C2-C3
2 1 (2,3) (4,4) (9,3) (5,5) (16,4) D1-D2-D3 C4-C2-C1
4 1 (8,4) (21,3) (3,3) (11,3) (4,5) D4-D3-D1 C4
5 1 (6,3) (22,5) (24,3) (7,4) (20,4) D1-D3-D2-D1-D4
6 1 (17,12) (25,13) (21,13) D1-D3-D2-D1-D4 C1-C3-C4-C2
7 1 (5,11) (20,11) (2,12) D2-D1 C2-C1-C4

2 (16,4) (17,5) (13,4) (9,5) (13,4) * *
8 1 (5,9) (3,8) (4,8) (19,9) D2-D1-D2-D4 C2-C4
9 1 (6,4) (1,4) (14,3) (15,4) (12,4) D1-D2-D3 C1-C3
10 1 (13,12) (22,13) (20,12) D3-D4 C1-C2
11 1 (3,13) (6,12) (17,11) D3-D1-D3 C1-C2
12 1 (5,8) (20,8) (3,7) (5,9) D2-D4-D1-D2 C2
13 1 (2,12) (4,11) (21,12) D1-D2-D3 C4
14 1 (20,4) (14,5) (8,4) (18,4) (1,4) D4-D2-D1-D3-D1 C2-C3
15 1 (14,4) (9,3) (17,4) (12,3) (5,5) D2-D3 C3-C2-C3-C2
16 1 (15,8) (12,8) (6,8) (16,7) D2-D3-D1-D3 C3-C1
17 1 (23,9) (2,8) (24,9) (10,9) D4-D1-D4-D2 C3-C4-C1
18 1 (18,8) (12,8) (6,8) (16,7) D3-D1-D3 C3-C1
19 1 (1,8) (8,8) (13,8) (23,8) D1-D3-D4 C3-C1-C3
20 1 (17,9) (11,8) (7,8) (19,9) D3-D1-D4 C2-C4
21 1 (14,5) (12,4) (4,4) (2,5) (3,3) D2-D3-D2-D1 C3-C4-C2
22 1 (14,7) (3,7) (22,9) (12,8) D2-D1-D3 C3-C2-C1-C3
23 1 (23,3) (12,5) (5,4) (9,4) (2,5) D4-D2-D1 C3-C2-C4
24 1 (5,8) (22,8) (13,8) (10,7) D2-D3-D2 C2-C1
25 1 (23,3) (12,4) (14,4) (1,5) (7,5) D4-D3-D2-D1 C3-C4
26 1 (18,4) (2,4) (7,3) (10,4) (14,5) D3-D1-D2 C3-C4-C1-C3
27 1 (10,12) (6,12) (20,11) D2-D1-D4 C1-C2
28 1 (9,11) (25,12) (3,11) D2-D4-D1 C2-C4-C2
29 1 (22,3) (2,3) (11,4) (25,4) (13,3) D3-D1-D3-D4-D3 C1-C4-C1
30 1 (14,8) (18,8) (12,8) (10,7) D2-D3-D2 C3-C1

4.2.2. Empirical Studies

Empirical studies on the computational behaviour of both sequential and parallel multiple search

path SAs for cell formation (without layout consideration) have been conducted in Defersha and

Chen (2008). Defersha (2015), later demonstrated the suitability of similar implementation of SA

for flowshop scheduling. As the implementation strategies followed in this paper are similar to those

found in Defersha and Chen (2008); Defersha (2015), we are not presenting detail empirical studies

of the computational behavior of the proposed algorithm. However, a limited empirical study is

essential since the algorithm developed is specific to the proposed model with new solution represen-

tation, new initialization techniques and new move operators. This empirical study is to demonstrate

the algorithm performance improvements achieved through (1) following multiple search paths, (2)

interaction of search paths and (3) high performance parallel computation. For the demonstrations

(1) and (2), the problem with 60 part types and 40 machines (Problem 2) is considered. This problem

was first solved using a single search path SAs in which the algorithm runs for 150,000,000 iterations

(for about 2 hours using 2.1 GHz cpu). The algorithm was executed for eight complete runs by

changing the seed of the random number generator (of the programming language used, c++) and

then the average value of the objective function of the final solutions was computed. We repeat this

experiment for a multiple search path SA by increasing the number of the search paths at a time

