
Models and Solution Procedures in the Design

and Scheduling of Manufacturing Systems with

Distributed Layouts

by

Seyedfarhad Shafigh

A Thesis

presented to

The University of Guelph

In partial fulfilment of requirements

for the degree of

Doctor of Philosophy

in

Engineering

Guelph, Ontario, Canada

c© Seyedfarhad Shafigh, August, 2015



ABSTRACT

MODELS AND SOLUTION PROCEDURES IN THE

DESIGN AND SCHEDULING OF MANUFACTURING

SYSTEMS WITH DISTRIBUTED LAYOUTS

Seyedfarhad Shafigh Advisor: Professor F.M. Defersha

University of Guelph, 2015 Co - advisor: Professor S.E. Moussa

Numerous studies have been conducted to design facility layouts since the

early 1950s. The majority of these studies have primarily focused on product

layout, functional layout, cellular layout or their variants. Recent trend in man-

ufacturing systems literature establishes the consensus that these conventional

configurations do not meet the needs of today’s multi-product enterprises work-

ing in dynamic environment. A promising approach to address changes in the

production environment is to build facility layouts that can easily adapt to volatil-

ities. Distributed layouts are among such facilities enabling industries to address

volatilities and uncertainties.

This thesis addresses two distinct problems in facility design and schedul-

ing for manufacturing firms operating in volatile environment and producing the

multiple batches of products. In regards to the facility layout problem, a new

comprehensive mathematical model that integrates layout configuration and pro-

duction planning in the design of dynamic distributed layouts is formulated. The

model incorporates a number of important manufacturing attributes such as de-

mand fluctuation, system reconfiguration, lot splitting, work load balancing, al-

ternative routings, machine capability and tooling requirements. In addition, the



model allows the optimization of several cost elements in an integrated manner.

These include material handling, machine relocation, setup, inventory carrying,

in-house production and subcontracting costs. With respect to the scheduling

problem, a mathematical formulation for scheduling of manufacturing systems

with distributed layouts is developed. The objective of scheduling model is the

minimization of the weighted sum of makespan and total traveling distance by

the products. Thus on one hand, the problem is to find a schedule of operations

on machines (the sequence and starting times of the various operations) which

minimizes the overall finishing time or makespan. On the other hand, the prob-

lem is to find assignment of jobs to the machines such that total distance traveled

by parts is minimized.

Optimal solutions for the proposed mathematical models can only be found

for small size problems due to NP-complexity. To solve both models for larger-size

problems, two hybrids metaheuristics (linear programming embedded a meta-

heuristic) for solving the facility design model and a genetic algorithm for the

scheduling model have been developed. All proposed algorithms are thoroughly

examined with an emphasis on solution convergence, solution quality and algo-

rithm robustness. For both cases, we provide numerical results to support various

managerial insights. In particular in facility design problem, we draw a manage-

rial insight as to how high product variety and high volatility in the production

environment can be accommodated without harm to operational efficiency or cost.

Similarly in the scheduling study, we show that linking scheduling and material

handling performance can contribute to the development of accurate models to

obtain a schedule that can also greatly enhance system performance.

Keywords: Distributed Layout; Scheduling; Dynamic Reconfiguration; Hybrid

metaheuristic Algorithm; Linear Programming; Multi-objective Optimization.
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machine m, 0 otherwise;
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Ao,j A binary data equal to 1 if the setup of operation o of job j is attached

(non-anticipatory), or 0 if this setup is detached (anticipatory);

Ω Large positive number.

co,j,m Completion time of operation o of job j on machine m;

ĉr,m Completion time of the rth run of machine m;

cmax Makespan of the schedule

xr,m,o,j Binary variable which takes the value 1 if the rth run on machine m

is for operation o of job j, 0 otherwise;

zr,m A binary variable which equal to 1 if the rth potential run of machine

m has been assigned to an operation, 0 otherwise;

ω weighting parameter in whited sum method

F trans Transformed ith term of objective function

Fmax
i The upper limits for transformed ith term of objective function

Fmin
i The lower limits for transformed ith term of objective function
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Chapter 1

Introduction

1.1. Facility Layout Design

History of structures goes back to thousands of years, for example, the Egyp-

tian pyramids and Harappa and Mohenjo-Daro civilizations of the Induce Valley,

suggest that the layout problem has been considered by facility designers for

thousands of years. The industrial revolution presents some examples of the sig-

nificance of layout in designing factories. The modern assembly line and its basic

concept is credited to Henry Ford, who perfected the factory layout to achieve

higher level of productivity and efficiency. However, the study of facility layout

problems via complicated mathematical models did not began until the introduc-

tion of quadratic assignment problem in mid-1950s by (Koopmans and Beckmann,

1957).

It is estimated that roughly 8% of US gross national product has been

spent annually since 1955 on new facilities (Tompkins et al., 1996). In addition,

expenses for modification of previously purchased facilities are also significantly

high. Tompkins et al. (1996) claimed that 20-50% of total operating costs are

related to material handling cost. Therefore, developing an efficient facility plan

not only can reduce these costs to 10-30% but also can increase productivity as
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well. More importantly, studies on manufacturing systems indicate that 30-50%

of the cost of a product is related to material handling expenses (Sule, 1994).

Thus, optimized facility arrangements can reduce product costs and enhance

competitive position of companies.

1.2. Basic Type of Layout

In designing manufacturing facility, the first step is to determine the general flow

pattern for material, parts, and work-in-process (WIP) inventory through the

system (Heragu and Ekren, 2010). Flow pattern refers to the overall pattern in

which the product flows from beginning to end. The second step is determining

the type of layout to be used. We discuss five types of layouts here.

Functional Layout

The functional layout is also known by other names such as process layout or

job shop layout. In a functional layout, machines with similar functionality are

grouped into a single department. The departments are located related each

other in order to increase machine utilization and production flexibility. A func-

tional layout is shown in Figure 1.1-a to have three types of machines where each

geometric shape represents a particular machine type. This type of layout typi-

cally is used when product variety is high and/or production volumes are small.

The advantages of functional layout are that the utilization rate of each machine

station tends to be quite high and there is a tight span of control. However, a

functional layout is notorious for its material handling inefficiency. An example of

tangible manufacturing firms is semiconductor wafer fabrication where the design

of most wafer fabrication facilities has followed functional layouts. To perform

several operations, distance approximately traveled by a 300-mm wafer during

its 250 process tools visitations is 8-10 mi (Agrawal and Heragu, 2006). It shows
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functional layouts can negatively affect material handling efficiency. Scheduling

complexity and vulnerability to change in demand and product mix or routing

are among other weakness (Benjaafar et al., 2002).

Cellular Layout

In contrast to functional layout in cellular manufacturing, Figure 1.1-b, machines

are grouped into cells based on product families, parts similar in size or parts

created using similar manufacturing steps. Typically, each cell is dedicated to a

single product family. Compared with functional layout, cellular layout includes

faster throughput time, less material handling, less work-in-process, and reduced

set-up time, but cellular layouts are notorious for their inefficiency when intro-

ducing new products and also could be severely affected by changes. Although

cellular factories can be quite effective in simplifying workflow and reducing mate-

rial handling, they can be highly inflexible since they are generally designed with

a fixed set of part families in mind (Benjaafar et al., 2002). When the part mix

changes typically more machines are required to compensate for improper balanc-

ing. Cellular manufacturing also may not be appropriate if operation sequence

or routing is prone to change in time.

Product Layout

Product layouts ( or also known as flow shop layouts) largely depend on process of

products or a product mix. In theses layouts (see Figure 1.1-c), machines are once

again laid out in accord with the needs of one product or a small product family.

However, they are arranged in a linear layout according to the operation sequences

of product or the product family. Product layouts are designed for high volume

(mass) production of a single product to justify the use of expensive dedicated

machines and equipment (Khaewsukkho, 2008). One disadvantage of flow lines is
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the lack of flexibility. They are not able to produce products for which they are

not designed. If the design of product is altered, a major reconfiguration of the

linear layout may be required. If new products are introduced, it is absolutely

essential that the new line with additional investment properly be set up.

Hybrid Layout

Expanding production range and capabilities requires machine variety. In this

case, companies find that their existing layout type dose not meet their needs

entirely. Hence, they may adopt a cellular layout added to the facility which

already has a production-line layout. Figure 1.1-d shows a sample hybrid layout

that combined a functional, cellular and product layout.

(a) Functional (b) Cellular  (d) Hybrid (d) Product 

Figure 1.1: Four types of traditinal layouts

1.3. Next-Generation Facility Layouts

In today’s dynamic environment, a properly designed facility can bring about

competitive advantages when it operates at low cost, responds to the need for
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efficient and fast delivery of products, accommodates frequent new products in-

troduction and tackles unexpected demand fluctuations. With regard to en-

vironmental uncertainties, manufacturing facilities must be able to cope with

both internal changes and external forces. The internal disturbances are consid-

ered equipment breakdowns, variable task times, queueing delays, rejects, and

rework while external forces refer largely to the fundamental uncertainties of

the competitive environment where product demand, design and type are highly

volatile. Figure 1.2 shows a case study of an equipment manufacturer for the

semi-conductor industry. The example illustrates how todays product demand

fluctuates in volatile markets: within five years the annual product demand for a

specific machine type changes from 100 machines to 5 (in year 2 and 3) and backs

again from 20 to 120 machines. Manufacturing systems that produce multiple
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Figure 1.2: A Case study on product demand in turbulent markets (Schnsleben,
2007)
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components and function in highly volatile environments are increasingly chal-

lenged to meet consistently high levels of operational efficiency and flexibility.

This type of manufacturing environment has complex operating characteristics,

such as high variety in product mix, uncertainty in production demand, and many

different manufacturing routings resulting in a complex material flow network

(Khaewsukkho, 2008). This is evident, for example, in the automotive indus-

try, the semiconductor and Electronic Manufacturing Service (EMS) industry. A

EMS providers is a contract manufacturer can produces parts, modules, devices

and complete system solutions across a wide range of industries, including auto-

motive, aviation, medical devices, industrial and office electronics, measurement,

telecommunications and consumer products. Today, EMS providers increasingly

act as sole producers of the Original Equipment Manufacturing (OEM)’s finished

products, while the OEMs remove themselves from manufacturing entirely (Gen-

try and Elms, 2009). In contrast to other providers, an EMS firm usually doesn’t

have its own product line, but rather provides manufacturing services. For in-

stance, Zollner, as one of the world’s top 15 EMS companies, performs about

3, 000 manufacturing products per year for about 600 customers. With an acute

sense of the industry drivers, Zollner organizes its own manufacturing capacities

in a complex pull principle that effectively anticipates batch size demand.

There is an emerging consensus that the traditional layout configurations

do not meet the needs of the multi-product enterprise and that there is a need

for a new generation of factory layouts that are more flexible, modular, and more

easily reconfigurable (Benjaafar et al., 2002). This is mainly because traditional

layouts, functional and cellular layouts, are generally developed assuming stable

demand and product mix for a considerable long planning horizon. For exam-

ple, as mentioned previously, in hi-tech industries such as consumer electronics,

telecommunications equipment and semiconductors the demand is volatile and
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challenging to manage due to the rapid rate of innovation causing short prod-

uct life cycles. Hence, in order to adapt to such changes firms nowadays have

been seeking efficient approaches to design layouts that are more flexible and re-

sponsive. Other researchers such as Benjaafar and Sheikhzadeh (2000); Irani and

Huang (2000); Kochhar and Heragu (1999) and Montreuil (1999) have also em-

phasized the need for alternate types of next-generation facility layouts. Modern

layouts must lower inventories, decrease production lead times, and offer greater

flexibility for product customization, in addition to minimizing the traditional

measure such as minimizing material handling trips (Heragu and Ekren, 2010).

Numerous articles have been published in design of flexible facility layouts. Exam-

ples of these layouts are fractal layouts, virtual cellular layouts, modular layouts,

and distributed layouts.

Fractal layouts (Venkatadri (1997) and Askin et al. (1999)) divide the facil-

ity into smaller cells or fractals. Each fractal is identical and can produce a wide

variety of products. These are considered as small factories within a factory. In

this type of facility layout design, material handling distances are only optimized

within each fractal. Manufacturing system using fractal layout can benefit from

the decentralization. Although fractal layout is an extension of a more generic

approach to cellular layout, there is difference between cell and fractal because

there is no specialization to produce certain parts or family of parts in a fractal.

Hence, they are more flexible to demand and product mix change. The fractal

can be formed based on machine type such that at least one machine of each type

is included in a cell, Figure 1.3-b. Therefore, the machine type with the minimum

number of machines determines the number of fractals. Additional machines of

a type are allocated as evenly as possible. That may allow flow performance

optimization and avoid unnecessary duplications compared to identical fractal

layouts, Figure 1.3-a.

Drolet (1989) discussed virtual cellular layouts when a job order needs a set
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Figure 1.3: Fractal layouts with (a) identical and (b) non-identical configurations

of machines to be put together, a quick temporary cell consisting of adjoining ma-

chines are formed. A machine is either a member of a pool of available machines

or member of a virtual cell. Although this concept may seem not much different

from a typical cellular approach, it sheds some light on the concept of moving

replicates of individual machine types to nonadjacent locations (between cells) to

satisfy customer order requirements (Ganesan, 2007). Figure 1.4 shows a system

that has three active virtual cells where two of the cells shared a workstation.

Modular Layouts (Irani and Huang, 2000) can be constructed as network of

basic modules. Layout modules can be categorized as flow line, cell and functional

modules. As the product mix and demand changes, certain layout modules will be

eliminated and others added. By doing this, the complex material flow network

in a multi-product manufacturing facility is addressed. The proposed concept

uses the idea of grouping and arranging the machines required for subsets of

operations in different routings into a specific (traditional) layout configuration
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Figure 1.4: Virtual Cellular Layout

that minimizes total flow distances or costs (Benjaafar et al., 2002). A planer

needs to determine number of layout modules, to which module in the existing

layout each machine is allocated and to which machine each operation of each

product is assigned. Since layout modules are developed based on an analysis

of operation sequences, this approach to facility layout would allow the facilities

planner to customize the layout for any facility based on the unique composition

of the product mix processed in that facility (Irani and Huang, 2000).

The metric for evaluating the efficiency of a layout type has also changed

in today’s factories. Robustness and flexibility or reconfigurability are of im-

portance. Robust layouts can behave well over multiple production periods and

different scenarios that are suitable where both uncertainty of future production

requirements and the cost of re-layout are high. Robustness is typically achieved

by duplicating key processes or machines at strategic locations within the pro-

duction facilities. Flexible layouts can be reconfigured with minimal effort to

meet the changes, such as reconfigurable layout where there is a high level of
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uncertainty but the cost of re-layout is low. It aligns itself with the notion of

real-time enterprise in which the changes to layout context are readily available,

and it keeps operating on the edge by doing real-time layout adjustment with

live data (Meng et al., 2004). It has the advantage of minimizing the material

handling cost by reconfiguring a layout when warned by changes. Of course, this

cost must not be more than the cost of relocating shop-floor equipment.

1.4. Distributed Layouts

In world-class manufacturing systems, machines are generally more versatile. Ma-

chining centers that perform milling, drilling and boring operations are already

present in today’s factories. The end result of machine versatility is that the

products don’t need to visit as many workstations as in traditional layout. Many

more operations will be performed at every machine. Also, products tend to have

more natural, simpler design as the result of components standardization and

sustaining effort throughout the simplification an ingenuity of process automa-

tion. Given these, it is clear that versatile machines need to have to be close to

each other when dealing with factory of future (Drolet, 1989).

The concept of distributed layout (DL) expands current thinking of methods

for facility layout, and supports the need for a new generation of facility layouts

beyond the traditional layouts that continue to be studied and implemented in

industry. In distributed layouts, similar departments (machines) are distributed

throughout the factory floor to increase the accessibility to these resources from

the different regions of layout (Baykasoglu, 2003). As a result, efficient flows

could be more easily found for a larger set of product routings, which would then

tend to diminish the need for rearranging the layout even when production re-

quirements change significantly (Lahmer and Benjaafar, 2005). To design this
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layout, the planer should decide how to disaggregate and duplicate the subde-

partments or machines throughout the plant (Montreuil and Venkatadri, 1991).

Figure 1.5 represents the schematic structure of layout with varying degree of

distribution. In the fully distributed (holonic) approach, machines are spaced

randomly as evenly as possible throughout the entire facility. For functional par-

tially distributed layouts, facility designer restricts all (some) of the machines

of the same type to be in adjacent locations and requires that these aggregated

machines have reasonably compact shapes (Lahmer and Benjaafar, 2005). Simi-

larly, the functional layout is also a constrained version of the distributed one. A

holonic layout might appear chaotic, but it is the ability of the system to provide

many alternatives that allows it to adapt to changing conditions (Askin et al.,

1999).

a c b 

Figure 1.5: 1.Layouts with varying degrees of distribution: (a) functional layout,
(b) partially distributed layout, and (c) maximally distributed layout.
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1.5. Layout Design and Analysis

According to Meng et al. (2004), to put a layout problem into context, the entities

and activities relevant to the layout problem can be organized into a layered model

as shown in Figure 1.6. The reference model has three physical layers: product

mix, machine types and locations on the shop floor. Product mix includes the

types of products that need to be produced and their arrival volumes (parameters

related to demands). Each available machine belongs to a machine type. The

number of locations on the shop floor is equal to the total number of machines.

The two logical layers of the reference model denote the design activities involved.

The process planning problem maps each product to a sequence of machine types,

its output (product routings) includes other production data such as processing

time, setup time and tooling information. The layout problem is to find a one-to-

one mapping from machines on the machine type layer to locations on the shop

floor. The third logical layer (not shown) pertains to the scheduling problem. It

finalizes the machine types in a product routing to specific machines on specific

shop floor locations, and coordinates the timing, sequencing and prioritizing of

all work orders assigned to one machine. The solution of the layout problem is

determined by entities and activities in other layers of the reference model. Define

the collection of these entities and activities, i.e. product mix, product routings,

machines and locations on shop floor) as the context of a layout problem. As long

as the context is fixed, theoretically speaking, there exists an optimum layout for

this context.

By definition, the facility layout problem is a simple assignment of m ma-

chines to n locations on the shop floor. What makes the facility layout problem

difficult to solve is the large combinatorial search space, especially when n is large

(possibly n! feasible solutions if no special restrictions on the locations of specific

machines or relative location of a subset of machines), and the construction of a

score function which incorporates various business considerations to evaluate the
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goodness of a layout.

activities (i.e. product mix, product routings, machines and locations on shop
floor) as the context of a layout problem. As long as the context is fixed,
theoretically speaking, there exists an optimum layout for this context. By defini-
tion, the facility layout problem is a simple assignment of n machines to n
locations on the shop floor. What makes the facility layout problem difficult
to solve is the large combinatorial search space, especially when n is large
(possibly n! feasible solutions if no special restrictions on the locations of specific
machines or relative location of a subset of machines), and the construction of a
score function which incorporates various business considerations to evaluate the
goodness of a layout.

A layout problem becomes more difficult to solve when multiple layout contexts
must be considered and the problem has to be solved frequently in real-time mode.
A typical current-day manufacturing company faces constantly changing product
volumes and mixes, which make it necessary to update the layout accordingly in
order to operate efficiently. Simultaneously, the rapid advances in materials engi-
neering and manufacturing technology have made it practical and economical to
switch layout when needed. As discussed in Heragu and Kochhar (1994), composites
are the primary choice for many discrete manufactured components. Aluminium
composites, for instance, can now replace cast iron parts and phenolics are replacing
aluminium parts (Arimond and Ayles 1993, Fujine et al. 1993). Not only are these
materials light, but they can be engineered to exhibit excellent mechanical properties
such as hardness, heat resistance, tensile strength and vibration absorption. The
last property permits machine tool designers to design functionally equivalent, but
lighter, tools that do not require an elaborate foundation, making them easily
movable. Non-abrasive manufacturing process technology, such as laser cutting,
electron beam hardening and molecular nanotechnology, also supports the machine
tool designers’ quest for making lightweight machining equipment (Asari 1993).
Permanent magnetic chucks that facilitate quick mounting and dismounting of

Locations on shop floor

Layout

Machine types

Product routings
(including processing time,
setup time, batch size, etc.)

Product mix

Figure 1. Facility layout problem reference model.
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Figure 1.6: A Facility layout problem model (Meng et al., 2004)
.

Dynamic System Reconfiguration

Another aspect of facility design prescribed to address the challenges of meet-

ing high operational efficiency and flexibility in highly volatile environments is

dynamic system reconfiguration (DSR). In the dynamic approach, the layout

plan is based on a multi-period time horizon. During this time if the material

flow changes warrant it, layout rearrangements may be planned in one or more

periods. The analysis is based on the trade-offs between the costs of excess ma-

terial handling if a layout is not rearranged when required and the costs of such

rearrangements. With emerging technology to support reconfiguration, the ob-

jective of layout design is shifting from long-term material-handling efficiency

to short-term responsiveness (Benjaafar et al., 2002). Management can focus on
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operational performance by reconfiguring layouts more frequently to relieve short-

term congestions and maximize throughput for current product mix and demand.

Thus, the nature of decision on layout reconfiguration is becoming more tactical,

rather than strategic. Altering an existing layout introduces two kinds of costs:

(1) the cost incurred due to loss in production time, and (2) the cost of physically

moving equipment from their existing location to the new location. This includes

planning, dismantling, construction, movement and installation costs (Kochhar

and Heragu, 1999). However, technological advances have been reported to en-

able DSR. Southwestern Industries (www.southwesternindustries.com) developed

a compact and mobile milling machine (TRAK QuikCell QCM-1). The ma-

chine is small enough to fit through most doors, and its rigid frame does not

require re-leveling after each move. There is also a shift to lighter machine

tools driven by advances in materials and processing technologies (Heragu and

Kochhar, 1994). Systems that allow easy storage and retrieval of large equip-

ment and machine tools have also been developed. For example, Robotic Park-

ing (www.roboticparking.com) developed a modular automated parking system.

Although originally designed for car parking garages, the technology is finding

applications in manufacturing where machine tools can be stored and retrieved

as needed (Benjaafar et al., 2002).

Comprehensive Models

The primary design strategy for design of a layout is how and where to allocate

machines such that material handling cost can be minimized. However, during the

placement and floor-planning phase, several important design challenges have to

be simultaneously addressed in order to maximize the benefits of layouts design.

The facility layout, material handling system, process routings and production

plan must all fit together to enable a competitive manufacturing performance

(Askin et al., 1999). In respect to the design of facility layout, considering several
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aspects of a manufacturing system can practically improve layout’s effectiveness

and functionality. As pointed out in Arvindh and Irani (1994), an integrated

approach should be pursued in manufacturing system analysis, since different

aspects of a system are interrelated in many ways. In addition, a comprehensive

model consisting of different attributes of a system can help one to understand

the problem better. Integrated system approach can minimize the possibility of

certain important aspects of a system being overlooked, while other issues are

being studied. Review of recently published articles in the facility layout design

showed that these factors are associated with lot splitting, sequence of operations,

alternate part routings, operation time and cost, cost of subcontracting part

processing, machine capacity, setup cost, tool consumption, workload balancing,

and machines separation constraints.