26

0

50000

100000

150000

200000

250000

300000

0
0:

4
0:

5
8

0
4:

2
8:

1
3

0
7:

0
1:

2
0

0
9:

4
8:

2
3

1
2:

3
7:

1
2

1
5:

0
7:

1
9

1
8:

0
5:

1
5

2
1:

1
0:

3
9

2
4:

1
3:

3
6

O
b

je
ct

iv
e

fu
n

ct
io

n

Time

25 hours convergence history
of CPLEX in solving Problem-1

The least objective function
value determined by CPLEX is
60,007 and it happens after 22
hour of computation

0

50000

100000

150000

200000

250000

300000

0
0:

0
0:

0
0

0
0:

0
0:

1
7

0
0:

0
0:

3
0

0
0:

0
0:

4
3

0
0:

0
0:

5
6

0
0:

0
1:

0
8

0
0:

0
1:

2
2

O
b

je
ct

iv
e

fu
n

ct
io

n

Time

90 seconds convergence
history of the propsosed SA in
solving Problem-1

The least objective function value
determined by SA is 58,573 and it
happens in just 40 sec of
computation

(a) CPLEX (b) SA
Figure 8: Convergence histories of CPLEX and the proposed SA in solving problem-1

0

1

2

3

4

5

6

7

C
o

m
p

u
ta

ti
o

n
al

Ti

m
e

m
in

u
te

s

Problem Size

Figure 9: Time required to perform 10,000 iteration using 1500 search paths as a function of problem size (M =
number of machines, P = Number of Parts).

from 2 to 5, to 10 e.t.c. As we increase the number of search paths in each test, each search path

is shortened to keep the computational time and the total number of iteration remain the same as

that of the single search path SA. The averages values of the objective function are plotted in Figure

10. From this figure it can be seen that as the number of search paths is increased from 1 to 20, the

quality of the final solution generally keeps on improving. This clearly demonstrates the benefit of

excusing multiple short SA runs instead of a single long run.

However, as the number of search paths is further increased for the same total number of it-

erations, the qualities of the final solutions start to deteriorate since each search path cannot get

enough run length to converge within a given time limit. A technique that will enable a large num-

ber of search paths to run to convergence within the given time can be parallel computing. In this

case, the search paths are to be divided in to smaller batches and allocated to concurrently available

processors. For better performance, the search paths within and across processes can interact period-

ically. In those interactions, the best solutions found from all the search paths are collected and the

overall best (winner) solution is distributed to all the search paths and each search path continues

its search from this solution. Figure 11 shows the convergence history in eight runs without search

27

path interaction and in another eight runs with search path interaction of the 15-search path SA in

solving Problem 2. The result clearly demonstrates a substantial performance improvement both in

convergence rate and final solution quality as a result of search paths interaction. Moreover, from

this convergence graph, the final solution qualities form the eight runs of the multiple search path

SA with interaction are more or less the same regardless of the starting sets of solution.

In order to illustrate the algorithm performance improvement that can be achieved using parallel

computation, we consider Problems 3 and 4 (see Table 3) as these problems are very large in size

and may represent real life scenarios with greater computational challenge. Figure 12 shows the

convergence history of the process with rank 0 in solving Problem 3 as the number of processes

is increased from 1, 8, 24, 48, to 96. In these computations, the number of search paths in each

process was kept at 500 and each search path runs for 50,000 iterations. The search paths were

allowed to interact every 1000 iterations within a process and every 25,000 iterations across the

processes. The computational time remains at about 2 hours and it is not impacted as the number

of processes is increased as each process is excused in its own assigned CPU in the parallel computing

environment. The abrupt change in convergence history in the process with rank 0 (or in any given

process) happens when all the processes communicate to determine the winer solution and continue

their respective iterations from this solution. As it can be seen from this convergence history, there

is a 32% improvement in the final solution quality by using parallel computation with search path

interactions. The level of improvement is even bigger in Problem 4, which is at 58% as shown in

Figure 13 as the number of process is increased from 1, 8, · · · , to 384 for a fixed computation time

(which was 6 hours and 12 minutes in this problem). This clearly demonstrate that, though SA is

generally able to find good solutions for small size problems, the search process is likely to become

trapped in a local optima when solving large size problems. In this case, as illustrated by these

examples, the best alternative can be the use of high performance parallel computation.