Given the new reality that layouts are likely to change very frequently, possi-

bly every few months rather than years and that, at best, we only have knowledge

of production activities during the upcoming planning period, we need to develop

a layout only for the next planning period. In addition, due to the short term

life of given layout and availability of production data for this time period, it is

possible to consider optimizing operational performance measure such as WIP in-

ventory, setup and part cycle time (Heragu and Ekren, 2010). Thus, the nature of

decision on layout reconfiguration is becoming more tactical, rather than strate-

gic. This makes the integration of dynamic system reconfiguration (DSR) with

tactical decisions such as production planning a sensible approach. According to

Defersha and Chen (2009a), the majority of literature in DSR assumed that the

production quantity in each period is equal to the demand of the same period. In

reality, however, production quantity can be different from the demand as it may

be satisfied from inventory or by subcontracting. Thus, the production quantity

should be known in order to determine the number and types of machines to

be installed in the system. However, the number and types of machines to be
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installed should in turn be known first in order to determine production quantity

due to capacity considerations. This implies that dynamic system reconfigura-

tion and production planning problems should be solved simultaneously in order

to obtain the overall optimal solution. Here it is important to note that it is

relatively easy to get detailed data on material flows, machine setup, processing

time and other relevant information relative to production activities in the next

period as opposed to manufacturing activities for the next five years.

In summary, the ability to design and operate manufacturing facilities in

factories that must deal with high product variety or high volatility in their pro-

duction requirements is becoming increasingly important. Such challenges can be

addressed by using distributed layouts in such manufacturing system (Krishna

et al., 2009; Lahmer and Benjaafar, 2005; Benjaafar and Sheikhzadeh, 2000).

In addition, distributed layouts in settings with multiple periods (Dynamic dis-

tributed layout) can take the advantage of the DSR to enhance its robustness

to uncertainty and variability (Lahmer and Benjaafar, 2005). Moreover, taking

account of a comprehensive distributed layout design model simultaneously con-

sidering for a variety of manufacturing attributes can provide a framework within

which aspects of a manufacturing system can be integrated to increase layout’s

effectiveness and functionality.

1.6. Aim and Objective

The primary objectives in our research are two-fold. The first objective is to de-

velop a comprehensive mathematical model to design a dynamic distributed lay-

out. The ideal integrated layout design model would integrate all design factors

such as machine allocation to pre-specified location, flow allocation to overlap-

ping process routes, production planning and inventory control and some other

attributes that capture several aspects of manufacturing system in reality. The
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comprehensive model similar to the one proposed in this study usually imposes

computational difficulties and for only small size problems may be solvable us-

ing off-the-shelf optimization packages due to NP-complexity. For solving such

difficult problems, two hybrids metaheuristics ( including Linear Programming

Embedded Simulated Annealing (LPSA) and Linear Programming Embedded

Genetic Algorithm (LPGA)) and a metahuristec (simulated annealing) algorithm

are developed, and the results obtained are compared. The proposed formula-

tions and solution procedures make an important step towards the development

of distributed facility layout models. These models and solution procedures can

be applied to a variety of manufacturing settings with minor modifications. The

second objective in our research is to provide a scheduling algorithm for control-

ling manufacturing systems with distributed layouts. To our knowledge, a model

for scheduling in distributed layout manufacturing system has not been addressed

in the literature.
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Literature Review: Facility

Design

2.1. Introduction

In this review, we present some of the previous work on distributed facility lay-

out design problem. As the literature on facility layouts design is enormous, we

provide a limited, brief summery in this topic. Our goal is to provide references

on the studies which related parts of the design of distributed layouts addressed

in this thesis. Other reviews of interest are Drira et al. (2007) for facility layout

problems, Meller and Gau (1996) for block layout design, Shahbazi et al. (2013)

for Quadratic Assignment Problem, Blum et al. (2006) for hybrid metaheuristic

and Balakrishnan and Cheng (2007) for dynamic facility layout. The organization

of this Chapter is as follow. In Section 2.2, we review block layout design and

discuss traditional facility layout design problems. Sections 2.3 and 2.4 are dedi-

cated to modern facility layout design and presents the literature on distributed

facility layout design. Section 2.5 reviews the solution procedures used to solve

distributed layout problems in the literature.
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2.2. Traditional Facility Layout Problem

The traditional facility layout problem is associated with assigning m depart-

ments to n distinct locations in different areas of floor plan. As defined in the

literature, minimizing the material handling costs inside a facility is usually the

only objective of the problem. The objective function used to evaluate the good-

ness of a layout is subject to two sets of constraints: (1) department and floor

area requirements, and (2) department locational restrictions (departments can-

not overlap, must be placed within the facility, and some must be fixed to a

location or cannot be placed in specific regions) (Meller and Gau, 1996). The

center of much of the research in the traditional layout literature has been on

the efficient solution of a combinatorial optimization problem which has resulted

in a block layout (see Figure 2.1-a). In the following step, detailed layout plan

associating with exact department locations, aisle structures, input/output (I/O)

point locations, and the layout within each department are created (see Figure

2.1-b) (Meng et al., 2004).

Mathematical programming approaches such as nonlinear and mixed integer

programming have been used to solve the traditional layout problem. However,

many researchers turned away from mathematical programming technique to the

metaheuristics such as genetic algorithm and simulated annealing due to lack

of solution quality and computational cost in mathematical programming tech-

niques. These stochastic search techniques have been discovered as a useful tool

for a wide range of combinatorial optimization problems. A typical formulation

of the traditional facility layout problem is the quadratic assignment problem

(QAP) which is introduced by Koopmans and Beckmann (1957). In this for-

mulation, layout is considered as discrete as shown in Figure 2.1-a. Discreet

representation is not suitable to map the exact position of facilities compared to

continual representation, Figure 2.1-b, that appropriately is able to consider the

orientation of facilities. The QAP formulation of layout design is presented in
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Figure 2.1: Discrete (a) and Continual layout Representation (b)

Eq. (2.1) to Eq. (2.4). The material handling and facility installation costs are

minimized using the objective function. Most authors ignore the second term in

the objective function because it is linear. The cost of assigning a department at

a particular location is dependent on the location of the interacting departments.

Such dependency leads to the quadratic objective that inspires the problem’s

name. The constraints in Eqs. (2.2) and (2.3) are to enforce that each location

must be occupied by only one facility and each facility must be assigned in only

one location. One of the disadvantages of the QAP is that it requires all depart-

ments be of identical shape and size (equal-area) and the location of site (the

physical area to be occupied by a department) are known priori. Therefore, this

approach is incapable of solving layout design problems when the location sites

are not specified in advance. It also has been shown as a NP-hard problem which

implies that, in general, it is a hard problem to solve (Sahni and Gonzalez, 1976).
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Min
m∑

l′=1

m∑
l=1

m∑
j=1

m∑
i=1

dll′ · fij · yiljl′ +
m∑
l=1

m∑
i=1

cil · xip (2.1)

m∑
i=1

xil = 1 ∀i (2.2)

m∑
l=1

xil = 1 ∀l (2.3)

xil ∈ {i, l} ∀i, l (2.4)

m Number of facilities (locations).

cik The cost of assignment of facility i to locations l.

dll′ Distance between locations l and l′.

fij Material flow from facility i to j.

xil A binary variable equal to 1 if facility i is located at location l; 0

otherwise.

Kusiak and Heragu (1987) and others consider the unequal-area facility

layout problem as modified QAP such that they break the departments into

small girds with equal area and assign a large artificial flow between those girds

of the same department, to enforce that they are not disaggregated, and solve

the resulting QAP. However in this approach, since the number of departments is

increased the problem is not easily solved even for small size problems. Detailed

survey on QAP and its variants can be found in (Shahbazi et al., 2013).

Mixed Integer Programming Problems

The unfavorable computational time and poor solution quality obtained from

QAP-type models motivate the researchers to develop mixed integer programming

models to address a continual representation of the facility layout design where
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all the facilities are placed anywhere within the planar site and must not overlap

each other (Das, 1993; Dunker et al., 2005; Meller et al., 1998). The mixed integer

programming approach is powerful to take into account specific information of

the problem and determine a comprehensive result about the system, however, it

is not capable to achieve optimal solution for even small size problems. Several

researchers have developed heuristic and metaheuristic-based techniques to solve

realistic-sized instances of the problem. A review of facility layout design using

Mixed-integer is performed by (Drira et al., 2007).

Limitation of Traditional Facility Layout Design

The design of facility layout considers a number of issues including: (1) the de-

termination of locations where departments will be established, (2) overall layout

establishment, and (3) detailed layout plan development such as the location of

each machine, and the determination of material handling methods to be used.

To achieve an efficient layout, these issues should be examined simultaneously.

However, traditional facility layout problems are generally formulated and solved

sequentially due to the complicated nature of the integrated problem. For exam-

ple in cellular layouts, the traditional facilities layout problem considers the area

of cells, but not the shape, and has been modeled in the past in several ways,

such as a quadratic assignment problem (QAP), a quadratic set covering problem

(QSCP), a linear integer programming problem, and a graph theoretic problem

(Kusiak and Heragu, 1987). A small change in one department can affect the

entire system layout, and a different layout may require different forms of depart-

ments for achieving the best system efficiency. Another limitation in addressing

traditional layout problems is the design of layout for a single planning period

where the potential to frequently alter layouts is ignored.
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2.3. Modern Facility Layout Design

In the modern facility layout design, it is common that some design factors such

as machines dimensions, capacity of machines, production volumes, processing

routes, etc., are to be considered together to achieve a good facility layout in a

manufacturing environment. For example, this occurs in cellular manufacturing

systems design, where cell formation problem, machines allocation within each

cell and the sequencing of operations are addressed simultaneously instead of

formulating and solving these problems sequentially (Gupta et al., 1996). The

accelerated use of cells in industry in the 1990’s caused that the cell formation

problem commanded wide popularity among researchers. While much of the early

research has considered only the part-machine incidence matrix to form the cells,

recent studies have incorporated additional information such as the operation

sequence, demand volume, processing time and capacity considerations (see Park

and Wemmerlöv (1995) for a review of these studies). Park and Wemmerlöv

(1995) presents a taxonomy based on input data categories. They suggest that

cell formation problems be classified based on the type of data they need to

produce solutions. The basic types of input data are: (1) Part machine type

requirements data (PMR), (2) Sequence data (SEQ), (3) Volume data (VOL), (4)

Processing time data (PRT), and (5) Capacity data (CAP). An example of input

data-based classes are given in Table 2.1. According to the authors, higher class

Table 2.1: An example of input data-based classification techniques

Class Input Data Types Case 1

I PMR
II PMR+SEQ;PMR+VOL
III PMR+SEQ+VOL;PMR+VOL+PRT
IV PMR+VOL+PRT+CAP+SEQ
V PMR+VOL+PRT+SEQ;PMR+VOL+PRT+SEQ+CAP

techniques, by relying on more types of input data and considering more objective
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/constraints, solve more sophisticated cell formation problems and appear more

likely to generate solutions that can achieve objectives specified by the user. In

other words, techniques in classes IV or V have higher face or model validity than

techniques in classes I or II. Situations may exist where a user prefers a lower

class technique (due to availability, ease of solution generation, etc.) to derive

an incomplete solution, i.e. not all decision variables of concern to the user are

included in the model structure, and then use heuristic approaches (external to

the CFT) to finalize the solution. However, the result obtained by Arvindh and

Irani (1994) illustrates the need for solving simultaneously all subproblems in

cell design problem instead of solving them in non-sequential manner. This is

essential because of the highly interacting natures of subproblems.

There are also limitations underlying many of the traditional methods used

to design and evaluate factory layouts making them less effective in factories with

high variety in product mix, uncertainty in production demand, and many differ-

ent manufacturing routings resulting in a complex material flow network. With

routing information embedded in the layout, the design of layout configurations

becomes possible such that the obtained layout is most robust over that range of

uncertainty (Benjaafar and Sheikhzadeh, 2000).

More importantly, some studies suggest that enforcement of facilities to get

arranged in a pre-specified layout shape may increase the total distance traveled

by the materials. For example, Urban et al. (2000) consider a model that do

not require the machines to be placed in a functional layout or in a cellular

arrangement, but allowed the material flow requirements to dictate the machine

placement. However, the model formulated in Urban et al. (2000) supposes that

the location of sites is known a priori. While limiting the layout design to a

particular shape has advantages (e.g., simplified workflow and routing), they

usually lead to suboptimal layout designs in terms of total distance traveled

(Benjaafar and Sheikhzadeh, 2000).
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Dynamic Facility Layout Planning

Traditionally, the facility layout design is usually considered as static. This means

that once the facility layout is designed and executed, it remains unchanged for

years. This is not the case in today’s dynamic environment for manufacturing

firms where the layout may be reconfigured as frequent as every few months.

Due to pressures on manufacturing systems to adapt to change, the idea of dy-

namic layout problems has been introduced by several researchers. Rosenblatt

and Kropp (1992) indicate that if the objective is to minimize the expected ma-

terial handling cost, then it is equivalent to solve the layout problem that results

from the expected flow matrix. Such a result allows one to effectively use tradi-

tional layout algorithms that consider one flow matrix (Meller and Gau, 1996).

This model takes into consideration material handling cost as well as cost of relo-

cating machines from one period to the next. A majority of the research that has

been done in the dynamic facility layout planning (DFLP) assumes equal depart-

ment sizes and deterministic material flow. A review of some previous work on

dynamic layouts is presented in (Balakrishnan and Cheng, 1998). Palekar et al.

(1992) consider uncertainties explicitly in plant layout design. They consider a

stochastic dynamic layout problem assuming the following are known a priori: (i)

material flows matrices for each of several planning periods, and (ii) the transition

probability from one flow matrix to another. A restriction of the DFLP is that it

necessitates production data for multiple periods be available at the initial design

stage. This requirement is increasingly difficult to fulfill in today’s environment,

where factories are suffering by the unavailability of production data for more

than one period at a time (Benjaafar et al., 2002). Another promising approach

to address changes in the production environment is to build inherent features

into the layout that enable it to adapt to volatilities. Modular, virtual cell and

fractal and distributed layouts are among capable ones addressing uncertainties.
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2.4. An Overview of Distributed Layouts De-

sign

Before reviewing distributed layout design literature, some terminologies which

are used throughout this thesis are presented in this paragraph. They are static

against dynamic production requirements and deterministic versus stochastic pro-

duction requirements. A static production requirement refers to a single period

when designing a DL. That is, product mix and demand for the whole planning

period are constant. However, product mix and demand in such cases can be de-

terministic or stochastic. For static and deterministic production requirements,

there is only one possible set of product mixes and demands which are known.

In contrast, static and stochastic production requirements have a set of possi-

ble product mixes and demands to occur; each has its probability of occurrence.

Therefore, designing a DL for such requirements needs to consider all possible

product mixes and demands.

As previously mentioned, the distributed layouts are facility layout designs

achieved by jointly determining the machine location decisions and part flow allo-

cation decisions given production requirement, the volume and route information

(Benjaafar and Sheikhzadeh, 2000; Benjaafar et al., 2002; Urban et al., 2000;

Taghavi and Murat, 2011). In particular, the machine placement decisions are

made based on the manufacturing requirements as opposed to dictating a partic-

ular layout form (product, process, or hybrid) a priori (Urban et al., 2000). A

significant amount of literature exists in the area of layout design problem. How-

ever; there is limited research in the body of literature dealing with distributed

facility layout problem. A list of assumption about the proposed models in sample

articles and in this study is given in Table 2.2. The integrated machine allocation

and layout problem (ILAMP) is the core part of models addressing uncertainties
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in design of distributed problems. The unique aspect of problems in the litera-

ture is that the work flow between any two given machines is no longer fixed as

with the typical machine layout problem (MPL), it is now a decision variable.

Therefore, the objective function is polynomial, instead of quadratic which is in

the QAP as discussed before.

Montreuil et al. (1993) introduce a holographic or maximally distributed

layout where functional department are fully disjointed into individual machines

to be strategically placed as far from each other as possible throughout the shop

in order to obtain a robust layout for changing product mix and volumes. Using

proximity of distinct machines, the intent is to provide efficient process routes

for any part type which the system may be asked to produce with minimum

notice. As orders arrive, part routings are constructed based on compatibility

between part requirements, machine locations and machine availability (Askin

et al., 1999). Marcotte et al. (1998) extended the concept of holographic layouts

and proposed an approach to determine the layouts assuming that the expected

number of trips from and to each machine is known. These would be derived

from the process plans and demands.

Urban et al. (2000) presented a deterministic ILAMP to deal with the un-

certainty of product mix for a single period. He suggested that the best way to

handle the uncertainty in the product mix is to allow the material flow require-

ments to dictate the machine placement. Given: (1) a set of product mixes, (2)

machines or operations required to produce each product, (3) the time required

to process each product on a given machine, (4) the capacity of each machine,

and (5) the processing route of each product , the design objective here is to

minimize the total distance or material handling cost. The algorithm seeks to

create robust layout and determine parts routings simultaneously. They consid-

ered equal-sized machines with replicas and assumed that the location of sites is

known a priori. The resulting model is aggregated quadratic assignment problem
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which is then solved using two metaheuristics. Their model is closer to reality

by considering capacities of machines. Some observations in their publication

are worth considering, they reported that by integrating the machine layout and

product assignment problems and allowing the material flow dictate the place-

ment of machines, the work flow can be reduced to nearly 29% compared to the

functional layout.

Benjaafar and Sheikhzadeh (2000) considered the stochastic version of IMALP

and designed robust distributed layouts using demand distribution information.

They proposed an iterative method after decomposing problem into layout as-

signment and flow allocation sub-problems and compared the performance of

distributed layouts with functional, random, and maximally distributed layouts.

They concluded that cost savings are also significant even in the absence of vari-

ability. In the first step of their iterative technique, they determined, for each

possible demand scenario, the amount of material flow due to product p between

each pair of departments for all the distribution of demand scenarios, the product

process routings, and the product unit transfer loads. Then, using the nonlinear

mixed-integer programming model, the corresponding optimal layout and the cor-

responding optimal flow allocation between copies of the same department were

generated. Note that flow matrices generated in first step only give the amount of

flow between department types. The determination of the flow volumes between

individual departments was determined by the optimization model, simultane-

ously with the layout. The ILMP model usually assumes workload assignment to

machines is possible as long as capacity constraints are not violated. Such a total

flexibility, while allowing us to minimize material handling costs, may result in

unbalanced workload distribution among machines of the same type. In turn, this

may grow the congestion levels and increase throughput times at the more utilized

machines. The authors also addressed work load balancing to balance workload

assignment among all departments of the same type. Like Marcotte et al. (1998),
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the authors considered equal-sized machines with replicas and assumed that the

location of sites is known a priori but this may not always hold in practice. When

an uncertain environment in which the exact values of the probabilities of the dif-

ferent possible scenarios are unknown, layout flexibility can be defined in terms

of the robustness of the layout’s performance under different scenarios. Thus,

the most robust layout is the one whose cost performance remains close to the

optimal layout for the largest number of scenarios. Benjaafar and Sheikhzadeh

(2000) included a robustness constraint that ensures the material handling costs

under any given scenario to be within a specified range of the optimal layout for

that scenario. They also reported if the distribution of flow patterns is prede-

termined, then including flow information at the design stage can lead to better

quality layouts. However, material handling costs can be significantly reduced

even if no flow information is included in the model (e.g. by a random distribu-

tion of departments). In addition, they mentioned that distributed layouts are

quite insensitive to inaccuracies in the demand distribution.

The result obtained from Benjaafar and Sheikhzadeh (2000) motivated

Baykasoglu (2003) to design distributed layouts without demand or part vari-

ety data. However, he considered distributed layouts where the emphasis is on

the distribution of resource elements instead of machine duplications. Accord-

ingly, the objective of capability-based distributed layout approach is defined as

minimizing total distance of accessing every capability from every location of the

layout. His results showed that the proposed distributed layout approach out-

performs functional layouts in implementing virtual cells, which was the second

motivation of the research. The formation and scheduling process of virtual cells

were clearly explained and researched in detail in the literature (Montreuil et al.,

1991; Benajaafar, 1995; Marcotte et al., 1998). However, the layout issue had

not been addressed entirely since a model for the implementation of a distributed
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layout prior to forming virtual cells was developed by (Baykasoglu, 2003). Au-

thor supposed all machines are equal-size, but the number of machines is not

equal to the number of girds. This machine assignment problem was solved such

that the summation of the distances from every location that is unoccupied by

a capability to the location where the capability is available is minimized. As

a major assumption machine capabilities were defined in terms of resource ele-

ments (REs). REs can effectively define the unique and overlapping capabilities

of machine tools (Gindy et al., 1996). A brief explanation of REs is given in the

next Section because we also widely used the concept of the RE in this study.

According to author of Baykasoglu (2003), designing distributed layouts through

considering machining capabilities is more beneficial and therefore the capability-

based distributed layout should be preferred to a machine-based one, especially

in the absence of demand data.

Lahmer and Benjaafar (2005) extended stochastic single period model in

Benjaafar and Sheikhzadeh (2000) to dynamic distributed layout model. One

of the key features in their design procedure is that the functional departments

are disaggregated into sub-departments and are then distributed throughout the

plant to form a distributed layout. In this perspective, the functional layout read-

ily is a constrained version of the distributed layout. They assumed: (1) demand

information (2) production requirements (i.e., number of products, demand for

each product, process sequences and processing times, and department capacities)

for each period is known at the initial design stage, and (3) department disag-

gregation level is also a given factor. The above information is used to develop

a mathematical model to determine the locations of each department duplicate

(machines) and volume of flow between them in each period. Their formulation

also selects part routings, its processing requirement at each department copy

and each demand for each period. They also explicitly modeled the production

capacity of each department, which can vary from copy to copy and from period
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to period. Like most works in design of distributed layout, their model assumed

equal-size department duplicates. However, they relax the assumption that as-

sumes the number of locations and departments duplicates are the same by using

dummy departments with zero flows and zero rearrangement costs. They also

added three terms in the objective function allowing some practical issues to be

included in their model; these are associated with workload balancing within du-

plicates, checking for layout robustness, and discouraging splitting of flows among

multiple copies. It is worth to mention that flow allocation is given highest prior-

ity over other factors by most of researchers in designing of a distributed layout.

However, it needs to be carefully addressed to restrict full flexibility in assigning

workload among duplicates of the same department (or same machines). Lah-

mer and Benjaafar (2005) suggested that it is sensible approach when there is

ample processing capacity at each duplicate, the order splitting can be discour-

aged by restricting the assignment of each product to only one copy. The main

contributions of this work are threefold: first firms could benefit from desegregat-

ing and distributing functional departments , second the distributed layouts are

particularly more beneficial when demand and routing variability are high and

product variety is low and third partially distributed layouts outperform the fully

disaggregated functional layouts.

Castillo and Peters (2003) extended Urban et al. (2000)’s IMALP model

to a formulation considered grouping machines to form departments where ma-

chines are not necessarily same. Their non-linear mixed-integer model concur-

rently captured machine assignments, flow allocation and department formation.

In contrast to traditional facility layout approaches, the number, shape, and for-

mation of departments are not imposed a priori on the final layout solution and

are part of an extended assignment problem. They showed that their proposed

facility layout resulted in total material handling cost reduction with an average

improvement of over 40% when compared to functional layouts.
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There is limited work in the literature to address the problem on the basis

of unequal machines and continual presentation of the distributed layouts. Soli-

manpur and Jafari (2008) and Taghavi and Murat (2011) studied a variation of

distributed layout problem proposed in (Urban et al., 2000). A major assump-

tion in their publications is that they consider unequal-area machines duplicates.

Accordingly, they developed a mixed integer programming model to address a

continual presentation of the distributed layout design where all the facilities are

placed anywhere within the planar site and must not overlap each other. Soliman-

pur and Jafari (2008) showed distributed layouts remarkably decrease the mate-

rial handling distance compared to an optimum process layout configuration for

different problem sizes. The majority of the literature on distributed layout prob-

lems to date assumes the flow of material is certain and exact, which is a doubtful

assumption in today’s dynamic environment. Hosseini Nasab (2014) considered

demand information as fuzzy numbers with different membership functions. He

believes the assumption is more sensible in today’s highly volatile environments

compared to stochastic demand. He argued the fuzzy concept is better suited to

capture the ambiguity of the demand data due to lack of data in practical cases

2.5. Solution Procedures

As mentioned previously, distributed facility layout problem is special case of

the QAP and since the QAP is known to be NP-complete (Sahni and Gonzalez,

1976) it is concluded that the problem is also NP-complete. Thus, heuristic or

metaheuristic algorithms are required to develop and solve the problem.

One common approach to solve the problem in the literature is to take ad-

vantage of the special structure of the IMALP by decomposing the problem into

two sub-problems (i) a facility layout problem, and (ii) a flow allocation problem

(Urban et al., 2000; Benjaafar and Sheikhzadeh, 2000; Lahmer and Benjaafar,
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2005; Castillo and Peters, 2003; Taghavi and Murat, 2011). For a given fixed

work flows matrix, the first problem is to solve to determine the location of ma-

chines and the distance between machines. Given the location of machines, the

second problem can be addressed using fixed layout. The heuristic alternates

between both problems until convergence is achieved. The obtained solution is

not guaranteed to be optimal. In the respect to first problem since the flow vol-

umes are assumed to be known, we encounter with the QAP. Accordingly, for real

size problems, a heuristic solution procedure is required. Several heuristics have

been considered for solving QAP, including pair-wise (Benjaafar and Sheikhzadeh,

2000), 2-opt heuristic (Lahmer and Benjaafar, 2005), multi-step exchange heuris-

tics, genetic algorithms, simulated annealing (Castillo and Peters, 2003), and

tabu search.

Interestingly as discussed in (Lahmer and Benjaafar, 2005), obtaining opti-

mal solution in the design of distributed layouts is not crucial because of uncer-

tainty in the value of design parameters in practise. Tangible examples are future

demand and machine capacities. The inherent features of distributed layouts en-

able it to adapt to these uncertainties. Thus, near optimal solution are reasonably

acceptable. (Solimanpur and Jafari, 2008) developed a branch-and-bound algo-

rithm to optimally solve a nonlinear mixed integer model. the model integrates

machine placement and flow assignment where un equal machines and continual

representation of a distributed layout are considered. However, their algorithm

is capable of solving small to medium size problems. As computational times

exceed 24 hours for medium sized problem (15 machines, 5 products), authors

suggest developing heuristic methods for solving large problem instances.

Simple improvement algorithm such as the 2-opt and 3-opt or CRAFT

discussed in the literature have some limitations compared to some single point

solution-based metaheuristic algorithms such as simulated annealing. A primary

disadvantage of these local optimization algorithms is that they restrict their
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search for optimal solution in downhill direction. In other words, the initial

solution is changed only if the local search generates a neighborhood solution

with lower value for minimization problems. To avoid entrapping in this local

optima, the local search algorithm can be enhanced to allow it to back out of

poor local optima regions and seek other regions. Thus, resulting in the higher

quality solution. In addition, the local optimum solution for 2-opt (or 3-opt)

depends on the local region in which the search occurs, which itself is function

of the initial solution provided to it. The above argument gives the essence of

the local search-based metaheuristic techniques such as simulated annealing and

tabu search.

Hybrid Metaheuristic

It has become apparent that there is considerable advantage in using hybrid

metaheuristic that are often significantly more efficient than pure metaheuristics

in terms of running time and/or solution quality because of their built-in inher-

ent synergy. A hybrid metaheuristic is a metaheuristic combined with one of

problem-specific algorithms, simulations, exact techniques, heuristics, soft com-

puting methods and other metaheuristics (Puchinger and Raidl, 2005). The ma-

jority of the publications in literature have turned to focused on problem-oriented

approaches rather than algorithm-oriented. Therefore, developing an efficient hy-

brid approach is difficult task and requires specialized knowledge, expertise and

skills in different areas of optimization (Blum et al., 2006).

We begin with an overview of the classifications of strategies for combining

metaheuristics and exact optimization techniques to provide background informa-

tion needed to understand the solution procedures used in this study. Puchinger
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and Raidl (2005) presented a survey of techniques that combine exact and meta-

heuristic and defined two categories: (1) collaborative combination, and (2) in-

tegrative combination. In the former, although the two algorithms exchange in-

formation, they are not part of each other and perform sequentially, intertwined,

or in parallel. In the latter, one algorithm is embedded in another one. The

resulting metaheuristic is either incorporated exact algorithm in metaheuristics

or incorporated metaheuristic in exact method. An incorporated exact algo-

rithm in metaheuristics either puts emphasis on local search approaches that are

strengthened by the use of exact algorithms or exactly solves relaxed problems.

Incorporated metaheuristic in exact method usually is used to determine bounds

and incumbent solutions in branch and bound approaches. When dealing with

local search using metaheuristic, the exact algorithm can assist search neighbor-

hood and also allow to overcome local optima and to create high quality solution

(Blum et al., 2006). In other words, while a metaheuristic algorithm is able to

find most promising regions in the solution space, exact methods can be incor-

porated within metaheuristic in order to find near-optimal solutions or optimal

solutions in promising regions with reasonable time consumption. Exploiting

problem specific knowledge can guide to how an exact method and metaheuristic

are combined. For instance in mixed integer linear programming problem, where

obtaining a feasible solution by local search methods may be very hard and the

space of feasible solution might be very large, a metaheuristic assisted with an

exact algorithm such as Mixed Integer Programming (MIP) or Linear Program-

ming (LP) might be an applicable and promising algorithm. In addition, the

availability of efficient general purpose MIP and LP-solvers such as IBM ILOG

CPLEX, GUROBI, XPRESS, or the freely available SCIP and their relatively

easy applicability makes this procedure particularly sensible in practice (Blum

et al., 2006).

37



Chapter 3

Mathematical Model for

Distributed Layout Design

3.1. Introduction

In this chapter, we develop a mixed integer linear programming formulation for

a dynamic distributed layout problem. Similar to the models found in the litera-

ture, the model is used to simultaneously determine machine placement and flow

allocation. However, our model differs from preceding models in that: (1) we

develop a model in mixed integer linear form to take advantage of the efficiency

of the Simplex algorithm and minimize the time it takes to solve the problem to

optimality, (2) production planning is incorporated in the model to simulate the

real production environments, (3) lot streaming is considered to allow the process

of splitting jobs, and (4) we approach workload balancing in a different way.

Managing the production resources and balancing them between successive

time periods with the aim of minimizing the production costs is known as Pro-

duction Planning (PP) (Safaei and Tavakkoli-Moghaddam, 2009). In a turbulent

manufacturing environment, the established production planning and control also

has to react to changes in demand, product mix or product process plans. In such
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cases, a close link between the operational decision (i.e. machine sequencing and

lot streaming) and execution activities (i.e. lot sizing and capacity planning) in

PP and the change process is required. According to this understanding, integrat-

ing the concepts of dynamic distributed layout design and production planning is

to be a crucial requirement to model and mimic the real production environments.

Lot streaming refers to the process of splitting a production into smaller jobs

in order to move through several processing stages as quickly as possible (Baker,

1995). Therefore, different sublots of the same jobs can be processed simulta-

neously. By allowing the overlapping between successive operations, production

may be significantly accelerated and a reduction on the work-in-process inventory

levels may be also obtained. A sublot may contain several items. Therefore, after

some items in each sublot are completed in a machine, they have to wait until all of

the items in the sublot are finished before they move to the next machine. Those

products waiting for others to be completed are part of the work-in-process in-

ventory. Lot streaming also improves customer service, since partially completed

sublots may be delivered before the whole job (order) is completed (Potts and

Van Wassenhove, 1992).

The majority of approaches that address distributed layout design prob-

lems tend to minimize material handling costs only. These include Benjaafar

and Sheikhzadeh (2000); Baykasoglu (2003) and Lahmer and Benjaafar (2005).

However, when systems reconfiguration and production planning are considered

concurrently, the actual problem involves other costs associated with machine re-

location, setup, inventory holding, in-house production and subcontracting needs

(See Tables 3.1 and 3.2 for a comparison between this paper and recently pub-

lished articles on distributed layout).

In this thesis, the concept of resource elements (REs) is innovatively used

as basis to impose workload balancing between machines of varying degrees of

capabilities. In most previous studies considering workload balancing, a workload
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Table 3.1: List of manufacturing attributes

1. Alternative Routing

2. Demand Fluctuation

3. Dynamic System Reconfiguration

4. Workload Balancing

5. Lot-Splitting

6. Types of Tools Required by a Part

7. Types of Tools Available on a Ma-
chine

8. Production Planning

9. Setup Cost

10. Movement of Parts (Material
Handling Cost)

11. Machine Capacity

12. Subcontracting Cost

13. Operation Cost

Table 3.2: Attributes used in the present study and in a sample of recently
published articles

Article/Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13
Present study × × × × × × × × × × × × ×
Nageshwaraniyer et al. (2013) × × ×
Hamedi et al. (2012) × × × × ×
Lahmer and Benjaafar (2005) × × × × ×
Baykasoglu (2003) × × × × ×
Urban et al. (2000) × × ×
Benjaafar and Sheikhzadeh (2000) × × × × ×
Note: Attributes’ names are referred in Table 3.1

is required to be evenly divided among machines that are deemed similar (may

not be identical). In our work, we approach workload balancing in a different way.

In our model, workload balancing is: (1) fully enforced among identical machines,

(2) partially enforced among machines having some shared capabilities, and (3)

not totally enforced among dissimilar machines. The aim of this Chapter is to

give more details on our mathematical model and discuss some features of it.
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3.2. Problem Description

Consider a manufacturing system processing P products in T number of equal

planning periods where the demand for the products may vary from period to

period deterministically. The system consists of M machines to be distributed

over N distinct locations (N = M) and reconfiguration may take place at the

beginning of each planning period. There are a total of R resource elements, and

each machine has some of these REs, representing the capabilities it shares with

other machines, as well as those that are unique to it. Processing a part requires

a set of operations to be performed in a given sequence. A particular operation

can be performed using a given resource element, and machines possessing this

element are considered as alternative routes for this operation. The processing

time for each operation is known. In a given time period, a demand for a part

can be satisfied by producing it in-house, subcontracting its production, or using

inventory carried over from the previous period. Without loss of generality, we

assume a part inventory is zero at the beginning of the first period and at the end

of the last period. A production lot of a part may be split into smaller sublots

that are to be processed independently. The material flow cost of a part is linearly

related to the distance it travels using the material handling system. The cost to

relocate a machine is also assumed to be linearly related to the relocation distance.

However, we assume that the distance between a pair of locations when moving

a part is not the same as the distance between the same pair of locations when

relocating a machine. This is because parts are moved using a material handling

system (e.g., AGV with a specified path), whereas machines are relocated in

a different way. The workload of the system in a given time period is evenly

distributed among the machine tools that share the particular resource element

being used. The overall objective is to minimize the total costs associated with

material handling, machine relocation, subcontracting, setup, inventory holding

and internal part production.
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3.3. Notation

The problem described in the previous Section is formulated as a mixed integer

linear programming. The notations used in this formulation are presented below.

Indexes and Input Data:

T Number of equal planning periods where planning periods are indexed

by t = 1, 2, ..., T .

P Number of products where products are indexed by p = 1, 2, ..., P .

Op Number of operations required by product p where operations are

indexed by o = 1, 2, ..., Op.

Np Maximum number of sublots of product p in a given time. period

where production sublots are indexed by n = 1, 2, ..., Np.

M Number of machines in the manufacturing facility where machines

are indexed by m = 1, 2, ...,M .

R Number of resource elements in the manufacturing facility where re-

source elements are indexed by r = 1, 2, ..., R.

L Number of locations at which machines are installed, where locations

are indexed by l = 1, 2, ..., L.

J Number of groups of machines with similar functionality where groups

are indexed by j = 1, 2, ..., J .

C Length of a planning period in terms of available work time in min-

utes.

Dp,t Demand quantity for product p in time period t.
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Θp Unit cost of producing product p in-house (not including setup).

Θ̂p Unit cost of subcontracting product p.

Hp Unit inventory holding cost per period for product p.

Fp Material handling cost per unit distance for one unit of product p.

Uo,p Unit processing time for operation o of product p.

Ar,m A binary datum which equals 1 if resource element r is available on

machine m; 0 otherwise.

Br,o,p A binary datum which equal to 1 if resource element r is required

by operation o of product p; 0 otherwise. An operation requires only

a single resource element and machines having this resource element

are considered as alternative routing for this operation.

Ko,p,m A binary datum which equals 1 if operation o of product p can be

processed on machine m; 0 otherwise. Ko,p,m =
∑R

r=1(Ar,m ×Br,o,p).

El,l′ Machine relocation distance between locations l and l′.

Ẽl,l′ Material handling distance between locations l and l′.

Gm Relocation cost per unit distance for machine m.

Sp Setup cost for processing a sublot of product p.

Ω Large positive number.

Variables:

Continuous Variables:

vp,t Production lot size of product p in time period t.
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bn,p,t The size of the nth sublot of product p in time period t.

v̂p,t Volume of product p subcontracted in time period t.

δo,n,p,m,t The time elapsed in processing operation o of the nth sublot of product

p on machine m in time period t.

hp,t Inventory level of product p at the beginning of period t.

do,n,p,t Distance between the locations where operations o and o + 1 of nth

sublot of product p are processed multiplied by the sublot size bn,p,t

in time period t.

em,t Distance between the location of machine m in period t − 1 and its

location in period t.

Binary Variables:

αm,l,t A binary variable equal to 1 if machine m is located at location l in

time period t; 0 otherwise.

γo,n,p,m,t A binary variable equal to 1 if operation o of the nth sublot of product

p is processed by machine m in time period t; 0 otherwise.

yn,p,t A binary variable equal to 1 if nth sublot of product p is created and

processed in time period t; 0 otherwise.

3.4. Objective Function and Constraints

Following the problem description and notation given in Sections 3.2 and 3.3, the

comprehensive mathematical model for distributed layout manufacturing system

design is presented below.
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Minimize:

Z =
T∑
t=2

M∑
m=1

(Gm · em,t) +
T∑
t=1

P∑
p=1

Np∑
n=1

Op−1∑
o=1

(Fp · do,n,p,t) +
T∑
t=1

P∑
p=1

(Hp · hp,t)

+
T∑
t=1

P∑
p=1

Np∑
n=1

(Sp · yn,p,t) +
T∑
t=1

P∑
p=1

(Θp · vp,t) +
T∑
t=1

P∑
p=1

(Θ̂p · v̂p,t) (3.1)

Subject to:

em,t ≥ El,l′ + Ω(αm,l,t−1 + αm,l′,t)− 2Ω;

∀(m, t, l, l′)|t > 1 (3.2)

em,t ≤ El,l′ − Ω(αm,l,t−1 + αm,l′,t) + 2Ω;

∀(m, t, l, l′)|t > 1 (3.3)

do,n,p,t ≥ Ẽl,l′ · bn,p,t + Ω (αm,l,t + γo,n,p,m,t + αm′,l′,t + γo+1,n,p,m′,t)− 4Ω;

∀(o, n, p, t,m,m′, l, l′)|(o < Op & Ko,p,m ×Ko+1,p,m′ = 1) (3.4)

do,n,p,t ≤ Ẽl,l′ · bn,p,t − Ω (αm,l,t + γo,n,p,m,t + αm′,l′,t + γo+1,n,p,m′,t) + 4Ω;

∀(o, n, p, t,m,m′, l, l′)|(o < Op & Ko,p,m ×Ko+1,p,m′ = 1) (3.5)

vp,1 + v̂p,1 = Dp,1 + hp,2;∀(p) (3.6)

vp,t + hp,t + v̂p,t = Dp,t + hp,t+1; ∀(p, t)|(1 < t < T ) (3.7)
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vp,T + hp,T + v̂p,T = Dp,T ;∀p (3.8)

P∑
p=1

Np∑
n=1

Op∑
o=1

δo,n,p,m,t ≤ C;∀(m, t) (3.9)

δo,n,p,m,t ≥ Uo,p · bn,p,t + Ω · (γo,n,p,m,t − 1);∀(o, n, p,m, t)|(Ko,p,m = 1) (3.10)

δo,n,p,m,t ≤ Uo,p · bn,p,t − Ω · (γo,n,p,m,t − 1);∀(o, n, p,m, t)|(Ko,p,m = 1) (3.11)

δo,n,p,m,t ≤ Ω · γo,n,p,m,t; ∀(o, n, p,m, t)|(Ko,p,m = 1) (3.12)

γo,n,p,m,t ≤ Ko,p,m; ∀(o, n, p,m, t) (3.13)

P∑
p=1

Np∑
n=1

Op∑
o=1

Br,o,p×δo,n,p,m,t ≥

(∑M
m′′=1

∑P
p=1

∑Np

n=1

∑Op

o=1Br,o,p × δo,n,p,m′′,t∑M
m′=1Ar,m′

)
×Υ;

∀(r,m, t) (3.14)

M∑
m=1

γo,n,p,m,t = yn,p,t;∀(o, n, p, t) (3.15)

bn,p,t ≤ Ω · yn,p,t; ∀(n, p, t) (3.16)

Np∑
n=1

bn,p,t = vp,t; ∀(p, t) (3.17)

L∑
l=1

αm,l,t = 1;∀(m, t) (3.18)
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M∑
m=1

αm,l,t = 1;∀(l, t) (3.19)

αm,l,t, γo,n,p,m,t, yn,p,t are binary. (3.20)

The objective function in Eq. (3.1) consists of six cost terms: machine relocation,

material handling, inventory holding, machine setup, in-house production, and

subcontracting needs in that order. The constraints in Eqs. (3.2) and (3.3) are

to equate the variable em,t to the distance El,l′ if machine m is relocated from

location l to location l′ at the beginning period t. The value of the variable do,n,p,t

is equal to the product Ẽl,l′ ·bn,p,t if operations o and o+1 of nth sublot of product

p are processed on machines m at location l and m′ at location l′, respectively, in

period t. This requirement is enforced by Eqs. (3.4) and (3.5). The constraints

in Eqs. (3.6), (3.7) and (3.8) are for inventory balance. Eq. (3.9) guarantees

that the workload on machine m in time period t is less or equal to the available

time C. Eqs. (3.10) and (3.11) state that the time δo,n,p,m,t elapsed in processing

operation o of the nth sublot of product p on machine m in time period t is equal

to the product Uo,p · bn,p,t if this operation is assigned to this machine in this

time period. Otherwise, the value of this variable is set to zero by Eq. (3.12).

The constraint in Eq. (3.13) permits the processing of operation o of sublot n of

product p on machine m in time period t if and only if operation o of product

p can be assigned on machine m. The workload balancing constraint is in Eq.

(3.14). The left-hand side of this equation is the amount of workload performed

by machine m in period t using resource element r. The right-hand side of this

constraint is expressed as (i) the total workload of all the machines using resource

element r which equal to
∑M

m′′=1

∑P
p=1

∑Np

n=1

∑Op

o=1Br,o,p × δo,n,p,m′′,t, (ii) divided

by the number of machines having this resource element
∑M

m′=1Ar,m′ , and (iii)

multiplied by a factor Υ ∈ (0, 1). If this factor is set very close to 1, the workload

of the system in using resource element r will be evenly distributed among the
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machines having this resource element. Eq. (3.15) ensures the assignment of the

oth operation of the nth sublot of part p in time period t to one of the machines

if the sublot is created. The constraint in Eq. (3.16) ensures that the production

quantity of each sublot in each time period, bn,p,t, is equal to 0 if this sublot is

not created (i.e. yn,p,t = 0) . The constraint in Eq. (3.17) enforces that the sum

of the sizes of the sublots of a given product should be equal to the production

lot size of that particular product in each period. The constraints in Eqs. (3.18)

and (3.19) ensure that each location is assigned to only one machine and each

machine is assigned to only one location. Eq. (3.20) is the integrality constraint

on the binary variables.
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The proposed algorithms

4.1. Introduction

Most facility design and planning problems are NP-hard (see list given by Garey &

Johnson (1979), pp. 236-244). These problems cannot be solved optimally within

polynomial computational time and they usually require NP (exponential) time.

Thus, it is of great interest to be able to give near-optimal solutions in a reasonable

amount of time. Since the proposed mathematical model is an enlarged version of

facility layout design with several added features, we can conclude that it is also

NP- complete. In order to solve this model, particularly for larger problem sizes,

we developed three solution procedures: (1) a Linear Programming Embedded

Simulated Annealing (LPSA), (2) a Pure Simulated Annealing (PSA), and (3)

a Linear Programming Embedded Genetic algorithm (LPGA). These simulated

annealing employs multiple search paths which may result in effective search

of the solution space. The concept of embedding linear programming into the

simulated annealing is similar to the work presented in Teghem et al. (1995) and

(Defersha and Chen, 2008).
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4.2. Linear Programming Embedded Simulated

Annealing

Simulated Annealing (SA) is a general search algorithm which was first intro-

duced by Kirkpatrick et al. (1983) for solving hard combinatorial optimization

problems. It is so named because of its analogy to the process of physical an-

nealing with solids, in which a crystalline solid is heated and then allowed to cool

very slowly until it achieves its most regular possible crystal lattice configuration,

and is thus free of crystal defects. If the cooling schedule is sufficiently slow, the

final configuration results in a solid with such superior structural integrity. Sim-

ulated annealing establishes the connection between this type of thermodynamic

behaviour and the search for a global minima for an optimization problem. Fur-

thermore, it provides an algorithmic means for exploiting such a connection. To

describe this algorithmic feature of SA, lets start by defining Xn as the solution

of the optimization problem at the nth iteration. At this iteration, SA generates

a neighborhood solution X ′n by applying systematically designed move operators.

Two values of the objective function f(Xn) and f(X ′n) are evaluated correspond-

ing to the current solution and the newly selected solution, respectively. The

candidate solution X ′n is then accepted as the current solution based on the ac-

ceptance probability P given in Eq. (4.1). The parameter Hn in this equation

is the temperature at the nth iteration which approaches to zero as n increases.

As it can be seen from Eq. (4.1), the probability of acceptance of non-improving

solution is higher at the early stage of the iteration when the temperature is high.

As the algorithm proceeds and the temperature approaches to zero, hill-climbing

moves occur less frequently and the solution converges.
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P (Accept X ′n as next solution) =


1 ; if f(X ′n) ≤ f(Xn)

exp
[
f(Xn)−f(X′

n)
Hn

]
; if f(X ′n) > f(Xn)

(4.1)

In doing the procedure described in the previous paragraph, SA visits a

sequence of random solutions {X1, X2, · · · , Xn, Xn+1, · · · , XN} where a single

solution is visited at each iteration. We call this single search path simulated

annealing (SSP-SA). However, as pointed out in Lee and Lee (1996), following

a single search path may not be necessary from performance point of view. A

multiple search path SA (MSP-SA) performs S independent versions of simu-

lated annealing using the same search space, neighborhood generation and cool-

ing schedule. Each one of these independent versions stops after N iterations

to provide S independent terminal solutions {XN,1, XN,2, · · · , XN,S}. Then out

of these terminal solutions, the best one is chosen as the final solution XN . For

better performance, the search paths may be allowed to interact periodically.

Such interaction can update each search path after a given number of iterations

by the best solution (XBest) so far found in the entire search process. A general

pseudocode of MSP-SA with such interaction among the search paths is given in

Figure 4.1. This Pseudocode has been used as a template for the implementation

of the algorithm developed in this thesis. In this Pseudocode, the interaction of

the search paths happens every I number of iterations (see line 27). Cooling is

performed every Q iterations using the equation Hr+1 = α × Hr (see line 31)

where α ∈ (0, 1) is the cooling coefficient generally chosen to be close to 1 and

r is the index of the temperature level. The complete set of notations used in

the pseudocode is given below and these notations are totally sperate from those

used in the mathematical model and should not be confused.
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Notations used in the Pseudocode

j Index of search path; j = 1, 2, · · · , S where S is the number of paths

followed.

n Overall iteration counter; n = 1, 2, ..., N where N is the maximum num-

ber of iterations in each search path.