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1 2 5

1
0

1
5

2
0

3
0

4
0

6
0

8
0

1
0

0

2
0

0

3
0

0

5
0

0

1
0

0
0

O
B

JE
C

TI
V

E

NUMBER OF SEARCH PATHES

Figure 10: The effect of increasing the number of search paths on the final solution quality for the same total number
of iteration

5. Discussion and Conclusions

CMS involves the grouping of parts having similar processing requirements into part families, and

organizing machines along other supporting recourses into cells such that each cell produces a part

family with at most efficiency. Several industrial surveys in literature found that system performance

improvements achieved through CMS implementations are astounding, and the area draws enormous

28

0.00E+00

2.00E+05

4.00E+05

6.00E+05

8.00E+05

1.00E+06

1.20E+06

1.40E+06

1.60E+06

0 1000000 2000000 3000000 4000000 5000000

O
b

je
ct

iv
e

 f
u

n
ct

io
n

Iteration

1 - Without search pathes interation

2 - With search pathes interaction

Figure 11: The effect of search paths interaction on the convergence of 15-search-path SA in solving Problem 2 during
the first 500000 iterations (One hour computational time)

8.0E+08

1.0E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

2.0E+09
1

0
0

0
0

1
2

1
0

0
1

4
2

0
0

1
6

3
0

0
1

8
4

0
0

2
0

5
0

0
2

2
6

0
0

2
4

7
0

0
2

6
8

0
0

2
8

9
0

0
3

1
0

0
0

3
3

1
0

0
3

5
2

0
0

3
7

3
0

0
3

9
4

0
0

4
1

5
0

0
4

3
6

0
0

4
5

7
0

0
4

7
8

0
0

4
9

9
0

0

O
b

je
ct

iv
e

Iteration 10,000 to 50,200

The processor with rank 0 receiving the
best solution from others processors at
iteration 25000 & 50,000

a

d,e
c

b

a - 1 processor SA
(Sequential SA)

b - 8 processors SA
c - 24 processors SA
d - 48 processors SA
e - 96 processors SA

32 %
reduction in
objective
function value
as a result of
parallel
computing

Figure 12: The convergence history of the process with rank 0 in the parallel SA in solving Problem 3. The abrupt
change in convergence in a given process happens when all the processes communicate to determine the winer

solution and continue their respective iteration from this solution.

research. However, there are some studies that challenge the claims, the primary concerns being CMS

are not applicable in today’s volatile environments where demand and product mix change rapidly.

To address this issue, distributed layout has been emerging as an alternative to cellular layouts and

it is gaining traction in literature. However, we argue that changes in product demand and mix in a

real life system may always lay within the spectrum of being stable and volatile. This paper bridges

this gap by providing a mathematical model and a solution procedure that integrate distributed

layout design and machine cell formation. The mathematical model:

1. Minimizes material handling cost through distributing the machines over the shop floor both

in stable or volitive (or any given scenario) as it was demonstrated in the numerical example.

2. Minimizes intercellular movement by identifying cells and part families whenever possible.

3. Ensures that machines that belong to the same cell are laid out on contiguous physical locations

so that the advantages of cellula manufacturing systems can be fully exploited.

4. Provides detail layout at a machine level and determine both inter-cellular and intra-cellular

configurations.

5. Incorporates many pragmatic issues such as operations sequence, alternative routing, lot split-

ting, workload balancing among cells and constraints on machine capacity.