Xn,j The solution at the nth iteration along the jth search path.

X ′n,j The neighborhood solution at the nth iteration along the jth search path.

ρ The random number generated for making a stochastic decision for the

new solution.

r Index for the temperature levels in the cooling schedule.

α Cooling schedule exponent.

Hr Temperature at the rth level, Hr = α×Hr−1 = αr−1 ×H1

q Iteration counter at each temperature level; q = 1, 2, · · · , Q where Q is

the number of iterations to be performed in each search path at each

temperature level

XBest Best solution found so far in the entire search process.

I Number of iterations to be performed between interactions of search

paths.

4.2.1. Search Space and Solution Encoding

A search space of a heuristic algorithm is a set of solution points that can be

potentially visited by the search process. Determining appropriate search space is
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MSP-SA() //Multiple Search Path SA
{
1 Randomly generate S solution points {X1,1, X1,2, · · · , X1,S}
2 Set initial temperature T1
3 Set n = 1, r = 1;
4 Set XBest = X1,1

5 REPEAT
6 {
7 FOR q = 1 to Q //Q = number of iterations at temperature Tr
8 {
9 FOR j = 1 to S //S = number of independent search paths
10 {
11 Generate X ′n,j from Xn,j

12
13 IF f(X ′n,j) ≤ f(Xn,j)
14 Xn+1,j = X ′n,j

15 ELSE IF exp
(

f(Xn,j)−f(X′n,j)

Hr

)
> ρ

16 Xn+1,j = X ′n,j
17 ELSE
18 Xn+1,j = Xn,j

19
20
21 IF f(Xn+1,j) < f(XBest) //Update XBest

22 XBest = Xn+1,j

23 }
24 n = n+ 1
25 IF (n mod I) = 0 //Update search paths
26 {
27 Set Xn,j = XBest for j = 1, · · ·S
28 }
29 }
30 r = r + 1
31 Hr = α× Tr−1 //Cooling every Q iterations.
32 }
33 UNTIL n = N
}

Figure 4.1: Pseudocode for an instance of a MSP-SA with interacting paths
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the first most important step in applying a metaheuristic algorithm. It influences

the implementation and the performance of the algorithm. The search space

explored in solving the proposed model is a set of solution points in which a

solution point can be uniquely addressed using a valid combination of values

of the integer variables {yn,p,t, αm,l,t and γo,n,p,m,t for all (o, n, p,m, t)}. In this

regard, we define a valid combination of the values of these integer variables as a

combination that satisfy the constraints composed of only the integer variables.

These constraints are in Eqs. (3.13), (3.15), (3.18), (3.19), and (3.20). The values

of the continuous variables which optimally correspond to a given combination

of the integer variables are determined by solving a linear programming (LP)

subproblem. The solution of the LP-subproblem satisfies the remaining sets of

constraints by having the continuous variables in their equations.

To explore the search space described above, a solution encoding is de-

veloped that can be decoded to give a valid combination of the values of the

integer variables. This solution encoding is given in Figure 4.2. In this Figure,

the solution encoding is detailed in four levels. In Level-I, it is shown that the

solution encoding is composed of T main segments, one for each planning period.

Level-II details the segment corresponding to t = 1. This segment is divided into

right-hand and left-hand segments (LHS- and RHS-segments). The LHS-segment

determines the allocation of M machines to L = M locations in a given period t.

In this segment, Ml,t takes the index of the machine placed at location l in time

period t which can be used to decode the value of the integer variable αm,l,t using

Eq. (4.2). Since Ml,t takes only a single value m ∈ (1, ...,M), the decoded values

of αm,l,t ∀(m, l, t) satisfies the constraint in Eq. (3.19). Moreover, the values of

Ml,t in the LHS-segment (for a given t) is unique, i.e. Ml,t 6= Ml′,t for any pair

of locations l and l′ (such that l 6= l′). This guarantees the satisfaction of the

constraint in Eq. (3.18).

The RHS-segment encodes the decision variables yn,p,t and γo,n,p,m,t. This
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segment has P subsegments corresponding to each product. The subsegment

corresponding to p = 1 has been detailed in Level-III. This subsegment has in

turn Np subsegments corresponding to each sublot of product p. The subsegment

corresponding to n = 1 is detailed at Level-IV. In this level yn,p,t is directly

encoded and takes a value in {0, 1} to indicate whether or not sublot n of product

p is created in time period t. The element Mo,n,p,t takes the index of one of the

machines that can process the oth operation of part p. In other words, Mo,n,p,t

takes one of the values in {m|Ko,p,m = 1}. Having the values for yn,p,t and

Mo,n,p,t, the values of the variable γo,n,p,m,t can be decoded using the Eq. (4.3).

This decoding procedure ensures that the constraints in Eqs. (3.13) and (3.15)

are satisfied.

αm,l,t =


1 ; If Ml,t = m

0 ; Otherwise

(4.2)

γo,n,p,m,t =


yn,p,t ; If Mo,n,p,t = m

0 ; Otherwise

(4.3)

4.2.2. Linear Programming Subproblem

In the previous Section, it was stated that the values of the continuous variables

which optimally correspond to a given combination of the integer variables are

determined by solving a LP-subproblem. In this Section we present how this

LP-subproblem is formulated. The constraints in Eqs. (3.2) and (3.3) in the

main model were used to set em,t = El,l′ if the variables αm,l,t−1 = αm,l′,t = 1.

However, in formulating the LP-subproblem corresponding to a given solution

point, the integer variables are known. Hence, the value of em,t can be computed
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M1,n,p,t  MOp,n,p,t...M2,n,p,t

Level - I

Level - II

Level - III

Level - IV

LHS-Segment RHS-Segment
 

Figure 4.2: Solution representation used in LPSA and LPGA

before solving the LP-subproblem. This makes the constraints in Eqs. (3.2) and

(3.3) unnecessary in the LP-subproblem. Moreover, knowing the values of em,t for

all (m, t), the machine relocation cost term can be removed from the objective

function of the LP-subproblem as this term can be computed before solving the

LP-subproblem. The objective function of the LP-subproblem is given in Eq.

(4.4). The overall objective function f(X) of a trial solution X in the simulated

annealing is then equal to the machine relocation cost plus the objective function

of the LP-subproblem. The constraints in Eqs. (3.4) and (3.5) of the main model

are used to set do,n,p,t = El,l′ · bn,p,t if the sum of the binary decision variables

αm,l,t, γo,n,p,m,t, αm′,l′,t, and γo+1,n,p,m′,t is equal to four. Knowing the values of

these binary variables, in formulating the LP-subproblem, these two constraints

can be replaced by a single equality constraint do,n,p,t = El,l′ · bn,p,t for every

(αm,l,t + γo,n,p,m,t + αm′,l′,t + γo+1,n,p,m′,t = 4) as shown in Eq. (4.5). Following a
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similar logic, the constraints in Eqs. (3.10) and (3.11) can also be replaced by

a single equality constraint in the LP-subproblem as shown in Eq. (4.6). The

constraint in Eq. (3.12) was required to set δo,n,p,m,t = 0 if the binary variable

γo,n,p,m,t = 0. In the LP-subproblem, this constraint is not required since the

continuous variable δo,n,p,m,t corresponding to γo,n,p,m,t = 0 can be excluded from

the LP formulation. The constraints in Eqs. (3.6)-(3.9), (3.14), (3.16), and,

(3.17) of the main model are also applicable in the LP-subproblem. Whereas, the

constraints in Eqs. (3.13), (3.15), and (3.18)-(3.20) are not required in the LP-

subproblem as these constraints are composed of only the integer variables and

are taken care of by the solution representation. The complete LP-subproblem is

given below.

LP: given (αm,l,t, γo,n,p,m,t, yn,p,t) for all (o, n, p,m, t)

Minimize:

ZLP =
T∑
t=1

P∑
p=1

Np∑
n=1

Op−1∑
o=1

(Fp · do,n,p,t) +
T∑
t=1

P∑
p=1

(Hp · hp,t)

+
T∑
t=1

P∑
p=1

Np∑
n=1

(Sp · yn,p,t) +
T∑
t=1

P∑
p=1

(Θp · vp,t) +
T∑
t=1

P∑
p=1

(Θ̂p · v̂p,t) (4.4)

Subject to:

do,n,p,t = El,l′ · bn,p,t;

∀(o, n, p, t,m, l,m′, l′)| (αm,l,t + γo,n,p,m,t + αm′,l′,t + γo+1,n,p,m′,t = 4) (4.5)

δo,n,p,m,t = Uo,p · bn,p,t;
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∀(o, n, p,m, t)|γo,n,p,m,t = 1; (4.6)

and

Eqs.(3.6), (3.7), (3.8), (3.9), (3.14), (3.16), and, (3.17)

4.2.3. Implementation Challenge

A single iteration cycle in a particular search direction of the proposed multiple

search path SA is shown in Figure 4.3. From this Figure it can be seen that the

LP-subproblem has to be formulated (in step 3) and solved (in step 4) for each

trial solution visited by the algorithm. In our first attempt to implement the LP-

embedded solution approach, we encountered a computational difficulty as the

algorithm needs substantial amount of time to complete the evaluation of a trial

solution. At first it was believed that the simplex algorithm in step 4 was the

source of the computational hurdle. However, a closer look into the evaluation

subroutine reveals that the LP-Subproblem formulation process (step 3) was the

main source of the computational difficulty. In particular, the process of adding

the constraint in Eq. (4.5) into the ILOG-CPLEX modelling environment was

very time consuming. In its current form, this constraint can be added into

the modeling environment following the pseudocode in Figure 4.4. From this

Pseudocode, it can be seen that an enormous amount of looping is required to

insert the equality constraint into the model. For instance, assuming each part

has O number of operations and N number of sublots, the number of FOR-loops

required to insert this constraint is P ·O ·N · T · L2 ·M2.

To alleviate the computational difficulty stated above, we reformulate the

LP-subproblem in a systematic way. First, we define Dn,p,t as the distance trav-

eled by a unit of item in sublot n of product p in time period t. This value can be

computed using the information that can be obtained from a trial solution being
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Formulate the LP-subproblem 

and submit it to the CPLEX 

Solver

Decide to accept or reject the trial 

solution.

Apply move operator on the 

current solution to generate a 

trial solution.

 Decode the values of the integer 

variables from the trial solution

CPLEX Solver uses the 

Simplex Algorithm and solve 

the LP-subprobem

Add the objective function of the 

LP-subproblem and the machine 

relocation cost

Step 4

Step 2

Step 1

Step 5

Evaluate Trial Solution

Step 6

Step 3

Figure 4.3: One complete iteration in a given search path of the SA

evaluated and by applying the pseudocode in Figure 4.5. In lines 4 and 5, the

location of machine m in time period t is obtained from the trial solution X ′ and

stored in a matrix Location[m][t]. In line 19, the index of the machine assigned

to processes operation (o, n, p) in period t is obtained from X ′ and stored in m,

and the location of this machine is stored in l (in line 20). The same is done in

lines 22 and 23 for the operation (o + 1, n, p) to get the machine index m′ and

the location l′ where this operation is to be processed in period t. The distance

traveled Ẽl.l′ by the part in getting these two consecutive operations done is re-

cursively added to Dn,p,t in line 25. Once this value is calculated for every (n, p, t),

the material handling cost term (first term in Eq. (4.4)) of the LP-subproblem

can be replaced by an equivalent term
∑T

t=1

∑P
p=1

∑Np

n=1(Fp ·Dn,p,t× bn,p,t). This

makes the constraints in Eq. (4.5) and its implementation shown in Figure 4.4

unnecessary. Assuming each part has O number of operations and N number

of sublots, the number of FOR-loops in the pseudocode in Figure 4.5 is only

[(T ·L) + (P ·O ·N · T )]. This is much lower than the number of loops in Figure

4.4. For example, if we assume P = 40, O = 8, N = 3, T = 4, and M = L = 20,

the number of loops in Figure 4.4 is 6.144 × 108 whereas that in Figure 4.5 is

only 3,920. With this adjustment, it was possible to reduce the execution time
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1 FOR1 o = 1 to o = Op − 1
2 FOR2 n = 1 to Np

3 FOR3 p = 1 to P
4 FOR4 t = 1 to T
5 FOR5 m = 1 to M
6 FOR6 m′ = 1 to M
7 FOR7 l = 1 to L′

8 FOR8 l′ = 1 to L
9
10 IF (αm,l,t + γo,n,p,m,t + αm′,l′,t + γo+1,n,p,m′,t = 4)

12 ADD CONSTRAINT do,n,p,t = Ẽl,l′ · bn,p,t
13
13 END FOR8

14 END FOR7

15 END FOR6

16 END FOR5

17 END FOR4

18 END FOR3

19 END FOR2

20 END FOR1

Figure 4.4: Pseudocode for the formulation of the constraint in Eq. (4.5) of the
LP-subproblem

of a single iteration cycle shown in Figure 4.3 from several minutes to just a frac-

tion of a second. This adjustment makes the proposed LP-embedded simulated

annealing a working algorithm.

4.2.4. Two Search Phases

Obtaining a good static layout may be simpler than obtaining a dynamic layout

which optimizes system reconfiguration along other cost terms. This is because

the search space for dynamic layout is much wider than that of static layout.

On the other hand, since excessive reconfiguration is not likely, the best layout

with dynamic reconfiguration could be a neighborhood solution to the best con-

figuration with static configuration. With this consideration, in the proposed

algorithm, the search process is divided into two phases. In the first phase, the

algorithm attempts to find the best static configuration. Whereas, in the second

phase the algorithm attempts to find an optimal reconfiguration based on the
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1 FOR1 t = 1 to t = T
2 FOR2 l = 1 to l = L
3
4 m = X ′[t][LHS-segment][l][Ml,t]

a

5 Location[m][t] = l
6
7 END FOR2

8 END FOR1

9 .............................................................................................................
10
11 FOR3 t = 1 to t = T
12 FOR4 p = 1 to p = P
13 FOR5 n = 1 to n = Np

14
15 Dn,p,t = 0 //Initialize to zero
16
17 FOR6 o = 1 to o = Op − 1
18
19 m = X ′[t][RHS-segment][p][n][Mo,n,p,t]

b

20 l = Location[m][t]
21
22 m′ = X ′[t][RHS-segment][p][n][Mo+1,n,p,t]
23 l′ = Location[m′][t]
24

25 Dn,p,t = Dn,p,t + Ẽl,l′

26
28 END FOR6

29 END FOR5

30 END FOR4

31 END FOR3

aX ′[t][LHS-segment][l][Ml,t] means trial solution X ′, segment t at level-I,
LHS-segment at Level-II, location l, machine index Ml,t (see Figure 4.2)

bX ′[t][RHS-segment][p][n][Mo,n,p,t] means trial solution X ′, segment t at
level-I, RHS-segment at Level-II, product p, sublot n, operation o, machine
index Mo,n,p,t (see Figure 4.2)

Figure 4.5: Pseudocode to calculate the distance traveled by a part
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solution found in the first phase. Dividing the search process into these phases

is accomplished as follows. First, initial solutions without system reconfigura-

tion generated along each search direction. In this regard, a solution with static

configuration has all of its LHS-segments identical to represent identical layout

configurations across all periods. Then only move operators that do not result in

system reconfiguration are applied during the first phase of the search. Finally,

starting from the solution of the first phase, the search continues by applying

move operators that can result in system reconfiguration. These move operators

are described in the next Section.

4.2.5. Perturbation Operators

In the proposed SA algorithm, we use four solution perturbation operators that

are applied at each iteration with small probabilities. These operators can be

classified into two categories: (1) layout perturbation operators and (2) product

flow perturbation operators. The layout perturbation operators are applied on the

LHS-segments of a solution to affect its machine configuration/reconfiguration.

These operators are Machines Locations Swap Operator (MLSO) and Machine

Locate and Fix Operator (MLFO). The MLSO operator is applied with small

probability β1 in two different manners depending on the phase of the search. In

the first phase of the search, the operator first arbitrarily selects two locations

l and l′. Then, for these pair of locations, it swaps the values of Ml,t and Ml′,t

of the LHS-segment of each period of the solution. Applied in this manner,

the operator keeps the LHS-Segments identical across the periods and results

in a trial solution with static configuration. Whereas in doing such swaps in

the second phase, MLSO selects the pair of locations l and l′ for each period

independently resulting in non-identical LHS-Segments of the affected solution.

The implementation of this perturbation operator is shown using pseudocode in

Figure 4.6. The second layout perturbation operator, MLFO, is applied only in
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the second phases of the search. It fixes an arbitrarily chosen machine (m∗) at

an arbitrarily chosen location (l∗) between arbitrarily chosen time periods t1 and

t2 (such that t1 < t2 ≤ T ) with a probability β2. The essence of this operator is

that once a particular machine is moved to a particular location, it is more likely

for this machine to remain in that particular location for a certain number of

time periods. This operator is implemented following the pseudocode in Figure

4.7. The product flow perturbation operators are applied on RHS-Segments of

a solution in both the first and second phase of the search to alter the flow of

the products. These operators are Sublot Flip Operator (SFO) and Alternative

Machine Swap Operator (AMSO). The SFO is applied to each of the yn,p,t of the

RHS-Segments with a small probability β3 to switch their value between 0 and 1.

The operator AMSM is applied on each Mo,n,p,t in the RHS-segments of a solution

to alter its value to one of machines that can process operation o of product p.

It is applied on each Mo,n,p,t with small probability β4.

4.2.6. Steps of the LPSA

As previously mentioned, the LPSA uses multiple search paths, which correspond

to the individuals of a simulated annealing algorithm. The steps of LPSA and

notation used are presented in below and in Figure 4.8.

s Index of search paths, s = 1, 2, ..., S where S is the maximum number

of search paths

n Iteration counter, n = 1, 2, ..., N where N is the maximum number of

iterations in each search path

Xns The solution at the nth iteration along the sth search path

α Cooling schedule exponent

r Index for the temperature levels in the cooling schedule

Tr Temperature at the rth level, Tr = α× Tr−1 = αr × T0
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1 IF1 FIRST PHASE
2 l = randBetween(1, L)
3 l′ = randBetween(1, L)
4 IF2 [l 6= l′ and β1 > rand()]
5 FOR1 t = 1 to t = T
6 m = X[t][LHS-segment][l][Ml,t]

a

7 m′ = X[t][LHS-segment][l′][Ml′,t]
8
9 X[t][LHS-segment][l][Ml,t] = m′

10 X[t][LHS-segment][l′][Ml′,t] = m
11 END FOR1

12 END IF2

13 END IF1

15 ..........................................
15 IF3 SECOND PHASE
16 FOR3 t = 1 to t = T
17 l = randBetween(1, L)
18 l′ = randBetween(1, L)
19 IF4 [l 6= l′ and β1 > rand()]
20 m = X[t][LHS-segment][l][Ml,t]
21 m′ = X[t][LHS-segment][l′][Ml′,t]
22
23 X[t][LHS-segment][l][Ml,t] = m′

24 X[t][LHS-segment][l′][Ml′,t] = m
25 END IF4

26 END FOR3

27 END IF3

aX[t][LHS-segment][l][Ml,t] means a solution X, segment t at level-I,
LHS-segment at Level-II, location l, machine index Ml,t (see Figure 4.2)

Figure 4.6: Pseudocode for Machines Locations Swap Operator (MLSO)
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1 IF1 [β2 > rand()]
2 t1 = randBetween(1, T )
3 t2 = randBetween(t1 + 1, T )
4 l = randBetween(1, L)
5 l∗ = randBetween(1, L)
6
7 m∗ = X[t1][LHS-segment][l][Ml,t]

a

8 m′ = X[t1][LHS-segment][l∗][Ml∗,t]
9
10 X[t1][LHS-segment][l][Ml,t] = m′

11 X[t1][LHS-segment][l∗][Ml∗,t] = m∗

12
13 FOR2 t = t1 + 1 to t = t2
14 FOR3 l = 1 to L
15 IF2 X[t][LHS-segment][l][Ml,t] = m∗

16 BREAK FOR3 (carry the value of l)
17 END IF2

18 END FOR3 19
20 m′ = X[t][LHS-segment][l][Ml∗,t]
21 X[t][LHS-segment][l][Ml,t] = m′

22 X[t][LHS-segment][l∗][Ml∗,t] = m∗

23 END FOR2

24 END IF1

aX[t][LHS-segment][l][Ml,t] means a solution X, segment t at level-I,
LHS-segment at Level-II, location l, machine index Ml,t (see Figure 4.2)

Figure 4.7: Pseudocode for Machine Locate and Fix Operator (MLFO)
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Q Number of iterations to be performed in each search path at each tem-

perature level

F Interaction frequency. It is defined as the number of iterations to be

performed by search path before interaction is effected among these

search paths.

BI Best feasible individual so far found

Phase The current phase of the search which equals to 1 for the first phase or

2 for the second phase

Cphase The number of iterations to be performed by each search path before

the search phase is changed from Phase = 1 to Phase = 2

4.3. Pure Simulated Annealing (PSA)

Although LPSA is efficient search and allows creating tours of high quality, solv-

ing a large LP-subproblem is memory intensive in CPLEX. Insufficient physi-

cal memory is one of the most common problems when running large LPs in

CPLEX, similar to the large-size problems proposed to solve in numerical exam-

ples in Chapter 5. When CPLEX recognizes that a limited amount of memory is

available it automatically makes algorithmic adjustments to compensate. These

adjustments almost always reduce optimization speed. One remedy is to consider

a heuristic solution procedure for LP-subproblem, but both heuristically and op-

timally solution approaches suffer from trade-off between computation time and

solution quality. The heuristic solution of the LP-subproblem may be done quite

fast, but the quality of solution is expected to be superior in case of optimally

solved LP-subproblems. In order to examine and demonstrate the capability of

LPSA to handle large-scale problems, we also developed a Pure Simulated An-

nealing (PSA) algorithm presented in Sections 4.3.2 to 4.3.6 .

In contrast to LPSA, PSA searches over both discrete and continuous variables
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Figure 4.8: The steps of LPSA
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in the solution space. Therefore, the problem space is drastically increased and

it implies that employing a larger number of search paths in the algorithm can

allow it to exhaustively search relatively large promising regions of the solution

space.

4.3.1. Solution Representation in PSA

To explore the search space described above, a solution encoding is developed

that can be decoded to give a valid combination of the values of the integer and

continuous variables. This solution encoding scheme is given in Figure 4.9. All

decision variables in solution representation in LPSA are totally part of the PSA

encoding scheme and decoded in the same manner. The only difference is the

inclusion of variables yp,t, Sp,t, Rp,t, and Xn,p,t. Two variables yp,t and Sp,t take

value 0 or 1 to represent the choice of in-house production and subcontracting

production for each product in each time period respectively. Subcontracting

ratio Rp,t takes a random value in interval [0,1] to account for the proposition

of the total demand of part p subcontracted during period t. The Xn,p,t assume

values in [0, 1] and are used to calculate the size of the nth sublot of product p

in time period t (bn,p,t).

In course of search, it is possible for all sublots of a product to have a size of zero

where their corresponding Xn,p,t have a value equal to zero. In such case, in order

to compute the size of each sublot for that product, the production lot size of

that product in that time period (vp,t) is assumed to be equally divided between

the maximum number of sublots (Np), which is known for each product in each

period. In addition, if all no sublot are created for a production of a product p

in a period t (i.e. all yn,1,1 = 0) and in-house production for that product in that

time period is read to be one (i.e. y1,1 = 1), one of the sublots among maximum

number of sublots for that product is randomly chosen to arbitrarily set at 1.

This enforces that at least one sublot needs to be created to process y1,1 if it is
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required to be processed. By decoding a solution point under consideration, the

corresponding continuous variables vp,t, v̂p,t, hp,t are determined using the Lot

Sizing Heuristic presented in Section 4.3.3.

t = 1 t = 1 ………………... t = T

  t = 1 

  p = 1 

  n = 1 

LHS RHS 

p = 1 p = 2 ……. p = P
l = 1

M 1,1 

l = 2

M 2,1 

…...

…...

l = L

M l, t 

S p, t R p, t y p, t n = 1 n = 2 …... ……. n = NP

y n, p, t X n, p, t

o = 1

M 1, 1, 1, 1 

o = 2

M 2, 1, 1, 1 

…...

…...

o = Op

M op, n, p, t 

Figure 4.9: Solution Representation in PSA

4.3.2. Decoding Solution Representation

Similar to LPSA, the values of decision variables αm,l,t and γo,n,p,m,t are deter-

mined using Eq. (4.2) and Eq. (4.3) ,and Ml,t along with Mo,n,p,m,t can be directly

read from the solution representation. The set of production planning decision

variables including vp,t, v̂p,t and hp,t are computed by Lot Sizing Heuristic ex-

plained in the next Section. The value of each Xn,p,t is read from the solution

encoding scheme and used to decode bn,p,t using Eq. (4.7) where vp,t is known

from previously performed Lot Sizing Heuristic.
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bn,p,t =


Xn,p,t∑Np

n=1 Xn,p,t

× vp,t ; If
∑Np

n=1Xn,p,t > 0

vp,t
Np

; Otherwise

(4.7)

The value of yn,p,t can be directly read from solution representation. Given the

value of αm,l,t the variable em,t can be determined such that em,t = El,l′ if the

variables αm,l,t−1 = αm,l,t = 1.

Recall that, the constraints in Eqs. (3.4) and (3.5) of the main model are used to

set do,n,p,t = El,l′ · bn,p,t if the sum of the binary decision variables αm,l,t, γo,n,p,m,t,

αm′,l′,t, and γo+1,n,p,m′,t is equal to four. Knowing the values of these four binary

variables, do,n,p,t is computed as shown in Eq. (4.8). The last variable δo,n,p,m,t is

also can be computed by Eq. (4.9). This equation is required to give δo,n,p,m,t = 0

if the binary variable γo,n,p,m,t = 0.

do,n,p,t = El,l′ · bn,p,t ;

∀(o, n, p, t,m, l,m′, l′)| (αm,l,t + γo,n,p,m,t + αm′,l′,t + γo+1,n,p,m′,t = 4)
(4.8)

δo,n,p,m,t = Uo,p · bn,p,t ; ∀(o, n, p,m, t)|γo,n,p,m,t = 1 (4.9)

4.3.3. Lot Sizing Heuristic

As it has been stated previously, the variables Rp,t, Sp,t, and yp,t can be used to

heuristically compute three continuous variables vp,t, v̂p,t and hp,t in each solution

point. Lot Sizing heuristic was applied for each solution point visited during the

search so that the corresponding value of the energy function can be evaluated.

This heuristic is based on two important properties which are common in lot

sizing problems in the literature: (1) whenever a setup is introduced for an item

(i.e. y1,t1 = 1), we assume that enough quantity for this item is produced to satisfy
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the demands of any periods until the period immediately before the next setup

for this item (i.e. y1,t2 = 1), and (2) Any subcontracting lot size is not necessarily

required to exactly perform at period when Sp,t = 1 but it can be processed at

period when demand needs it to satisfy itself. By doing this, inventory holding

is decreased and there is no need to outsource products in advance. We can

determine the vp,t, v̂p,t and hp,t from decoded Rp,t, Sp,t, yp,t and given Dp,t in each

solution point using following steps 1 to 5.

1. For any product p and any period t, if yp,t = 0, then vp,t = 0.

2. For any product p and any periods t1 < t2 ≤ T if yp,t1 = yp,t2 = 1 and

yp,t = 0 for all t1 < t < t2, then

vp,t1 =


∑t2−1

t=t1
Dp, t× (1−Rp,t1) ; If Sp,t1 = 1

∑t2−1
t=t1

Dp, t ; Otherwise

(4.10)

3. For any product p and any period t

hp,t =


vp,t + v̂p,t −Dp,t ; If t = 0

vp,t + v̂p,t + hp,t−1 −Dp,t ; If t > 0

(4.11)

4. For any product p and period t = 1

v̂p,1 =


Dp,1 − vp,1 ; If vp,1 < Dp,1

0 ; Otherwise

(4.12)
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5. For any product p and any period t > 1

v̂p,t =


Dp,t − vp,t − hp,t−1 ; If vp,t − hp,t−1 < Dp,t

0 ; Otherwise

(4.13)

For example, assume we have demand data (Dp, t) and decoded binary variables

(yp,t, Rp,t and Sp,t) of a solution point for a problem consisting of only one prod-

uct producing in eight periods as given in Table ??. The Lot Sizing heuristic

can be used to obtain continuous variables associated with in-house production,

subcontracting and inventory holding in every period as shown in Tale ??.

Periods

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

yp,t 1 0 0 1 0 0 0 1

Dp, t 100 80 20 50 150 50 200 100∑t2−1
t=t1

Dp, t 200 0 0 400 0 0 0 100

vp,t 180 0 0 360 0 0 0 80

hp,t 80 0 0 310 160 110 0 0

v̂p,t 0 0 20 0 0 0 90 20

Rp,t 0.1 0.05 0.8 0.1 0.7 0.06 0.3 0.2

Sp,t 1 0 0 1 0 0 0 1

Table 4.1: Example problem data and calculated variables using Lot Sizing heuris-

tic

4.3.4. Constraints Handling

Traditional SA algorithms serve as search techniques. However, due to the use of

perturbation operators to manipulate the solution point in each iteration, SA may
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produce infeasible solutions when used to solve constraint optimization problems.

Infeasibility stem from the fact that the created solutions violate some constraints

of the original problem. Different approaches to handle constraints, such as rejec-

tion of infeasible solution, penalty methods or repair algorithms are proposed in

the literature. In this study, the penalty technique was used to handle constraints

imposing workload balancing and capacity requirements. A penalty method adds

penalty quantities to objective function if the corresponding constraints are not

satisfied. On the other hand, some constraints such as those in Eq. (3.18) and

Eq. (3.19) are handled using inherent feature in structure of solution represen-

tation explained in Section 4.3.2. The Lot Sizing heuristic handles constraints in

equations Eq. (3.6), Eq. (3.7) and Eq. (3.8). This heuristic is applied in each

iteration of PSA to determine the continuous variables.

Recall that in our mathematical model, Eq. (3.14) permits workload balanc-

ing. We propose this constraint to be relaxed and incorporated into the objective

function through a penalty term. Eq. (4.14) and Eq. (4.15) are used to calculate

minimum allowable and actual work performed. As mentioned in Section 3.4,

we assume a workload which is using a particular RE need to be evenly divided

among the machines overlapping this RE if the the workload factor Υ is set to one.

Eq. (4.15) computes allowable workload for each machine m sharing a resource

element r among the other machines in each time period. The actual workload

for a machine in a time period is given using Eq. (4.15) which apparently is

numerator of the Eq. (4.14). The factors cwb is used to scale the penalty terms

corresponding to these constraints.

Another constraint chosen to be handled by a penalty method is capacity

requirements. Eq. (4.16) guarantees that the workload on machine m in time

period t is less or equal to the available time C. The second term in Eq. (4.16) is

used to calculate assigned workload to a machine at a particular time period. If

this assigned workload is larger than the total available capacity for this machine
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at that particular period infeasibility occurs and the negative value of SCm,t is

added to the objective function.

WLmin(r,m, t) =

∑M
m′′=1

∑P
p=1

∑Np

n=1

∑Op

o=1Br,o,p × δo,n,p,m′′,t∑M
m′=1Ar,m′

×Υ;∀(r,m, t)

(4.14)

WLactual(r,m, t) =
P∑

p=1

Np∑
n=1

Op∑
o=1

Br,o,p × δo,n,p,m,t;∀(r,m, t) (4.15)

SCm,t = Ct −
P∑

p=1

Np∑
n=1

Op∑
o=1

δo,n,p,m,t;∀(m, t) (4.16)

4.3.5. Fitness Evaluation

A candidate solution point in search space is evaluated according to a fitness

function that is usually synonymous with the objective function of the model.

However, if a constraint (s) is violated, a penalty function term can be added

to the objective function to relax some proposed constraints. In PSA algorithm,

workload balancing and capacity violation penalty terms are incorporated in ob-

jective function as shown in Eq. (4.17).

F.F = Model Objective Function

+ cwb ·
T∑
t=1

M∑
m=1

R∑
r=1

max {0, WLmin(r,m, t)−WLactual(r,m, t)}

+ SCm,t

(4.17)

4.3.6. Perturbation Operators

A promising algorithm requires well designed multiple perturbation operators to

create new solutions from a given current solution in order to adequately meet

local neighborhood structure requirements. In the PSA, we developed seven dif-

ferent solution perturbation operators. These are: (1) Machine Locations Swap
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Perturbation Operator (MLSPO), (2) Production Flip Operator (PFO), (3) Al-

ternative Machine Perturbation Operator (AMPO), (4) Outsourcing Flip Opera-

tor (OFO), (5) Subcontracting Ratio Perturbation Operator (SRPO), (6) Sublot

Flip Operator (SFO) and (7) Sublot Size Determination Perturbation Operator

(SSDPO). To avoid a random search, all perturbation operators are applied with

small probability.

Similar to the LPSA, the search process in the proposed PSA is divided into two

phases such that the algorithm aims to find the best static machine configuration

in the first phase. In contrast, in the second phase the algorithm seeks to find

an optimal reconfiguration based on the solution found in the first phase. In the

first phase of the search, MLSPO which is identical to the location swap operator

proposed in the LPSA is applied. In the dynamic phase, the MLSO in the LPSA

algorithm is analogously applied and renamed MLSPO. We omit the details as

any interested reader can proceed as in Section 4.2.5. The PFO is applied to

each of the yp,t to switch its value between 0 and 1. The operator AMPO is

applied on each Mop,n,p,t in the LHS-segments of a solution to alter its value to

one of machines that can process operation o of product p. SRPO and SSDPO

are used to make a few alterations to the value Rp,t and Xn,p,t respectively. These

operators randomly step down and up the value of these variables within [0,1] by

a certain step value(θ). Pseudocode for applying SRPO with probability of λ is

shown in Figure 4.10. The SSDPO scheme is conceptually same with SRPO.

The OFO and SFO flip the value of binary variables Sp,t and yn,p,t respectively.

SFO may make yn,p,t equal to zero while yp,t is 1 and requires at least one sublot

being created. To avoid this situation and to end up with a properly lot streaming,

one sublot among maximum number of sublot for a particular p (Np) is randomly

selected and set to one. The mechanism is illustrated in Pseudocode given in

Figure 4.11.
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1 FOR1 t = 1 to t = T
2 FOR2 p = 1 to p = P

3 IF λ > rand()

4 θa = Maxθ b ×rand()

5 IF rand() < 0.5

6 X ′[t].LHS[p].Rpt = X[t].LHS[p].Rpt c + θ

7 ELSE

8 X[t].LHS[p].Rpt = X[t].LHS[p].Rpt− θ

9 END FOR2

10 END FOR1

aThe θ parameter is used to step up and step down the subcontracting
ratio.
bMaxθ is between (0, 1) and given as data.
cX[t].LHS[p].Rpt means trial solution X ′, segment t at level-I, RHS-
segment at Level-II, product p, subcontracting ratio Rp,t (see Figure

4.9)

Figure 4.10: Pseudocode for applying Subcontracting Ratio Perturbation Oper-
ator

4.4. Linear Programming Embedded Genetic al-

gorithms

Following sections describe linear programming embedded genetic algorithm (LPGA)

solving the mathematical model problem presented in Chapter 3. LPGA utilizes

a Simplex method to solve the linear programming sub problem corresponding

to a given solution point. In similar manner to LPSA proposed in Chapter 4 the

multiple search path LPGA searches over discrete variables in the solution space

and corresponding continuous variable are determined by solving LP-subproblem.

Genetic algorithms are superior to simulated annealing algorithms in cover-

ing a much larger landscape of the search space at each iteration because GA uses
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1 FOR1 t = 1 to t = T
2 FOR2 p = 1 to p = P
3 FOR3 n = 1 to n = Np

4 IF β > rand()

5 IF X ′[t].LHS[p].Sub[n].Y npt = 1

6 X ′[t].LHS[p].Sub[n].Y npt = 0
7 ELSE

8 X ′[t].LHS[p].Sub[n].Y npt = 1

9 END FOR3

10 FOR4 n = 1 to n = Np

11 Some-Ynpta =
∑Np

n=1 X
′[t].LHS[p].Sub[n].Y npt

12 END FOR4

13 IF
∑Np

n=1 X
′[t].LHS[p].Sub[n].Y npt = 1 ∧ Some− Y npt = 0

14 X ′[t].LHS[p].Sub[randBetween (0, N [p]− 1)].Y npt = 1

15 END FOR2

16 END FOR1

aThe parameter Some -Ynpt is used to detect a particular situation where
all Ynpt are zero.

Figure 4.11: Pseudocode for applying Sublot Flip Operator

a population based selection while SA utilizes one point in each iteration. In ad-

dition, recombination operators in GAs enable them to mix good characteristics

from different solution to find solution with better quality whereas SA does not

gain much of this. However, SA is well-known for its simple implementation and

so often faster than GA. In Chapter 5, we use same numerical examples for the

proposed model to investigate computational time and solution quality resulting

from both LPSA and LPGA.
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4.4.1. Genetic Algorithm

The Genetic algorithm invented by Holland (in year 1975) is stochastic search

techniques based on population-based solution search according to the principles

of the natural evolution process. GA was discovered as a useful tool for a wide

range of combinatorial optimization problems. The genetic process starts by

generating an initial population of chromosomes (solutions) and evolving this

population over time until near optimal solution is obtained. Using reproduction

operators over solutions of the problem, new generations are evolved by breeding

the pairs of existing chromosomes. The offspring, just by combining all the good

features from its parents, may outperform its parents. Both offspring and parent

chromosomes are then assessed against the fitness function. Finally, individuals

with the highest fitness level will survive to form the next generation. Figure

4.12 shows how a genetic algorithm loops over an iteration process to make the

population evolve.

NO

Yes

start

Create initial random 
population consisting 

of n chromosomes

Evaluate the fitness of 
each chromosome in 

the population

Select some well-
fitted  chromosomes 
from the population 

based on their fitness 
and inserting in the 

mating pool 

Randomly pick two 
parent chromosome 

from mating pool and 
apply crossover to 
form new offspring

Create new generation 
population by inserting 

the offspring to the 
new population and 
applying mutation

The end condition 
is satisfied in current 

population?

Return the best 
individual in 
population

End

Figure 4.12: Executional steps of a genetic algorithm
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4.4.2. LP Embedded Genetic Algorithm

Some parts of LPGA are identical to ones considered in LPSA discussed in Chap-

ter 4. Solution representation, the decoding methods of integer variables and the

formulating LP-subproblem are parts of both algorithms which are totally similar.

In order to avoid repeated explanation, the preference is given to recombination

operators and fitness function used in LPGA in the following sections.

4.4.3. Fitness Function

In the LPGA, the potential solution represented by each chromosome in the

population of candidate solutions is evaluated against a fitness function that is

constructed based on the objective and constraint functions of the model. For a

given solution, its fitness is given by Eq. (4.18) which is identical to the objective

function of the model (Eq. (3.1)).

Minimize(E) =
T∑
t=2

M∑
m=1

(Gm · em,t) +
T∑
t=1

P∑
p=1

Np∑
n=1

Op−1∑
o=1

(Fp · do,n,p,t)

+
T∑
t=1

P∑
p=1

(Hp · hp,t) +
T∑
t=1

P∑
p=1

Np∑
n=1

(Sp · yn,p,t)

+
T∑
t=1

P∑
p=1

(Θp · vp,t) +
T∑
t=1

P∑
p=1

(Θ̂p · v̂p,t) (4.18)

It should be noted that GAs deal with maximization problems, thus, if the prob-

lem is modeled as minimization, the cost function can be easily transformed into

a fitness function by inverting it. This is obtained using Eq. (4.19) where Emax

and Emin are the maximum and the minimum values of the raw fitness E in the

current population.
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Ẽ =



1 ; if Emax = Emin

Emax−E
Emax−Emin

; if Emax−E
Emax−Emin

> 0.1

0.1 ; otherwise.

(4.19)

4.4.4. Selection Operator

Selection process is defined as selecting of two parents from the population for re-

combination. Using a fitness function, each chromosome is evaluated and highly

fitted chromosomes selected for mating in hopes that their resulting offspring are

fitter individuals (Sivanandam and Deepa, 2007). The genetic algorithm is prop-

erly directed toward promising regions in the search space by selection process.

In tournament selection (Goldberg and Holland, 1988), a set of chromosomes is

randomly chosen from the population and the one with highest fitness is selected

for reproduction. The number of chromosomes in the set is called tournament

size. The set selection process and tournaments are repeated until a desired size

of mating pool has been formed. The winners may be drawn from the population

with or without replacement. This method is widely used in GA applications due

to its efficiency and coding simplicity. This selection method has been employed

in this work and pseudocode to perform a tournament with pre-specified size to

select a chromosome for the population of known size is shown in Figure 4.13.

4.4.5. Crossover Operators

Crossover operators are applied directly on the pairs of parent chromosomes iden-

tified from the selection step to give birth one or more offspring. Crossover oper-

ator is performed on parents in a mating pool with the hope that it reproduces

offspring with relatively better fitness levels (Sivanandam and Deepa, 2007)). By
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1 FOR1 p = 1 to p = toursizea

2
3 tour[p] = randBetween(1, popsize)b

4
5 END FOR1

6 FOR2 p = 1 to p = toursize
7
8 IF1 objective(parent) > objective(tour[p])
9 parent = tour[p]
10
11 END IF1

12 END FOR2

13 return parent

aTournament size
bPopulation size

Figure 4.13: A Pseudocode to perform a tournament to select a chromosome for
a population.

doing this, the new population is expected to be enriched with the better chromo-

somes. In addition to appropriately designed crossover operators that are tailored

to the structure of the solution representation, setting up a crossover rate, or prob-

ability, is crucial in GA application. The crossover probability is the parameter

in GA algorithms that determine the probability at which a crossover operator

is applied. A higher crossover probability inserts new strings more quickly into

the population. Too high crossover probability causes high-performance chromo-

somes to be eliminated faster than selection can produce improvements. A low

crossover rate may experience stagnation because of the lower exploration (Sund-

hararajan and Pahwa, 1994). In this Section, we present two crossover operators.

These are All-information Period Swap Crossover (APSC) and All-period Loca-

tion Swap Crossover (ALSC). The first crossover randomly chooses a period in

the planning horizon and swaps all genetic information corresponding to that

period. The mechanism of this crossover operator is illustrated in Figure 4.15.

All-period Location Swap Crossover operator is a two-point crossover to exchange

layout configuration sub-segment between the parents in all periods, in contrast
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to PLSC which is applied only on a randomly selected period.

4.4.6. Mutation Operators

Unlike the crossover operators, mutation operators are applied on each chromo-

some to reverse a selected chromosome bit pattern. By this concept, lost or

disturbing genetic information is recovered. In contrast to crossovers aim to ex-

ploit the current solution to create better fitted ones, mutations are considered

to assist whole solution space exploration. Another important role of mutation

is to escape from being trapped in local minima (Sivanandam and Deepa, 2007).

Similar to crossovers, mutations are only applied on a selected chromosome based

on pre-specified probability. Too low mutation rate results in higher chances of

being trapped in local optima and in too high mutation rate there would be too

many random perturbations and offspring might lose their resemblance to the

parents. In this Section, we describe four mutation operators used in the LPGA

algorithm. These are: (1) Machines Locations Swap Mutator (MLSM), (2) Ma-

chine Locate and Fix Mutator (MLFM), (3) Sublot Mutator, and (4) Alternative

Machine Swap Mutator (AMSM). The MLSM is applied with small probability

in two different manners depending on the phase of the search. In the first phase

of the search, the operator first arbitrarily selects two loci l and l′. Then, for

these pair of locations, it swaps the values of Ml,t and Ml′,t of the Sub-segment of

each period of the chromosome. Applied in this manner, the operator keeps the

sub-segments labeled locations identical across the periods and results in a trial

solution with static configuration. Likewise in doing such swaps, in the second

phase, MLSM selects the pair of locations l and l′ for each period independently

resulting in a non-identical sub-segments of the affected solution. The second lay-

out mutation, MLFM, is applied only in the second phase of the search. It fixes

an arbitrarily chosen machine (m′) at an arbitrarily chosen location (l′) between

arbitrarily chosen time periods t1 and t2 (such that t1 < t2 ≤ T ). The essence of
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this mutation is that once a particular machine is moved to a particular location,

it is more likely for this machine to remain in that particular location for a certain

number of time periods. The Sublot Mutator is applied to each of the yn,p,t in the

chromosome to switch its value between 0 and 1. The AMSM randomly alters

the Mo,n,p,t’s value to one of machines that can process operation o of product p.

Typical results of this mutator are shown in Figure 4.14.

Y 1 3 4

n = 1

Suppose there are three  machines can process 
operation (o = 2) , mutator alters this machine 

index to one of other two machines indices.

O = 1

M1,1,3,2

O = 2

M2,1,3,2

O = 3

M3,1,3,2

O = 4

M4,1,3,2

Figure 4.14: An example of Alternative Machine Swap Mutator applied to second

operation of the first sublot of p = 3 in time period t = 4

4.4.7. Steps of the LPGA

The general steps of LPGA combine two genetic and linear programming al-

gorithms such that the LP-subproblem corresponding to each individual in the

population in each generation is iteratively solved. This is described by means of

a flowchart given in Figure 4.16.

N Population size

c Index for a chromosome in a given population

k Generation counter
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PeriodXover(Parent[1], Parent[2] // Period crossover for parents 1 and 2

1 t∗ = randBetween(1, T )

2 IF 1 (random() < PeriodXoverPro a)
3 FOR1 m = 1 to m = M // Machine location swap.

4 LocationIndex = Pare[1].Peri[t*].MachLoca[m]b

5 Pare[1].Peri[t*].MachLoca[m]= Pare[2].Peri[t*].MachLoca[m]
6 Pare[2].Peri[t*].MachLoca[m]= Location index

7 END FOR1

8 FOR2 p = 1 to p = P // sublots swap
9 FOR3 n = 1 to n = Np
10 SublotValue = Pare[1].Peri[t*].Prod[p].Sublot[n].Ynpt c

11 Pare[1].Peri[t*].Prod[p].Sublot[n].Ynpt = Pare[2].Peri[t*].Prod[p].Sublot[n].Ynpt
12 Pare[2].Peri[t*].Prod[p].Sublot[n].Ynpt = SublotValue

13 END FOR3

14 END FOR2

15 FOR4 p = 1 to p = P // Machine performing operation swap
16 FOR5 n = 1 to n = Np
17 FOR6 o = 1 to o = Op

18 MachIndex = Pare[1].Peri[t*].Prod[p].Sublot[n].Machi[o] d

19 Pare[1].Peri[t*].Prod[p].Sublot[n].Machi[o] = Pare[2].Peri[t*].Prod[p].Sublot[n].Machi[o]
20 Pare[2].Peri[t*].Prod[p].Sublot[n].Machi[o]= MachIndex

21 END FOR6

22 END FOR5

23 END FOR4

24 END IF1

aA probability of applying crossover
bmeans machine m located at location ”LocationIndex” in time period t∗ in parent solution

1.
cmeans sublot n of product p in time period t∗ in parent solution 1 has value equal to ”Sublot-

Value”.
d means a attractive machine with ”AltrMachIndex” index is selected to perform operation o

of sublot n of product p in time period t∗ in parent solution 1.