29

1.0E+09

3.0E+09

5.0E+09

7.0E+09

9.0E+09

1.1E+10

1.3E+10

1.5E+10

0
2

5
0

0
5

0
0

0
7

5
0

0
1

00
0

0
1

25
0

0
1

50
0

0
1

75
0

0
2

00
0

0
2

25
0

0
2

50
0

0
2

75
0

0
3

00
0

0
3

25
0

0
3

50
0

0
3

75
0

0
4

00
0

0
4

25
0

0
4

50
0

0
4

75
0

0
5

00
0

0
5

25
0

0
5

50
0

0
5

75
0

0
6

00
0

0
6

25
0

0
6

50
0

0
6

75
0

0
7

00
0

0
7

25
0

0
7

50
0

0

O
b

je
ct

iv
e

Iteration

58% improvement of the final solution quality was achieved while
solving Problem 5 when the number of processes is increased from 1 to
384. The number of search paths of the of the sequential SA is 500. This
number is increase to 192,000 using 384 concurrently running CPUs.
The computational time remains the same at about 6.2 hours both in
the sequential and the parallel SA.

5
8

%
 im

p
ro

ve
m

en
tEffect of the interactions of search

paths across processes (CPUs)

Figure 13: The convergence history of the process with rank 0 in the parallel SA in solving Problem 5 as the number
of concurrently running processes is increased from 1, to 8, 24, 48, 96, 192, and to 384.

6. If a distribute layout is given, enables the formation and reconfiguration of virtual cells over

this layout with a unique advantage of forming each virtual cell with a group of machines

on contiguous physical location. From a solution procedure point of view, this is possible by

populating the MDL-Segment of the solution representation using the information obtained

from the given distributed layout and search for the cell boundaries while keeping the machine

configuration unchaged.

Numerical example showed that solving the proposed model using off-the-shelf optimization pack-

age is difficult even for small size problems. To this end, we develop an efficient SA based algorithm.

The SA follows multiple search paths with interactions. From the results of the test problems, it is

evident that instead of excusing a single long SA run, it is much preferable to execute multiple short

runs. The interaction of the search paths also resulted in substantial improvement of the convergence

speed of the algorithm. The parallel implementation of the algorithm demonstrated substantial im-

provement in final solution quality when solving large problems. These clearly demonstrate that,

though SA is generally able to find good solutions for small size problems, the search process is likely

to become trapped in a local optima when solving large size problems. In this case, as illustrated by

these examples, the best alternative can be the use of high performance parallel computation. Our

future work in this area include extensive simulation based investigation of manufacturing systems

based on non-conventional layouts and developing algorithms and methods for production scheduling

of these non-conventional manufacturing systems where there is a limited research.

Acknowledgements:

This research is supported by the Discovery Grant from the National Science and Engineering

Research Counsel of Canada, NSERC. We would like to thank Compute Canada (https://www.

computecanada.ca/) and its Consortiums specially Calcul Québec (http://www.calculquebec.

ca/en/) for providing access to high performance parallel computing infrastructure.

References

Alfa, A. S., Chen, M., and Heragu, S. S., 1992. Integrating the grouping and layout problem in

cellular manufacturing. Comuters and Industrial Engineering, 23 (1-4), 55–58.

30

https://www.computecanada.ca/
https://www.computecanada.ca/
http://www.calculquebec.ca/en/
http://www.calculquebec.ca/en/

Aririguzo, J. C., Saad, S. M., and Nkwogo, U. O., 2013. A genetic algorithm approach to design-

ing and modelling of a multi-functional fractal manufacturing layout. Proceedings of the 11th

International Conference on Manufacturing Research (ICMR2013). Cranfield, UK, pp. 399–404.

Arvindh, B. and Irani, S. A., 1994. Cell formation: the need for an integrated solution of the

subproblems. International Journal of Operations Research, 32 (5), 1197–1218.

Askin, R. G., 2013. Contributions to the design and analysis of cellular manufacturing systems.

International Journal of Production Research, 51, 6778–6784.

Askin, R. G. and Estrada, S., 1999. An investigation of cellular manufacturing practices. Wiley, New

York, pp. 25–34.

Ballakur, A. and Steudel, H. J., 1987. A within-cell utilization based heuristic for designing cellular

manufacturing systems. International Journal of Production Research, 25, 639–665.

Baykasoglu, A., 2003. Capability-based distributed layout approach for virtual manufacturing cells.

International Journal of Production Research, 41, 2597–2618.

Baykasoğlu, A. and Göçken, M., 2010. Capability-based distributed layout and its simulation based

analyses. Journal of Intelligent Manufacturing, 21 (4), 471–485.