Figure 4.15: Pseudocode for applying All-information Period Swap Crossover
in LPGA.
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MaxGen Maximum generations

Phase An indicator number which equals to 1 for the static phase or 2 for

the dynamic phase

gphase Generation at which the value of Phase should be set equal to 2 if it

were not previously set to this value by other conditions

WoI Number of successive population rejuvenations counted without any

improvement of the best individual so far found

WoImax1 Maximum value of WoI at which point the second phase is to be

entered if Phase was equal to 1

WoImax2 Maximum value of WoI in the second phase at which point the search

will be terminated.
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start

Set c = 1 k = 1 
and WoI = 1
Randomly 
generate 
initial N 

chromosomes 
with static 

configuration

Constitute 
the parent 
population

Obtain the decision variables 

( У n, p ,t  ) ( α m ,l ,t )  ( ϒ o ,n, p ,m ,t )

Formulate and 
solve the LP sub 

problem

Obtain solution of LP

Calculate the raw  and 
transformed fitness 

for the individual
Is c = N ?

C = C + 1

Randomly form N/2 pairs of parents
 Apply crossover to form N offspring
Apply mutation to each N offspring 
and generate parents for the next 

generation

Identify the current 
best solution

Is the current best 
solution is better than 
the one so far found

WoI = WoI + 1

Select N chromosomes with 
replacement based on the 

transformed fitness

k = k+ 1 and
c = 1

Is k = MaxGen ?Is WoI = WoImax1?

Is Pahse = 1 ?

Set Phase = 2

Stop

Update the 
best 

chromosome 
so far found

Is k = MaxGen?

WoI =  0

Is WoI = WoImax2?

Yes
No

Yes

No

No

No

Yes Yes

Yes

No

No

Yes

Yes

No

Figure 4.16: The steps of LPEGA

86



Chapter 5

Numerical Examples:

Distributed Layout Design

5.1. Model Analysis

Since the comprehensive problem addressed in this thesis has not been previously

presented, we have no comparable examples from the literature to use. There-

fore, we generated several data sets to illustrate the problem and demonstrate

the performance of the proposed solution procedure. One of these data sets (re-

ferred to as Problem 1) is provided in detail in Appendix ??. In this data set,

we considered a system composed of 20 resource elements and 22 machine tools.

Table A.1 shows four different cases in which each of 20 REs is available on one

or more machines. More specifically, Case 1 represents a situation in which a

particular RE is available on several machine tools; Case 4 represents a situation

where most of the machines have unique capabilities; and Cases 2 and 3 lie in

between the two extremes. The average number of machines per RE in these four

cases is 4.55, 2.65, 1.5, and 1.1, respectively. In Table A.2 are the model param-

eters (Θp, Θ̂p, Hp, Fp, Sp, Np, Op), the index of the required resource element r

for each operation, and the processing time Uo,p. The demands for the parts in
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four planning periods are provided in Table A.3. The relocation cost Gm for each

machine type m is in Table A.4.

The layout showing potential machine locations in Problem 1 is provided in Fig-

ure A.1. Although the proposed model can address any type of layout shape

and material handling system, we prefer to adopt a system served by automated

guided vehicles (AGVs) arranged in tandem configuration. AGVs are preferable

to stationary material handling robots because of their mobility, and to convey-

ors because of their flexibility (Asef-Vaziri and Laporte, 2005). An AGV system

can be reconfigured to accommodate changes in production volume, product mix,

product routing, and equipment interface requirements more readily than most

other material handling systems (Goetz and Egbelu, 1990). In Table A.5, we

provide the locations of machines in an arbitrarily generated functional layout

(where similar machines are placed in close proximity) and five arbitrarily gen-

erated distributed layouts (DL1, ..., DL5). The material handling and machine

relocation distances between each pair of locations are shown in Tables A.6 and

A.7, respectively. In Problems 2 to 6, we considered the processing of 35, 50, 65,

80, and 120 parts, respectively. The maximum number of operations per part was

six (in Problems 2, 3 and 4) and eight (in Problems 5 and 6). The problems were

solved using the proposed algorithm. The algorithm was implemented in C++

and interfaced with ILOG CPLEX version 12.2 to solve the linear programming

subproblem.

5.1.1. Functional versus Distributed Layout

The aim of this Section is to illustrate the greater effectiveness of using distributed

layouts compared to using a functional layout in a situation where there are ma-

chine tools with overlapping capabilities. To draw a fair comparison between

these two arbitrarily generated layouts, we did not optimize machine allocations

in either case. Machines that share capabilities (having common REs) were placed
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in close proximity in the functional layout, and were distributed arbitrarily in the

distributed layouts. Recall that our intention in solving Problem 1, which poses

four levels of overlapping capabilities (Table A.1) and six layouts (Table A.5), was

to optimize material handling and other cost elements. Table 5.1 indicates that

using distributed layouts results in significant savings. It is important to note the

remarkably large cost reduction in case 1. These savings reflect the significant

reduction in material handling costs that results when several machine tools with

a number of shared capabilities are distributed, making their capabilities easily

accessible from different regions of the layout. As we expected, the reduction in

cost savings decreases as we move from case 1 to case 4. Our study thus shows

that distributed layouts would be highly desirable in situations where there are

many machine tools with several shared capabilities. Given that many modern

manufacturing facilities contain a variety of machine tools with similar and over-

lapping capabilities able to produce a wide spectrum of components (Gindy et al.,

1996), distributed layouts are more relevant than ever.
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Table 5.1: Comparison between Distributed and Functional layouts in Problem 1

Objective function values

Levels of sharing processing capabilities(REs)

Case 1 Case 2 Case 3 Case 4

DL1 322120 399395 830240 764405

DL2 286450 308695 764215 829820

DL3 389805 465485 746280 805985

DL4 276190 344705 796730 746250

DL5 288405 365225 591335 794100

Average 312549 376701 745760 788112

Functional 857625 882465 907890 904005

Percentage Saving 63.65 57.31 17.85 12.82

The cost savings under case 1 in Problems 2 to 6 appear in Figure 5.1. The first

graph (graph-a) shows that the percentage of savings decreases as the number of

parts increases when using distributed layouts. However, since larger problems

incur higher production costs, the monetary value of the savings rapidly increases

as problems grow in size (see graph-b), making distributed layouts very appealing.
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Figure 5.1: Cost saving in moving from functional to distributed layout in Prob-

lems 1 to 6 under Case 1

5.1.2. Static versus Dynamic Distributed Layout

In this Section we compare static versus dynamically reconfigured distributed

layouts in four different cases of Problem 1 (as described in the previous Section)

and several other problems. We solved the problems by prohibiting dynamic

reconfiguration. Hence, in a static distributed layout, machine allocation is opti-

mized to provide a robust layout which remains unchanged for the entire planning

horizon. Table 5.2 provides the values of the objective function in the four cases

of Problem 1, and the percentage of savings obtained by changing from static to

dynamic distributed layout. The Table shows that dynamic reconfiguration can

lead to significant cost savings when the manufacturing system has more unique

machines with less shared capabilities, as in case 4. Conversely, there is less

need for system reconfiguration when a manufacturing facility has machine tools

with several shared capabilities, as in case 1. As can be seen in Table 5.3, we

found similar results in several other problems. Figure 5.2 shows that when using

dynamic reconfiguration, the percentage of savings tends to decrease as prob-

lem size increases. However, the actual manufacturing cost in larger problems is

very high, and even a small percentage in savings can imply a very significant

91



Chapter 5. Mathematical Model

monetary value.

Table 5.2: Dynamic versus Static distributed layouts in Problem 1

Total costs

Levels of sharing machines capabilities (REs)

Case 1 Case 2 Case 3 Case 4

SDL 254135 305605 412680 495315
DDL 239582 290827 313988 335991

Saving % 5.76 4.83 23.91 32.16
SDL = Static Distributed Layout; DDL = Dynamic Distributed Layout

Table 5.3: Dynamic versus Static distributed layouts in Problems 2 to 6

Problem No. Case 1 Case 4

2 0.0 21.3
3 2.4 17.1
4 2.6 21.0
5 0.0 13.0
6 1.3 16.3

5.1.3. Other Model Features

In this Section, we illustrate the benefits of incorporating workload balancing,

production planning and subcontracting in the proposed comprehensive model.

The sample results in Table 5.4 show the distribution of a workload that requires

the use of resource element-1 (RE-1), which is available on each of machines 1

to 6. In the first row in this Table, workload balancing (Υ = 0.99) results in

a workload that is evenly distributed among all the machines. In the second

row, in contrast, the workload is unevenly distributed on the six machines when

the workload factor Υ is set to zero. These results reflect the importance of

incorporating a workload balancing constraint in the proposed model. As Table

5.5 shows, incorporating one or both of production planning and subcontracting
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Figure 5.2: Cost saving percentage from dynamic reconfiguration as the problem
size increases

typically result in a substantial decrease in the objective function, indicating

their significance in economic terms. More importantly, the incorporation of

these attributes affects several objective function terms, further signifying the

value of utilizing a comprehensive model in manufacturing system analysis. A

model consisting of different aspects of the system can help us to understand the

problem better. An integrated system approach can minimize the possibility that

certain important aspects of the system will be overlooked while other issues are

being studied.

Table 5.4: Illustration of workload balancing

Workload of RE-1 on Machines 1 to 6
Υ 1 2 3 4 5 6 Total

0.99 1131 1131 1200 1131 1131 1131 6855
0.00 0 0 6350 0 750 0 7070

5.2. Performance Analysis

Due to the unique functionality of each type of metaheuristic, choosing an ap-

propriate metaheuristic algorithm for solving a complicated mathematical model
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Table 5.5: Effects of production planning and subcontracting

Production Planning/Subcontracting
Cost without/without with/without without/with with/with

Relocation cost 23220 30640 9100 10900
Material Handling cost 263105 207415 86555 58360
Inventory holding cost 0 23850 0 10150
Setup cost 19200 13050 11050 9900
In-house production cost 138500 138500 100400 103200
Subcontracting cost 0 0 157350 147450

Total cost 444025 413455 364455 339960

often is very demanding from a solution convergence, solution quality and algo-

rithm robustness point of view. It is reflecting the user’s experience and requires

the examination of several algorithms and problems. In order to assess competing

algorithms described in Chapter 4, we compare the LPSA with PSA in Section

5.2.1. Section 5.2.2 deals with the problem of comparisons between LPSA and

LPGA algorithms and the results of LPSA are compared with MILP solver in

Section 5.2.3. Section 5.2.4 is devoted to computing challenge we encountered

in implementation phase and the final Section in this Chapter is concerned with

dividing the search into phases.

5.2.1. Comparing LPSA with PSA

To gain some insight into the first set of our competing algorithms, Problem-1

was solved while considering the proposed mathematical model with and with-

out workload balancing. By doing this, we can also examine the effectiveness

of penalty approaches handling workload balancing and capacity constraints in

PSA. Figure 5.3 and Figure 5.4 show convergence graphs for both LPSA and

PSA algorithms solved Problem-1 with workload balancing factors Υ = 0 and

0.80. As seen from Figure 5.3, PSA shows a comparable solution result to LPSA

when workload balancing is not considered. However, PSA is not capable of

solving the model considering a work load balancing constraint as illustrated in
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Figure 5.4. Such poor performance of PSA search method could be in part own-
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Figure 5.3: A convergence grahps of LPSA and PSA solved Problem-1 not con-
sidering a workload balancing constraint

ing to handling workload balancing using a penalty method which is an indirect

way of constraint handling. Although a penalty function approach is generic and

applicable to any type of constraint, its performance is not always satisfactory.

The results reflects the fact that the penalty function methods often suffer the

disadvantage of excessive fine tuning required by the penalty factors and lack of

updating strategy for the penalty coefficient. On the other hand, the importance

of balancing material flow to make the plant efficient has been advocated by sev-

eral researchers. Greater resource sharing is believed to result in a more balanced

workload among resources and improves overall utilization and reduces conges-

tion. As the size of the problem increases, LPSA still outperforms PSA in terms

of solution quality even when not considering a workload balancing constraint

(see Figure 5.5). Another advantage of LPSA is its implementation simplicity

compared with PSA employed a problem specific heuristic. In LPSA, design-

ers easily define a valid combination of the values of the integer variables using
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Figure 5.4: A convergence grahp of LPSA and PSA solved Problem-1 with a
workload balancing constraint

solution representation and the values of the continuous variables which opti-

mally correspond to a given combination of the integer variables are determined

by solving a linear programming solver. It enables the algorithm being simple

to implement in industrial setting, to re-implement by other researchers, and to

explain and analyze. On the contrary, in the PSA, all constraints need to be

addressed by structural properties of solution representation and some problem

specific heuristics embedding in Simulated Annealing. For example, designers

could not utilize a problem specific heuristic to address the production planning

without good knowledge of lot sizing. Hence, the degree of complexity increases

and makes PSA inferior to LPSA showing comparable results.

Moreover, despite the implementation simplicity, the LPSA presents less

degree of complexity. According to Glover and Kochenberger (2003), a mean-

ingful metric for algorithmic complexity is the number of parameters used in the

algorithm. The reasoning behind that is the effort required to tune or under-

stand these parameters is far greater as the number of parameters increases. In

addition, larger parameters sets exhibit more complex parameter interactions and
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Figure 5.5: A convergence grahp of LPSA and PSA solved Problem-1 with a
workload balancing constraint

might result in multiple locally optimal solutions in the parameter space. Tables

5.6 and 5.7 summarize all parameters used in LPSA and PSA. It can be seen that

PSA uses a larger set of parameters and, thus, is more complex than LPSA.

5.2.2. Comparing LPSA with LPGA

Although the solution representation encoding integer variables of solution is

identical in both LPSA and LPGA and they use a same approach to hybridize a

metaheuristic with linear programming, their metaheuristic parts are incredibly

diverse in nature. Such fact motivates us to make the comparison of their perfor-

mance discussing in this Section. Figure 5.6-a illustrates convergence results for

LPSA and LPGA algorithms when solving Problem-1. The result suggests that

LPGA outperforms LPSA on small size problems in terms of solution quality. For

fair comparison, the number of search directions in LPSA and population size in

LPGA were assumed to be equal and set to 150. The examples also show that the

developed LPGA is more efficient in solving the proposed model than LPSA in
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Table 5.6: LPSA Algorithm Parameters

Category Description Name
General Number of search directions S

Interaction frequency F
Number of iterations to Q
be performed in each iteration
Number of iterations performed in Cphase

each search phase (Dynamic or Static)
Annealing Schedule Initial temperature T0

Cooling schedule exponent α
Stopping criteria Maximum number of iterations N

Iterations without improvement -
Perturbation Sublot perturbation probability -

Machine assignment perturbation probability -
Machine location perturbation probability -
Location perturbation probability -

large size problem (see Figure 5.6-b). These results reflect the fact that, recom-

bination operators in GAs enable them to mix good characteristics from different

solutions to find solutions with better quality while SA does not gain much of

this. A previously mentioned, in Simulated Annealing and Genetic Algorithms,
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Figure 5.6: The convergence grahps of LPSA and LPGA solved small and large-
sized problems

assigning different parameters values can lead to highly variable outcomes when

different users run the same algorithms against the same problem. Thus, the

algorithm robustness is an essential requirement for solution convergence. The
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Table 5.7: PSA Algorithm Parameters

Category Description Name
General Number of search directions S

Interaction frequency F
Number of iterations to Q
be performed in each iteration
Number of iteration performed in Cphase

each search phase (Dynamic or Static)
Annealing Schedule Initial temperature T0

Cooling schedule exponent α
Stopping criteria Maximum number of iterations N

Iterations without improvement -
Perturbation Machine swap perturbation probability -

Alternative route perturbation probability -
Production setup perturbation probability -
Subcontracting ratio perturbation probability -
Sublot creation perturbation probability -
Sublot size perturbation probability -
Outsourcing perturbation probability -

next numerical example is to investigate whether the convergence in the LPSA

and LPGA are robust against different parameter settings for a given test prob-

lem. After computational testing on the different parameter settings for both

algorithms, we selected the values shown in Tables 5.8 and 5.9 (which are robust

across our test set). Figure 5.7 depicts a runtime comparison on results obtained

using LPSA and LPGA algorithms to solve Problem-1. It can be seen that LPSA

provides more degree of robustness compared with LPGA. This means that re-

sults in LPSA, in terms of accuracy, are more relatively insensitive to choice of

parameters and thus less reliance on parameter tuning.
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Table 5.8: Parameter settings for 6 different test cases on Problem-1 in LPSA

Parameters related to:

Test General Perturbation Operators Cooling Schedule

NO. S F Q p1 p2 p3 p4 T0 α

1 80 10 10 0.025 0.1 0.15 0.15 30000 0.999

2 100 10 10 0.1 0.025 0.05 0.1 5000 0.95

3 120 10 10 0.15 0.05 0.05 0.15 20000 0.95

4 150 15 15 0.05 0.15 0.1 0.1 30000 0.99

5 170 15 15 0.025 0.1 0.15 0.05 10000 0.885

6 200 10 10 0.1 0.025 0.05 0.1 5000 0.95

Table 5.9: Parameter settings for 6 different test cases on Problem-1 in LPGA

Parameters related to:

Test General Mutation Operators Crossover Oper.

NO. PopSize TourSize pm1 pm2 pm3 pm4 pcr1 pcr2

1 80 8 0.003 0.003 0.01 0.05 0.6 0.6

2 100 10 0.005 0.025 0.001 0.003 0.6 0.8

3 120 12 0.003 0.01 0.001 0.05 0.7 0.7

4 150 15 0.005 0.05 0.01 0.03 0.8 0.8

5 170 17 0.001 0.01 0.05 0.005 0.7 0.9

6 200 20 0.0025 0.025 0.01 0.05 0.6 0.5

The average convergence performance of 6 runs is graphed in Figure 5.7. This

Figure indicates that LPGA were converged to better solution than LPSA after

840 generations.
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Figure 5.7: A comparison between convergence history of LPSA and LPGA solv-
ing small-sized problems using 6 different parameter settings given in Tables 5.8
and 5.9.

5.2.3. Comparing LPSA with MILP Solver

As we proposed a new solution procedure for a new mathematical model, there are

no benchmark instances in literature to compare the solution quality of the devel-

oped algorithm. Instead, we made a comparison of the developed algorithm with

the state-of-the-art optimization package - IBM ILOG CPLEX (version 12.2).

The MILP model (to be solved by CPLEX) and the developed algorithm were

implemented in a C++ programming environment and run on a personal com-

puter having i5CPU@2.4GHz and 8 GB RAM. Figure 5.9 (a) shows the conver-

gence history of CPLEX in solving Problem-1. From this Figure, it can be seen

that the best solution found using CPLEX after 25 hours of computation has an

objective function value of 451,485.00. This computation was continued for more

than 100 hours and the solution did not improve. The same problem was solved

using the developed algorithm and the convergence history is shown in Figure 5.9

(b). This Figure shows that the developed algorithm starts to provide solutions
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Figure 5.8: Average convergence performance of LPSA and LPGA given Figure
in 5.7.

within a few minutes that are better than the one found after 100 hours com-

putation using CPLEX. The final solution found using the developed algorithm

has an objective function value of 332,485.00. In order to validate this improved

solution generated by the simulated annealing, it was submitted to CPLEX as a

starting incumbent solution. CPLEX accepted this improved solution as a feasi-

ble starting solution to the MILP model though CPLEX was unable to further

improve it. For larger problems, CPLEX was unable to start computation be-

cause of large memory requirement whereas the developed algorithm was able to

generate solutions in a minute and progressively improve those solutions. This

demonstrates the potential of the developed algorithm in solving large problem

instances.
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Figure 5.9: Computational performance of CPLEX vs the proposed LPSA

5.2.4. LP Implementation Approaches

In Section 4.2.3, we discussed the computational challenge encountered in imple-

menting the LP subproblem. In here, we exemplify this computational difficulty

and the improvement obtained using the technique employed to circumvent this

challenge. Figures 5.10 (a)-(d) show the computational times required in a single

iteration along a single search path for four different problem sizes. The compu-

tational times are divided into modeling time (Step 3 in Figure 4.3) and solver

time (Step 4 in Figure 4.3). These computational times are evaluated in two dif-

ferent approaches: Approach-1 (shown in Figure 4.4) and an improved approach

- Approach-2 (shown in Figure 4.5). From Figure 5.10, it can be seen that the

modeling time is many times larger than the solver time in Approach-1. This is a

major computational hurdle. Approach-2 eliminates this computational difficulty

by reducing the modeling time by about 96%. Without this improvement, the 20

hours convergence history shown in Figure 5.9 (b) would have taken more than

300 hours.
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Figure 5.10: Average computational time for a single SA iteration in Approaches
1 and 2 for different problem sizes

5.2.5. Dividing the Search into Phases

The proposed LPSA algorithm first attempts to find solutions with static config-

urations and then it tries to improve these solutions by allowing dynamic system

reconfiguration. The reasoning behind this approach was explained in Section

4.2.4. In here, we illustrate the advantage of this approach by examining the

convergence of the algorithm in three different cases shown in Figure 5.11. Con-

vergence curve (1) is when the algorithm started with initial solutions having

dynamic reconfigurations and continued to improve this solution by running only
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under phase-2. In convergence curve (2), the algorithm was started with ini-

tial solutions having static configurations and continued the iteration only under

phase-1. Convergence curve (3) is when the algorithm started with initial solu-

tions having static configuration, applied phase-1 up to the 5000th iteration and

then continued under phase-2. Looking into curve (1), it is evident that when

the algorithm tries to find a solution with dynamic reconfiguration in one shot,

it is unable to provide a solution better than the static solution found at the end

of (2). Thus, without dividing the search into phases, a solution having the eco-

nomic advantage of system reconfiguration can be unattainable. When the search

is divided into phases as shown in curve (3), the algorithm is able to provide a

solution possessing the economic advantage of dynamic reconfiguration.
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Figure 5.11: The impact of dividing the search into two phases on the convergence
history and final solution quality
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Literature Review: Flexible Job

Shop Scheduling

In today’s increasingly competitive and demanding marketplace, a high-performance

delivery is a challenge. To address this challenge, scheduling can play a major

role in a manufacturing process. A good schedule helps to eliminate excessive

inventory cost, minimize setup cost, production time and provides accurate de-

livery date quotes. As defined in the literature, the allocation of jobs to resources

to perform a collection of operations over a period of time is scheduling. Depend-

ing on shop environment, process constraints and performance criteria, obtaining

a best schedule can be easy or difficult. Although some work in the literature

have focused on distributed layout design (Montreuil and Venkatadri, 1991; Askin

et al., 1999; Benjaafar and Sheikhzadeh, 2000; Baykasoglu, 2003; Lahmer and

Benjaafar, 2005; Hamedi et al., 2012; Nageshwaraniyer et al., 2013; Shafigh et al.,

2015), the scheduling problem in this manufacturing environment has not been

addressed in the literature. In order to achieve the full capacity of a distributed

layout with routing flexibility, an effective and efficient scheduling problem need

to be formulated and solved.

In fact, there are some similarities between a distributed layout scheduling
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problem and a flexible job shop scheduling problem (FJSP). Figure 6.1 illus-

trates the schematic representation of a DL consisting of several types machines

distributed throughout the factory floor. If a complete sequencing is fixed and

known for each job before scheduling is performed and also routing flexibility dur-

ing scheduling is considered, the problem resembles flexible job shop scheduling

problem. In FJSP, it is typical simplification assumption that distances between

machines are ignored. However, machines with similar functionality are not nec-

essarily located close in distributed layouts; thus, in addition to a time-based

criterion (as main objective function in FJSP), traveling distance between ma-

chines also must be taken into account in scheduling of DLs. Sections 6.1 to 6.6

are devoted to brief review of job shop and flexible job shop scheduling modeling.

Figure 6.1: Shematic repressnetation of distributed layouts concept
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6.1. Job Shop Scheduling Problem

The classical job shop scheduling problem (JSP) is one of the widely known

and hardest combinatorial optimization problems, when a set of jobs must be

processed on set of machines, where each job consists of number of operations.

Each machine is capable to process one operation and the processing sequence

of operations of each job is predefined. JSP aims to find the optimum allocation

of the jobs to machines and starting times of jobs on each machine such that

the performance indicator is optimized. In order to model JSP, the following

assumptions are usually made:

1. Each machine can only perform one operation.

2. Preemption (cancelation of job at a time) is not allowed.

3. Jobs are independent and no priorities are assigned.

4. No blocking occurs due to finite buffer space.

5. The demand is known a prior and jobs are simultaneously available at

time zero.

6. Precedence constraints among the operations of a same job are respected.

7. Each job can be performed by only one machine at time.

8. Breakdown is not considered.

Although mathematical formulation of machine scheduling problem is not promis-

ing solution method due to NP-complexity of the problem, it can shed light on

developing an efficient heuristic and can be helpful to analysis the structure of the

problem (Demir and İşleyen, 2013). Initial formulations of JSP were developed

in 1960s. Using integer programming, Wagner (1959); Bowman (1959); Manne

(1960) presented three distinct methods of modeling sequencing problem in JSP.
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These three approaches are differentiated by the binary variable types defined to

capture sequencing decision. These binary variables include sequence-position,

precedence and time-indexed. Because only sequence-dependent variable type’s

formulation is relevant to our work in distributed layout scheduling, the reader

may supplement this thesis with other qualified source in JSP.

This type of model was first introduced by Wagner (1959) and is based on the

concept that each machine has a fixed number of production runs Rm (where r

= 1,2,......,Rm) and each of these production runs can be assigned at most to one

operation of each job; thus, the assignment of operations to production runs of a

given machine determines the sequence of jobs on that machine (Bayat Movahed,

2014).

A mixed integer linear programming (MILP) model for JSP which formu-

lated based on sequence-dependent binary variables type and notations used in

this formulation are presented below. The model is adopted from Defersha and

Chen’s work (Defersha and Chen, 2010).

Parameters:

j Independent jobs need to be scheduled in the system.

o An ordered and fixed list of operations that form a job.

To,j,m Time required by a machine m to perform an operation o of job j.

Rm Maximum number of production runs of machine m where production

runs are indexed by r or u = 1, 2, ...., Rm;

Po,j,m A binary data equal to 1 if operation o of job j can be processed on

machine m, 0 otherwise;

Ω Large positive number.
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Variables:

Continuous Variables:

co,j,m Completion time of operation o of job j on machine m;

ĉr,m Completion time of the rth run of machine m;

cmax Makespan of the schedule

Binary Variables:

xr,m,o,j Binary variable which takes the value 1 if the rth run on machine m is

for operation o of job j, 0 otherwise;

zr,m A binary variable which equal to 1 if the rth potential run of machine

m has been assigned to an operation, 0 otherwise;

MILP Model

Minimize:

Objective = cmax (6.1)

Subject to:

cmax ≥ co,j,m ; ∀(o, j,m) (6.2)

ĉr,m ≥ co,j,m + Ω · xr,m,o,j − Ω ; ∀(r,m, o, j) (6.3)

ĉr,m ≤ co,j,m − Ω · xr,m,o,j + Ω ; ∀(r,m, o, j) (6.4)

ĉr,m −Bj · To,j,m · xr,m,o,j ≥ ĉr−1,m ;

∀(r,m, o, j)|{r < Rm} (6.5)

xr,m,o,j ≤ Po,j,m ; ∀(r,m, i) (6.6)
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M∑
m=1

Rm∑
r=1

xr,m,o,j = 1 ; ∀(o, j) (6.7)

J∑
j=1

Oj∑
o=1

xr,m,o,j = zr,m ; ∀(r,m, j) (6.8)

zr+1,m ≤ zr,m ; ∀(r,m, i) (6.9)

xr,m,o,j, and zr,m are binary (6.10)

The constraint in Eq. (6.2) ensures that the makespan value of system

must be greater than or equal the completion times of all the operations. Eqs.

(6.3) and (6.4) dictate that if xr,m,o,j is equal to 1 the oth operation of job j

and rth run of machine m (q, r,m) must start at the same time. Constraint in

Eq. (6.5) enforces that the succeeding operation of any job cannot be started

after the preceding operation is completed. Eq. (6.6) permits the processing of

each operation on eligible machine. Eq. (6.7) ensures that each operation can be

processed in at most one machine. Eq. (6.8) restricts that on each run of any

machine one operation only can be assigned. (r+ 1)th order on a machine can be

assigned to an operation if and only if machine order r is already assigned (Eq.

(6.9)). Eq. (6.10) explains non-negativity conditions of the decision variables.

The above model set the scheduling goal to find a feasible schedule which

minimizes the makespan or maximum completion time. This is amount of time

required to complete all the jobs in the system. Researchers usually consider

this objective whenever the emphasis is on machine utilization and production

flow. Lateness, total weighted completion time and weighted number of tardy

jobs are among other optimally criteria in JSP literature. Although makespan

minimization may not be a promising theoretical objective function, it widely

used in academic and industrial practice. It is mathematically simple to handle,

and permits easy developing of mathematical model. Thus, it is one of the most

broadly used criterions in scheduling research.

112



Chapter 6. Mathematical Model

In modern production environment, flexible manufacturing systems (FMS)

representing important new development in automated manufacturing have been

adopted broadly. In addition, multi-purpose machine tool provides manufacturing

firms with competitive capabilities. System that allows easy storage and retrieval

of large equipment and machine tools has been introduced. With this emerging

technology to support job routing flexibility, the greater emphasis on job routing

flexibility has been placed in recent years. Job routing flexibility allows processing

a part type using alternative machine in case of encountering unforeseen events

like machine breakdowns, order cancelation and new arrival (Kesen and Güngör,

2012).

6.2. Flexible Job Shop Scheduling Problem

The flexible job shop scheduling problem (FJSP) is an extension of the JSP where

routing flexibility during scheduling is considered. It makes FJSP a more compli-

cated problem due to simultaneously consideration of the both job routing and

operation scheduling. A Job routing problem deals with assigning each operation

to each machine among a set of capable machines. The scheduling sub-problem

addresses sequencing assigned operations on all machines. FJSP was first ad-

dressed in Brucker and Schlie (1990) where a polynomial algorithm for solving

FJSP with two jobs is developed. Since then, many other models and solution

procedures have been devised to furmulate and solve FJSP in the literature. The

last two decades have seen a growth in the number of publications on the subject

of FJSP. Some recent publications consist of Chen et al. (1999b), Kacem et al.

(2002b), Xia and Wu (2005), Chen et al. (2007), Saidi and Fattahi (2007), Gao

et al. (2007), Pezzella et al. (2008b) and Xing et al. (2008).
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6.3. Comprehensive Model for FJSP

In order to deal with real problems, several researchers have developed mod-

els and solution procedures lead to more realistic FJSP. A comprehensive model

comprised of a set of different aspects of the system can help researchers to under-

stand the problem better. It can reduce the possibility of some vital parts of the

system being ignored, while other issues are being studied (Chen, 2001). For ex-

ample, scheduling decision can be influenced by due date requirements, machine

release dates, job priorities, machine setup requirements, operation and material

handling system. Thus, scheduling must be capable of capturing simultaneously

these diverse attributes. There is clearly need to consider an integrated schedul-

ing model to address multi-faceted nature of the real world. Some attributes

used in recently published articles in FJSP include sequence-dependent setups

on machine, attached or detached nature of setups, machine release dates, and

time lags. The way of incorporating these attributes in FJSP which will discuss

below, provides a means of understanding the detailed model for scheduling in

distributed layouts manufacturing system presented in the next Chapter.

Sequence-dependent Setup

Sequence-dependent setup is important factor that frequently appears in various

manufacturing environments and in machine scheduling problems. In this sit-

uation, setup operations depend on the immediate preceding operation on the

same machine. Panwalkar et al. (1973) showed that a large portion of jobs re-

quires sequence-dependent setups in job scheduling. Limitation on research on

job shops scheduling with sequence-dependent setups due to the complexity of

the problem is pointed in Defersha and Chen (2010). Unlike the classical model

assuming that setup time is included in processing time, it must be explicitly

included in model. The setup time can be sequence-dependent and denoted by
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So,j,m,o′,j′ , where operation o′ of job j′ is the last operation processed on machine

m. The following constraint can replace Eq. (6.6) to capture such constraint.

ĉr,m −Bj · To,j,m − So,j,m,o′,j′ − Ω · (xr,m,o,j + xr−1,m,o′,j′) + 2Ω ≥ ĉr−1,m ;

∀(r,m, o, j, o′, j′)|{(r > 1) ∧ ((o, j) 6= (o′, j′))} (6.11)

In addition, inclusion of the below constraint to the model enforces that, if oper-

ation o of job j is assigned to a production run r of machine m, any succeeding

operation o′ of job j cannot be assigned to any earlier run r′ of machine m.

xr′,m,o′,j ≤ 1− xr,m,o,j ; ∀(r, r′m, o, o′j)|{(o′ > o) ∧ (r′ < r)} (6.12)

We need to defined same constraint where any preceding operation o′ of job j

cannot be assigned to any later run r′ of machine m.

xr′,m,o′,j ≤ 1− xr,m,o,j ; ∀(r, r′m, o, o′, j)|{(o′ < o) ∧ (r′ > r)} (6.13)

Machine Release Date

It is a common assumption in scheduling research that each machine is contin-

uously available at time zero. However, a common situation in industry is the

desire to perform ongoing operations from preceding schedule since production

environment are seldom found empty (Ruiz et al., 2008). Machine release date

shows when a machine is released from previous work and can start processing.

Since the routing flexibility of jobs permits assignment of jobs to one of available

eligible machines, the machine release date certainly affects the selection of an

alternative machine. Because a better choice is to look for an alternative machine

released sooner. If each machine is subject to a release date Dm when it will be

available for processing jobs of the current schedule, a constraint in Eq. (6.14)

can be added to the model. S∗o,j,m denotes the setup time of operation o of job j

if it is the first operation to be processed on machine m.
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ĉ1,m −Bj · To,j,m − S∗o,j,m − Ω · x1,m,o,j + Ω ≥ Dm ; ∀(m, o, j) (6.14)

The constraint in Eq. (6.14) guarantees that the starting time of the setup for

the first run (r=1) of machine m needs to be greater than the release date Dm of

the machine.

Time Lag

Time lags prescribe that an operation of a particular job may not be started

on machine until at least certain time has elapsed since completing the previous

operation of the job. The attribute allows a realistic treatment of a variety of

practical scheduling problems. For instance, rest periods are used in processing

of pastry products at the different point in the production sequence. Another

application is overlapping of production where starting of o+ 1 operation of job

j on a machine is allowed if a certain minimum finished operation o of job j

have been completed on another machine. The minimum backlog in such cases

may be represented by a time lag of appropriate length (Johnson, 1959). This is

particularly true when a particular machine can be blocked due to limited buffer

size and also in situation that the batch size is very large and there is a need to

transfer a portion of the batch to the next machine (Defersha and Chen, 2010).

Let’s Lo,j denotes the time lag. In order to ensure that starting time of (o, j) is

greater than completion time of (o− 1, j) + Lo,j the constraint in Eq. (6.15) can

be applied if run r′ of machine m′ is assigned to operation o− 1 of job j and the

first run of machine m is assigned to operation o of this same job.

ĉ1,m −Bj · To,j,m − S∗o,j,m − Ω · (x1,m,o,j + xr′,m′,o−1,j) + 2Ω ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, j)|{((1,m) 6= (r′,m′)) ∧ (o > 1)} (6.15)
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The constraint in Eq. (6.17) can also be used to utilize the same concept for

other operation (o > 1) with time lag assigning in r′ > 1.

ĉr,m−Bj ·To,j,m−So,j,m,o′,j′−Ω·(xr−1,m,o′,j′+xr,m,o,j+xr′,m′,o−1,j)+3Ω ≥ ĉr′,m′+Lo,j ;

∀(r,m, r′,m′, o, j, o′, j′)|{(r > 1) ∧ (o > 1) ∧ (r,m) 6= (r′,m′) ∧ (o, j) 6= (o′, j′)}

(6.16)

Attached or Detached Setup

The model can permit anticipatory setups (detached) where the machine setup

can be started before the corresponding job become available on the machine.

In this situation, the setup time can overlap with processing time of previous

operation in the sequence if these consecutive operations are not assigned in

the same machine. Figure 6.2 illustrates a small job shop problem with two

jobs which each has two operations processing by two machines. There is an

anticipatory setup time between the jobs on the second machine. As can be seen

in anticipatory part, the setup time for (o2, j1) can overlap with the previous

operation’s processing time because there is enough idle time at machine 2 to

do setup before arriving (o2, j1). Conversely, a non-anticipatory setup (attached)

requires the next operation of a job in the sequence to be already present at the

machine 2 in order to perform the setup. For example, imagine the process of

adjusting flat parts need a smooth finish on a surface grinding machine. This

adjustment might require the flat part to be already present in order to firmly fix

it to the machine. If the flat part is not arrived at the machine, the setup cannot

carry out. A scenario is depicted in Figure 6.2 where the case of non-anticipatory

setup is proposed.
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Figure 6.2: An example of anticipatory and non-anticipatory setup on a machine

in job shop

Accordingly to Defersha and Chen (2010), the majority of the papers published

in recent years proposed attached setup. However, Zhang and Gu (2008) claim

that this assumption may hamper maximal concurrency, in turn, can significantly

affects the research result in many situations. It is also important to point that

in many productions environment a setup time can consume a significant portion
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of the productive time if they are not handled with care (Framinan et al., 2014).

Let’s introduce additional parameter Ao,j as:

A binary data equal to 1 if the setup of operation o of job j is attached (non-

anticipatory), or 0 if this setup is detached (anticipatory).

This parameter can be used to handle the type of setup by Eqs. (6.17) and (6.18)

∀(r,m, o, j, o′, j′)|{(r > 1) ∧ ((o, j) 6= (o′, j′))} (6.17)

ĉ1,m −Bj · To,j,m − S∗o,j,m · Ao,j − Ω · (x1,m,o,j + xr′,m′,o−1,j) + 2Ω ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, j)|{((1,m) 6= (r′,m′)) ∧ (o > 1)} (6.18)

ĉr,m−Bj·To,j,m−So,j,m,o′,j′·Ao,j−Ω·(xr−1,m,o′,j′+xr,m,o,j+xr′,m′,o−1,j)+3Ω ≥ ĉr′,m′+Lo,j ;

6.4. Objective Function in FSJP

Most of papers published in scheduling literature are based on minimization of

single criterion or objective. However, similar to operational constraints, schedul-

ing performance indicators might be varied and versatile in a real-life manufac-

turing scheduling scenario. Hence, in addition to satisfying operational goals

(constraints), an objective function need to appropriately includes more crite-

ria because managers routinely want to identify multiple criteria when assessing

the schedule goodness. On the other hand, several researchers advocated that

scheduling criteria may be conflicting, i.e. trying to increase machine utilization

will results in high flow time. Many other examples can be given. Therefore,

single criterion optimization problems usually fail to solve the problem, because

it formalizes the best decision whose criterion value is not balanced with value

of the constraints. To avoid such a failure, multi-criteria optimization techniques

are used to deal with several objectives simultaneously. They provide an effective

tool to formalize decisions considering different requirements and leading to a

balance of conflicting goals. However, because of complexity and computational
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difficulties, it is desirable to consider few objective terms in mathematical model.

It is important to note that scheduling is related to short-term decisions, and

it is rarely connected with long-term or medium-term strategy. Hence, rather

than selecting long-term or medium -term goals, formalizing of such problems by

specifying the short-term decision results in more efficient solution. One typical

example would be the minimization of material handling distance. It is a typical

assumption in FJSP that material handling distance is ignored because individual

machines are usually close and working parallel in flexible job shop environment.

This objective could be rarely more substantial than fulfilling due dates as a

short-term objective. As result, in this case, there is no need to consider material

handling distance and optimize both objectives simultaneously.

Multi-objective Optimization

Depending on how the different objectives are considered in the model, different

class of multi-objective models can be formulated. The most employed mod-

els in manufacturing scheduling can be categorize in: (1) Weighted combina-

tion of objectives, (2) Lexicographical optimization, (3) Goal programming, (4)

ε − constraint optimization, and (5) Pareto optimization classes. A review and

discussion of last four classes is beyond the scope of this thesis, and we refer the

reader to the literature for more comprehensive treatment.

The general multi-objective optimization problem is defined as follows:

Minimize: F (x) = [F1(x), F2(x), ...., Fl(x)]T

Subject to: gj(x) ≤ 0; j = 1, 2, ......., n (6.19)

where l is the number of objective functions and n is the number of inequality

constraints. x ∈ En is a vector of design variables, and F (x) ∈ El is a vector

of objective functions Fi(x) : En → El. The feasible design space is defined as
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X = {x | gj(x) ≤ 0, j = 1, 2, ..., n}. The feasible criterion space is defined as

Z = {F (x) | x ∈ X}.

In the weighted multi-criteria optimization, all objective functions can transfer

to a single-objective using adding weight to each objective. The problem in Eq.

(6.19) can be simplified to:

H =
l∑

i=1

wiFi(x) (6.20)

If all of the weights are positive, as assumed in this study, then minimizing

Eq. (6.20) gives a sufficient condition for Pareto optimality, which means the

minimum of Eq. (6.20) is always Pareto optimal (Zadeh, 1963). Solution-X is

Pareto optimal if no other solution has a better value than X for at least one

objective and is not worse than X for the remaining objectives.

An example of design space for a multi-objective problem proposed in Marler and

Arora (2010) is shown in Figure 6.3. The problem is consisted of two objective

functions with a (F1, F2) objective vector and (x1, x2) is a vector design variable.

A familiar example of a sum weighted optimization in scheduling is minimization

of weighted combination of the average job flowtime F and schedule makespam

Cmax, i.e. ω × F + (1 − ω) × Cmax, where 0 ≤ ω ≤ 1 (Sivrikaya-Şerifoğlu and

Ulusoy, 1998). The most important feature of this approach is simplicity and

easy to understand because all objectives terms can be transformed to a single-

objective (a weighted sum). In order to guide the search, the objective preference

or weight need to be provided by user prior an optimization run. As result, a

single solution already considers the user’s preference is obtained in each run. A

biggest limitation of this approach is that a priori information must be precise and

must reflect the preferences of the user accurately (Framinan et al., 2014). When

selecting weights for the objectives, one needs to avoid blind use of the method.

It is crucial that weights can accurately represent the relative importance of ob-

jectives. If the weights are selected properly, the objective function can have a

gradient that parallel to the gradient of the preference function. Marler (2009a)
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Figure 6.3: An example of design space in multi-objective optimization (Marler
and Arora, 2010)

discussed the significant of selecting a set of weights because: (1) quantifying

preference usually involves some degree of ambiguity, and (2) preference tends to

be indistinct. Many researchers have developed systematic approaches to select-

ing weights. He provides a substantial look at these methods including rating,

ranking, categorization methods and ratio questioning and paired comparison

methods. In rating approach, as most common methods, one assign independent

values of relative importance to each objective function. Some literature suggest

that weight can be set such that
∑k

i=1 ωi = 1 and ωi ≥ 0.

More importantly, when the objective functions have different range and

magnitudes, one way is to transform the functions so that they do not naturally

dominant (Marler and Arora, 2010). For example the objective functions can be
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divided by their maxima to be normalized. By doing this, all weights are appro-

priately relative to each other and capable to reflect the relative importance of

the objectives instead of the relative magnitudes of the function values.

Marler (2009b) presented and discussed various function transformation schemes

in terms of potential numerical difficulties and in terms of imposed limit on func-

tion values. He evaluates these methods in terms of their capabilities to create

an accurate representation of the Pareto optimal set using the weighted sum ap-

proach.

One of common approaches for function-transformation is the approach used in

Koski (1981); Koski and Silvennoinen (1987) and Rao and Freiheit (1991) which

is provided by Equation 6.21 where Fmin
i = minimum {Fi(x) | x ∈ X} and

Fmax
i = maximum {Fi(x) | x ∈ X}. F trans

i generally has a value between zero

and one, and denominator is guaranteed to be positive. This approach constrains

the upper and lower limits of F trans
i for each objective term i. Consequently it

provides a relatively robust approach.

F trans
i =

Fi(x)− Fmin
i

Fmax
i − Fmin

i

(6.21)

6.5. Material Handling Routes Consideration

In new generation manufacturing systems, shop floor control systems compris-

ing methods used to prioritize, track and report against production orders and

schedule are extensively utilized. It also involves procedures used to evaluate cur-

rent resource status, labor, machine utilization, and other information required

to support the overall planning, scheduling, and costing systems related to shop

floor operations. The relationship between scheduling and shop floor control has

been advocated by several researchers (Tuncel, 2012). Scheduling decisions that

set goals for the shop are influenced by, and affect, the effectiveness of shop floor
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control policies. If scheduling decisions are made poorly, the shop floor control

systems may be inappropriately used. A large portion of the time a job spends

on the shop floor is due to moving, this is clearly the case in distributed layouts

manufacturing systems where machines with similar capabilities are distributed

throughout shop floor. Thereby, an efficient a distributed layout scheduling model

need to be capable of considering material handling distance as a vital perfor-

mance measure for shop floor control function in distributed layout manufacturing

systems. Thus, a key factor in linking scheduling and shop floor control decisions

is the development of a accurate model to obtain a schedule that can also greatly

enhance system performance. Kesen et al. (2010) demonestrated this concept in

the context of virtual cellular manufacturing system where machines with similar

processing abilities are distributed through the facility prior to forming virtual

cells. The authors argue that because the same machine types are not neces-

sarily located close to each other, traveling distance between machines must be

considered. They developed a multi-objective MILP formulation considering two

scheduling objectives, makespan and total traveling distance minimization. A

sum weighted objective function which is the summation of weighted makespan

and weighted total traveling distance values was considered in the model. In

Mak et al. (2007), a mathematical model for virtual cell formation and schedul-

ing problems was developed to minimize the total traveling distance incurred by

parts. They conclude that an efficient manufacturing cells formation could reduce

the cost of production schedule by minimizing material handling cost. Arkat et al.

(2012) have presented an integrated model to concurrently solve the cells forma-

tion (the layout of machines inside cells), cellular layout (the layout of cells in

the shop floor) and cellular scheduling problems with the objective of minimizing

total transportation cost of parts as well as minimising makespan. In this article,

the sum of intracellular and intercellular transportation costs was optimized.
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6.6. Solution Procedure

It is well-known that the FJSP is NP-hard (Garey et al., 1976). Like in FJSP,

the distributed layouts scheduling problem is NP-hard due to the considera-

tion of both routing of jobs and scheduling of operations. According to Byrne

and Chutima (1997), when routing flexibility is embedded into the scheduling

paradigm, the problem solution space is expanded owning to range of options

created by the use of alternative routes. Therefore, the problem is very difficult

to be solved by conventional optimization techniques. However, metaheuristic ap-

proaches are capable of producing reasonably schedules in relatively short time.

Although metaheuristic usually do not offer solutions with a guaranteed distance

to optimality, they can be powerful for most problem sizes. Parallelisation and

cooperative computing are other solutions can be applied to complex scheduling

settings which may be led to better results. In recent years, several metaheuris-

tics such as tabu search, simulated annealing and genetic algorithms have been

employed for FJSP. They can be categorized into two main classes: hierarchical

approach and integrated approach. In the first approach, it takes advantages

of the special structure of the FJSP by decomposing the problem into two sub-

problems: (i) machine assignment, and (ii) operation scheduling decisions to

reduce difficulty. Once the assignment is done, the resulting sequence problem is

JSP (Pezzella et al., 2008a). This approach is adopted by Brandimarte (1993);

Paulli (1995), among the others. The integrated approach can indeed give better

results, as reported in (Vaessens et al., 1996; Dauzère-Pérès and Paulli, 1997;

Hurink et al., 1994). In turn, it increases the computations involved.