Benjaafar, S. and Sheikhzadeh, S., 2000. Design of flexible plant layouts. IIE Transactions, 32,

309–322.

Bozer, Y. Z., Meller, R. D., and Erlebacher, S. J., 1994. An improvement-type layout algorithm for

single and multiple-floor facilities. Management Science, 40, 918–932.

Chandrasekharan, M. P. and Rajagopalan, R., 1986. An ideal seed non-hierarchical clustering algo-

rithm for cellular manufacturing. International Journal of Production Research, 24, 451–464.

Choobineh, F., 1988. A framework for the design of cellular manufacturing systems. International

Journal of Production Research, 26, 1161–1172.

Defersha, F. M., 2015. A simulated annealing with multiple-search paths and parallel computation for

a comprehensive flowshop scheduling problem. International Transactions in Operations Research,

22, 669691.

Defersha, F. M. and Chen, M., 2006. A comprehensive mathematical model for the design of cellular

manufacturing systems. International Journal of Production Economics, 103, 767–783.

Defersha, F. M. and Chen, M., 2008. A parallel multiple markov chain simulated annealing for multi-

period manufacturing cell formation problems. International Journal of Advanced Manufacturing

Technology, 37, 140156.

Flynn, B. B. and Jacobs, R. R., 1987. An experimental comparison of cellular (group technology)

layout with process layout. Decision Sciences, 18, 562–581.

Forghani, K., Mohammadi, M., and Ghezavati, V., 2015. Integrated cell formation and layout prob-

lem considering multi-row machine arrangement and continuous cell layout with aisle distance.

International Journal of Advanced Manufacturing Technology, 78, 687–705.

31

Gonçalves, J. F. and Resende, M. G. C., 2004. An evolutionary algorithm for manufacturing cell

formation. Computers & Industrial Engineering, 47, 247–273.

Hamedi, M., Ismailand, N. B., Esmaeilian, G. R., and Ariffin, M., 2012. Developing a method

to generate semi-distributed layouts by genetic algorithm. International Journal of Production

Research, 50 (4), 953–975.

Hyer, N. L. and Wemmerlöv, U., 1989. Groupt technology in the us manufacturing industry: A

survey of current practice. International Journal of Production Research, 27, 1287–1304.

Kannan, V. R. and Ghosh, S., 1995. Using dyanamic cellular manufacturing to simply scheduling

in cell based production system. Omega, The International Journal of Management Science, 23,

443–452.

Kia, R., Shirazi, H., Javadian, N., and Tavakkoli-Moghaddam, R., 2015. Designing group layout of

unequal-area facilities in a dynamic cellular manufacturing system with variability in number and

shape of cells. International Journal of Production Research, 53, 3390–3418.

King, J., 1980. Machine-component grouping in pfa: an approach using a rank-order clustering

algorithm. International Journal of Production Research, 18, 213–232.

Kioob, S. A., Bulgak, A. A., and Bektas, T., 2009. Integrated cellular manufacturing systems design

with production planning and dynamic system reconfiguration. European Journal of Operational

Research, 192, 414–428.

Knoll, D., Morel, J., Margolin, L., and Shashkov, M., 2005. Physically motivated discretization

methods. Los Alamos Sience, 26, 188–212.

Krishnan, K. K., Mirzaei, S., Venkatasamy, V., and Madhusudanan, P. V., 2012. A comprehensive

approach to facility layout design and cell formation. Intranational Journal of Advanced Manufac-

turing Technology, 59, 737–573.

Lahmer, M. and Benjaafar, S., 2005. Design of distributed layouts. IIE Transactions, 37, 303–318.

Lee, S.-Y. and Lee, K. G., 1996. Synchronous and asynchronous parallel simulated annealing with

multiple markov chains. , 7, 903–1007.

McAuley, J., 1972. Machine grouping for efficient production. Production Engineering, 51, 53–57.

Mohammadi, M. and Forghani, K., 2016. Designing cellular manufacturing systems considering s-

shaped layout. Computers & Industrial Engineering, 98, 221–236.

Montreuil, B., LeFrancois, P., Marcotte, S., and Venkatadri, U., 1993. Holographic layout of manu-

facturing systems operating in chaotic environments. Tech. rep., Technical Report.

Montreuil, B. and Venkatadri, U., 1991. Strategic interpolative design of dynamic manufacturing

systems layout. Management Science, 37, 682–694.

Montreuil, B., Venkatadri, U., and Rardin, R. L., 1999. Fractal layout organization for job shop

environments. International Journal of Production Research, 37, 501521.

32

Moraglio, A., 11 2007. Towards a gemoetric unification of evolutionary algorithms. Ph.D. thesis,

Department of Computer Science, University of Esssex.

Morris, J. S. and Tersine, R. J., 1990. A simulation analysis of factors influencing the attractiveness

of group technology cellular layouts. Management Science, 36, 1567–1578.

Nageshwaraniyer, S., Khilwani, N., Tiwari, M., Shankar, R., and Ben-Arieh, D., 2013. Solving the de-

sign of distributed layout problem using forecast windows: A hybrid algorithm approach. Robotics

and Computer-Integrated Manufacturing, 29 (1), 128–138.

Rajagopalan, R. and Batra, J., 1975. Design of cellular production systems–a graph theoretic ap-

proach. International Journal of Production Research, 13, 56–68.

Rosenblatt, M. J. and Golany, B., 1992. A distance assignment approach to the facility layout

problem. European Journal of Operational Research, 57, 253–270.

Saad, S. M. and M., L. A., 2004. Layout design in fractal organization. International Journal of

Production Research, 42, 3529–3550.

Safaei, N., Saidi-Mehrabad, M., and Jaba-Ameli, M. S., 2008. A hybrid simulated annealing for solv-

ing an extended model of dynamic cellular manufacturing system. European Journal of Operational

Research, 185, 563–592.

Shafigh, F., Defersha, F. M., and Moussa, S. E., 2017. A linear programming embedded simulated

annealing in the design of distributed layout with production planning and systems reconfiguration.

International Journal of Advanced Manufacturing Technology, 88, 11191140.

Suresh, N. C. and Meredith, J. R., 1994. Coping with the loss of pooling synergy in cellular manu-

facturing systems. Management Science, 40, 466–483.

Urban, T., Chiang, W. C., and Russel, R. A., 2000. The integrated machine allocation and layout

problem. International Journal of Production Research, 38 (13), 2911–2930.

Vakharia, A. J. and Wemmerlöve, U., 1990. Designing a cellular manufacturing system: a materials

flow approach based on operation sequences. IIE Transactions, 22, 84–97.

Venkatadri, U., Rardin, R. L., and Montreuil, B., 1997. A design methodology for fractal layout

organization. IIE Transactions, 29, 911924.

Wang, T.-Y., Lin, H.-C., and Wu, K.-B., 1998. An improved simulated annealing for facility layout

problems in cellular manufacturing systems. Computers and Industrial Engineering, 34, 309–319.

Warnecke, H. J., 1993. The Fractal Company A Revolution in Corporate Culture. Springer, Berlin,

Wemmerlöv, U. and Hyer, N. L., 1986. Procedures for part-family/machine group identification

problem in cellular manufacturing. Journal of Operations Management, 6, 125–145.

Wemmerlöv, U. and Johnson, D., 1997. Cellular manufacturing at 46 user plants: implementation

experiences and performance improvements. International Journal of Production Research, 35,

29–49.

33

Wemmerlöve, U. and Hyer, N. M. L., 1989. Cellular manufacturing in the US industry: A survey of

users. International Journal of Production Research, 27, 1511–1530.

34

	Fantahun_Abnet.pdf
	1 Introduction
	2 Mathematical Model
	2.1 Problem description:
	2.2 Notations
	2.3 Model Formulation
	2.4 Linearizing the Model

	3 Solution Procedure
	3.1 Solution Representation
	3.2 Initialization
	3.3 Evaluation
	3.4 Search Operators
	3.4.1 Cell Boundary Perturbation Operator
	3.4.2 Other Search Operators

	3.5 Simulated Annealing
	3.6 Computer Implementation

	4 Numerical Examples
	4.1 Model Illustration
	4.2 Algorithm Performance
	4.2.1 SA vs CPLEX in Solving a Small Problem
	4.2.2 Empirical Studies

	5 Discussion and Conclusions
	References