As explained in Section 4.4.1, genetic algorithms were discovered as useful

tool for a wide range of combinatorial optimization problems. Recently, GAs

have been extensively used to solve the FJSP (Pezzella et al., 2008a). Some im-

portant and relevant work are Chen et al. (1999a); Jia et al. (2003); Ho and Tay

(2004); Kacem et al. (2002a); Pezzella et al. (2008a) and, in particular, Defersha
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and Chen (2010) that gives the basis of our work. They have proposed all in-

tegrated approaches where solution representation, initial population generation,

reproduction operators and chromosome selection procedure are only different.

An appropriate coding scheme is a determinant of the GA behavior and help to

find near-optimal solution for FJSP. Often, it cannot be easy to find a represen-

tation respects the structure of the search space and reproduction operators. The

solution representation used in GA is typically tailored to the problem domain.

The Section 6.8 reviews some important and relevant work proposed chromosome

representations that have been used by GAs to solve the FJSP efficiently.

6.7. Transportation Constraints

In the most of machine scheduling models, it is assumed that transportation time

is negligible because of existence of an infinite number of transporters for deliver-

ing jobs. Another reason for that is that jobs are assumed to move instantaneously

from one machine to another machine. However, in many real life situations the

time taken to transport jobs can significantly influence the completion time of the

jobs. Considering transportation constraints in the scheduling formulation has

been investigated by several researchers. Basically, two types of transportation

constraints can be taken into account in developing a scheduling model. First,

there is a transportation time such that jobs cannot instantaneously move from

machine to machine. In this situation, transportation time could be modeled

simply as a minimum time lag with the time it takes to carry out jobs between

machines (Mitten, 1959; Langston, 1987). However, sometimes lot streaming is

considered in the model to enable jobs to be split and transported from one

machine to next one. It allows the overlapping performing of jobs on consecu-

tive machines (Defersha and Chen, 2009b; Chan et al., 2004; Dauzere-Peres and

Lasserre, 1997). The second type of transportation constraint concerns to the
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limitation of number of transporters. This means that if all transporters are busy

in moving products, then the job has to wait until one becomes free. As result,

transportation time is not fixed and it depends on both how the scheduling is be-

ing done and the traffic in the transportation (Framinan et al., 2014). In contrast

to conveyorized production system, assuming uninterrupted availability of the

material handling equipment is not reasonable for systems which use AGV-based

material handling (Sabuncuoglu and Hommertzheim, 1992). The most relevant

works in the second type transportation constraint handling are those of Abdel-

maguid et al. (2004); Bilge and Ulusoy (1995); Sabuncuoglu and Hommertzheim

(1992).

6.8. Chromosome Representation

Several research results have shown that a better efficiency is obtained in GA

search when the chromosome representation and its related operators are well

designed to generate feasible solutions and avoid repair heuristic. The solution

might be biased toward a certain region of the search space by using a repair

mechanism, leading to the unbalanced distribution of the solution. Therefore, it

is not always advisable to employ repair algorithm (Coello, 2002).

As previously mentioned, FJSP is a combination of assignment and schedul-

ing decisions. The encoding idea of FJSP was first introduced in Cheng et al.

(1996)’s research work on a tutorial survey of GA for JSP. Chromosome scheme

in Chen et al. (1999a) is comprised of two integer strings with the total number

of operations in length h. As can be seen in Figure 6.4, one string (String-1) en-

codes the assignment of a machine index to each operation such that the value of

the jth position of the string indicates the machine processing the jth operation.

Another string is given in Figure 6.4 as String-2 where the sequence of operations

on each machine is encoded. OMm is an ordered set of operations on machine
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Mm.

O 1 ,1

Enter Text

O 1 ,1 O 1 ,2 O i ,j O m ,h

M O 1 ,1 M O 1 ,2 M O i  ,j M O n ,h

…… ……

…… ……

M1

Enter Text

M 1 M 2 M m

O M1 O M2 O Mm

……

……

String-2: Sequencing encoding

String-1: Machin assignment encoding

Figure 6.4: Chen et al. (1999a)’s encoding scheme for a FJSP.

However, this encoding generates invalid schedules and requires a repair mech-

anism to consider the sequence of operation. Paredis (1992) also splits solution

representation into two parts, the first defines the routing policy and is identi-

cal to machine assignment string in Chen et al. (1999a), and the second encodes

the order of operations on each machine. The String-2 in Figure 6.5 gives the

sequence of any pair of operation in a set of values such that ai,j,i,k is equal to

zero if the first operation (Oi,j) in the paired-combination is processed before the

second operation(Oi,k).
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O 1 ,1

Enter Text

O 1 ,1 O 1 ,2 O i ,j O m ,h

M O 1 ,1 M O 1 ,2 M O i  ,j M O n ,h

…… ……

…… ……

M1

Enter Text

{O 1 ,1   O 1 ,2}

a 1,1,1,3 a n,(h-1), n, h

……

……

String-2: Sequencing encoding

String-1: Machine assignment encoding

{O 1 ,1   O 1 ,3} {O n(h-1)   O nh}

a 1,1,1,1

Figure 6.5: A two-string representation of a FJSP (Paredis, 1992)

Mesghouni et al. (1997) uses a parallel job representation using a matrix where

each row is an ordered series of the operating sequence of a part and each el-

ement of this row including two terms. The first one is the index of machine

performing this operation and second one is the starting time of this operation

if the assignment of this machine on this operation is definitive. One example of

possible chromosome representation is given in Figure 6.6.
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Part 1

Part 2

Part 3

(M1 , 0) (M2 , 0)

(M1 , 0) (M3 , 0) (M3 , 0)

(M2 , 0)

(M4 , 0)(M5 , 0)

Figure 6.6: A parallel jobs representation scheme (Mesghouni et al., 1997).

When a crossover operator applies on parents, the starting time of each operation

on each machine could be invalid, thus, the children need a repair mechanism

to recalculate the starting time for all operation. Consequently, the decoding

complexity leads to computational difficulty in order to obtain even near-optimal

solutions.

Kacem et al. (2002a) uses an assignment table representation that combines

both routing and sequencing information. The table representes the schedule in

table S = (Si,k,j). If the Si,k,j = 0 it indicates that the kth operation of job i is not

performed on machine j. In case Mm (machine index) is assigned for operation

i, j, then Si,k,j is filled with pair (si,k, ci,k) where si,k is the starting time and ci,k

is the completion time. One example of chromosome representation for small size

problem is given in Figure 6.7.
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M1 M2 M3 M4

J1

J2

J3

J4

O 1, 1

O 2, 1

O 3, 1

O 4, 1

O 1, 2

O 2, 2

O 3, 2

O 1, 3

O 1, 4

O 2, 4

O 3, 4

O 4, 4

1 , 4

4 , 7

7 , 10

5 , 9

9 , 14

1 , 5

3 , 7

1 , 3

7 , 14

1 , 10

10 , 15

14 , 16

0 0 0

000

0 0 0

0 0 0

0 0 0

000

0 0 0

0

0 0 0

00

0 0 0

000

0 0 0

Figure 6.7: An example of table representation scheme proposed in (Kacem et al.,

2002a)

Compared to those described previously, this representation is more efficient since

applying crossover and mutation never generate invalid schedules. The main

disadvantages of this representation is that each assignment table must necessarily

encode all machine set, thus, there are redundant assignments in the table leading

to computational complexity. Ho et al. (2007) decodes solutions by using two
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strings which is given in Figure 6.8. In the left hand side segment, the operation

order is described while the right hand side segment encodes machine assignment

in an array of binary values. By reading the data from left to right and increasing

operation index of each job, a feasible schedule is always obtained from right hand

side segment. For example, the operation sequence 2 − 2 − 1 − 1 − 2 could be

translated into a list of ordered operations: O2,1−O2,2−O1,1−O1,2−O2,3 where

Oi,j denotes ith operation in job j. In the left hand side, a machine among eligible

machines which can perform an operation must be selected to get unit value. This

solution representation is clear and direct, however, the binary coding resulting

in increased consumption of memory space and computational time, especially in

large size problem (Liu et al., 2007).

2 1 2 2 1 1

O 1, 2      O 1,  1      O 2 ,2       O 3 , 2    O 2 , 1       O 3 ,1  

0 1 1 0 0 1 1 0 1 0 1

M1      M2        M1          M2             M3            M3           M2       M3       M3            M2             M3

  O
 1

, 1

  O
 2

, 1

  O
 3

, 1

  O
 1

, 2

  O
 2

, 2

  O
 3

, 2

Figure 6.8: An example of encoding scheme proposed in (Ho et al., 2007).

The chromosome representation in Pezzella et al. (2008a) is composed of several

genes. Each gene encodes: (i) the assignment of operations to the machines,

and (ii) the sequence of operations by the order in which they appear in the

chromosome. Figure 6.9, for example, illustrates the chromosomal encoding of

the initial solution for the small example given in Table 6.1. It is clear that the

sequencing is feasible if it satisfies the precedence constraints among operations of

the same job. The length of the string is equal to the total number of operations.
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Table 6.1: An small example of assignment and sequencing solution

Machine Sequence of Operations
Run1 Run2 Run3 Run4

M1 J3,O2 J4,O2
M2 J1,O1 J1,O2 J2,O2
M3 J2,O1 J3,O2 J1,O4
M4 J4,O1 J1,O3

(2,1,3)(3,1,1) (4,1,4) (1,1,2) (2,1,3) (3,1,1) (4,1,4) (1,1,2)(2,1,3) (2,1,3)

(j ,o, m)

Figure 6.9: An example of encoding scheme proposed in (Pezzella et al., 2008a).

Zhang et al. (2011) improves the solution representation in (Ho et al., 2007) by

employing an array of integer value to represent machine selection. As can be

seen from the right hand side segment of chromosome representation in Figure

6.10, the length of array is the sum of all operations of all jobs. Instead of using

binary value, Mm takes index of one of eligible machine to process a particular

operation. Another segment (operation sequence) is identical to that proposed in

(Ho et al., 2007)’s work. Mm takes the value in the array of alternative machine

set which can process a particular operation. For instance, M1 is selected to

process operation O1,2 since the value in the array of alternative machine set is 1.
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O 1, 1       O 1, 2       O 2, 1      O 2, 2      O 2, 3       O 3, 1

M1 M5

M1 M3 M5 M6

1 2

3 1 4 2 1 4

1 2 3 4

Figure 6.10: One possible encoding of the Machine Selection in Zhang et al.

(2011).

Based on the analysis of the approach from the above literature, we adopt chro-

mosome representation in Pezzella et al. (2008a) to reduce the cost of decoding.

Because it benefits simple structure and encoding rule, and it requires no repair

mechanism after recombination.
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Mathematical Model and

Solution Procedure

7.1. Introduction

A mathematical model and solution procedure is described in this Chapter. The

aim of the model is to determine an optimum schedule for a manufacturing sys-

tem with distributed layout in a way that total transportation cost of parts and

makespan are minimized. In order to efficiently solve the developed model, we

also describe Multi Objective Genetic Algorithm (MOGA) in this Chapter.

7.2. Mathematical Model

The mathematical formulation for scheduling of manufacturing systems with dis-

tributed layouts is developed such that machine assignment and scheduling are

simultaneously examined. The model is a multi-objective mixed integer program-

ming model.
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Assumptions

This model is developed under the following assumptions:

1. jobs are independent and no priorities are assigned.

2. Each job has no due date.

3. Each job can be performed by only one machine at time.

4. Recycling is not allowed in the model which means that each job can only

visit a machine type at most once.

5. Jobs are produced in batch and batch sizes are known.

6. Transportation time is ignored.

7. Batch splitting is not allowed in the model.

8. Each job can be performed by only one machine at time.

9. The processing sequence of operations of each part is predefined and fixed.

10. The operating times for all operations on different machine are known.

11. Preemption (cancelation of job at a time) is not allowed.

12. All the machines that belong to a machine type are identical.

13. Machines with same factuality are located to different areas in the shop

floor and they do not work parallel.

14. Each machine can only perform one operation at time.

15. The capabilities of each machine type are known and constant over time.

16. Breakdown are not considered.

17. No blocking occurs due to infinite buffer space.
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Scheduling Objectives

As described in Section 6.4, multiple criteria should be considered in the objec-

tive function. However it is not possible to explicitly consider all criteria in the

model due to the complexity and computational time required. In this research,

objectives are limited to those which are also related the nature of manufac-

turing with distributed layout discussed in Chapter 6. Scheduling objective is

weighted makespan of the schedule and total traveling distance minimization.

One goal of the problem is to find a schedule of operations on machines (start-

ing time of operation) which minimize the overall finishing time or makespan.

Minimizing makespan yields to a good utilization of machines. Another one is

to find assignment of jobs to the machines such that total distance traveled by

parts is minimized. A weighted optimization technique is used to deal with these

objectives simultaneously. Material handling cost is cost of transferring parts

between machines. Unlike the flexible job shop environments, the same machine

types are not closely located in the distrusted layouts. Because in this manu-

facturing environment machines that have the similar processing capabilities are

located different areas in the shop floor to enhance the system’s flexibility and

efficiency. Therefore, traveling distance between machines must be considered in

the scheduling to enhance system performance. The parts movements decrease

the efficiency in distributed layout manufacturing system by increasing material

handling requirements and flow time and complicating production control. These

two scheduling criteria are interrelated and could be conflicting. The makespan

can be minimized by assigning jobs to those machines are evenly distributed in

the shop floor at the expenses of increased material handling cost.
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Scheduling Decisions

The two decisions must be made during the design process: (1) the assignment of

operations of each part type to machine types, and (2) the job start time at each

machine and makespan or completion time of the last job to leave the system.

System and Input Parameters

The input parameter values must be supplied

1. Jobs: Independent jobs need to be scheduled in the system.

2. Operation sequence: An ordered and fixed list of operations that form a

job.

3. Operating time: Time required by a machine to perform an operation on

job.

4. Machine type capability: The ability of a machine type to perform

operations.

5. Machine distance: Distances between each pair of machine.

6. Transportation cost: Unit transportation cost for each job to be carried

between two machines.

7. Available machines: The available machines are the set of machines be-

long to different machine types.

Constraints

The following constraints must be imposed in the model.
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1. A setup time which is sequence dependent so that for every machine there

is a setup time that must precede the start of a given task that depends

on both the job to be processed and the job that immediately precedes it.

This time must be specified as input parameter.

2. Lag time must be specified at the beginning of the schedule. An operation

of a particular job may not be started on machine until at least certain time

(lag time) has elapsed since completing the previous operation of the job.

3. Each machine is not necessarily available at time zero. Machines release

date must be specified to show when machines are released from previous

work and can start processing.

Notation

Indices:

T Number of equal planning periods where planning periods are indexed

by t = 1, 2, ..., T .

P Number of jobs where jobs are indexed by j = 1, 2, ..., J .

Oj Number of operations required by a job p where operations are in-

dexed by o = 1, 2, ..., Oj.

M Number of machines in the manufacturing facility where machines

are indexed by m = 1, 2, ...,M .

R Number of production runs of machine m where production runs are

indexed by r = 1, 2, ..., R.

Input Parameters:
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To,j,m Unit processing time for operation o of job j on machine m.

Bo,j Bach size of job j

Po,j,m A binary datum which equal to 1 if operation o of job j can be

processed on machine m; 0 otherwise.

Ao,j A binary datum which equal to 1 if the setup of operation o of job j

is attached (non-anticipatory), or 0 if this setup is detached (antici-

patory).

Em,m′ Material handling distance between locations m and m′.

Fj Material handling cost per unit distance for one unit of job j.

Dm, Release date of machine m when it will be available for processing

jobs of the current schedule

Lo,j Lag time for performing operation o of job j from the completion

time of operation o− 1.

So,j,m,o′,j Sequence-dependent set time for the setup of the machine m to per-

form operation o′ if this operation is the last operation processed on

machine m.

S∗o,j,m Setup time for the setup of the machine m to perform operation o if

this operation is the first operation processed on machine m.

Wq weight of the qth objective function j.

Ω Large positive number.

Decision Variables:

co,j,m Completion time of operation o of job j on machine m;
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ĉr,m Completion time of the rth run of machine m;

cM Makespan of the schedule

Binary Variables:

xr,m,o,j Binary variable which takes the value 1 if the rth run on machine m

is for operation o of job j, 0 otherwise;

zr,m A binary variable which equal to 1 if the rth potential run of machine

m has been assigned to an operation, 0 otherwise;

do,j Distance between the machines where operations o and o + 1 of job

j are processed

Multi-objective Mixed Integer Linear Program-

ming Model

Following the assumptions, scheduling objectives,constraints and using the nota-

tion given above, the proposed model is presented below.

Minimize:

Objective = α · cM + (1− α) ·
J∑

j=1

Oj∑
o=1

(Fj · do,j) (7.1)

Subject to:

cM ≥ co,j,m ; ∀(o, j,m) (7.2)

ĉr,m ≥ co,j,m + Ω · xr,m,o,j − Ω ; ∀(r,m, o, j) (7.3)

ĉr,m ≤ co,j,m − Ω · xr,m,o,j + Ω ; ∀(r,m, o, j) (7.4)

ĉ1,m −Bj · To,j,m − S∗o,j,m − Ω · x1,m,o,j + Ω ≥ Dm ; ∀(m, o, j) (7.5)
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ĉr,m −Bj · To,j,m − So,j,m,o′,j′ − Ω · (xr,m,o,j + xr−1,m,o′,j′) + 2Ω ≥ ĉr−1,m ;

∀(r,m, o, j, o′, j′)|{(r > 1) ∧ ((o, j) 6= (o′, j′))} (7.6)

ĉ1,m −Bj · To,j,m − S∗o,j,m · Ao,j − Ω · (x1,m,o,j + xr′,m′,o−1,j) + 2Ω ≥ ĉr′,m′ + Lo,j ;

∀(m, r′,m′, o, j)|{((1,m) 6= (r′,m′)) ∧ (o > 1)} (7.7)

ĉr,m−Bj·To,j,m−So,j,m,o′,j′·Ao,j−Ω·(xr−1,m,o′,j′+xr,m,o,j+xr′,m′,o−1,j)+3Ω ≥ ĉr′,m′+Lo,j ;

∀(r,m, r′,m′, o, j, o′, j′)|{(r > 1) ∧ (o > 1) ∧ (r,m) 6= (r′,m′) ∧ (o, j) 6= (o′, j′)}

(7.8)

xr,m,o,j ≤ Po,j,m ; ∀(r,m, i) (7.9)

M∑
m=1

Rm∑
r=1

xr,m,o,j = 1 ; ∀(o, j) (7.10)

J∑
j=1

Oj∑
o=1

xr,m,o,j = zr,m ; ∀(r,m, i) (7.11)

zr+1,m ≤ zr,m ; ∀(r,m, j) (7.12)

xr′,m,o′,j ≤ 1− xr,m,o,j ; ∀(r, r′m, o, o′j)|{(o′ > o) ∧ (r′ < r)} (7.13)

xr′,m,o′,j ≤ 1− xr,m,o,j ; ∀(r, r′m, o, o′j)|{(o′ < o) ∧ (r′ > r)} (7.14)

xr,m,o,j, and zr,m are binary (7.15)

The constraint in Eq. (7.2) ensures that makespan value of the system must

be greater than or equal the completion times of all the operations. Constraints

Eqs. (7.3) and (7.4) dictate that if xr,m,o,j is equal to 1 the oth operation of

job j and rth run of machine m (q, r,m) must start at the same time. The

constraint in Eq. (7.5) guarantees that the starting time of the setup for the

first run (r=1) of machine m need to be greater than the release date Dm of the

machine. Constraint Eq. (7.6) is to restrict that the setup of any production run

r > 1 of a given machine cannot start before the completion time of run r − 1

of that machine. For any pair machine(m,m′), constraint in Eq. (7.7) equate

that the setup or the actual processing of the first run on machine m cannot
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start before the completion of run r′ of machine m′ plus the lag time Lo,j.This

constraint is applied if run r′ of machine m′ is assigned to operation o − 1 of

job j and the first run of machine m is assigned to operation o of this same job.

Constraint in Eq. (7.8) is similar to Eq. (7.7), except that Eq. (7.8) is for run

r > 1 of machine m where setup time depends on the operation assigned to run

r− 1. Eq. (7.9) permits the processing of each operation on eligible machine.Eq.

(7.10) ensures that each operation can be processed in at most one run of eligible

machine.Eq. (7.11) restrict that on each run of any machine one operation only

can be assigned. (r + 1)th order on a machine can be assigned to an operation if

and only if machine order r is already assigned(Eq. (7.12). Constraint Eq. (7.13)

enforces that if operation o of job j is assigned to a production run r of machine

m, any upcoming operation o′ of job j cannot be assigned to any earlier run r′ of

machine m. Constraint in Eq. (7.14) is symmetric to constraint Eq. (7.13).

7.3. Multi Objective Genetic Algorithm

As noted in Section 6.6, it is proven that most of the scheduling problems are

NP-hard. The proposed scheduling problem applied in manufacturing with dis-

tributed layout is even more complex due to the simultaneous difficulties of NP-

hard complexity and of multi-objective framework. Therefore, heuristic algorithm

must be used for large problems. In this study, a Multi Objective Genetic Algo-

rithm (MOGA) is proposed to obtain a near optimal schedule in a manufacturing

system with distributed layout. The objective criteria considered are minimizing

makespan and minimizing total material handling cost. A single-objective genetic

algorithm is extended to solve multi-objective optimization problem by combining

the objectives into a scalar objective function. The weights used for combining

multiple objectives into a scalar function are randomly specified for each selection

to enable multidirectional search. A sum weighted objective function which is the
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summation of weighted makespan and weighted total traveling distance values is

used to transfer these two objectives to a single- objective function. The following

sections deal with detailed MOGA including chromosome representation, genetic

operators and fitness function.

7.3.1. Chromosome Representation

As discussed in Section 6.8, a better efficiency is achieved in GA search if the chro-

mosome and its related operators are well designed to generate feasible solutions

and avoid repair heuristic. Because the problem is a combination of assignment

and scheduling decisions and based on discussion in Section 6.8, we adopt the so-

lution representation from the work of Pezzella et al. (2008a); Defersha and Chen

(2010) in our study. The chromosome scheme comprises of a string with the total

number of operations in length. Each gene is described by a triplet (j, o,m) where

m can assume the index of an alternative machine on which an operation o of job

j can be assigned. In order to always have a feasible schedule, o must be defined

as the progressive number of operation within job j. The order of the jobs in the

machines is represented by the sequence of the genes in the string. A pictorial

correspondence of this solution representation is given in Figure 7.1 where the

problem instance of Table 7.1 is considered.

Table 7.1: An small example of the operation-machine assignment.

Runs
Machines Run1 Run2 Run3

M1 (j3, o1) (j1, o2)
M2 (j1, o2) (j3, o2)
M3 (j2, o2) (j1, o3)
M4 (j2, o1) (j3, o3) (j2, o3)

In this Figure, production runs of machine m = 4 are illustrated as example.
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The proposed encoding scheme seems to represent some permutations of oper-

ations. However, such permutations do not always represent feasible schedules

since the precedence relationships among operations must be kept to be a feasi-

ble schedule. In genetic algorithms, it is desirable to initially have a population

that consists of feasible chromosomes before the application of genetic operators

(Lee et al., 1998). To construct such an initial population, the following proce-

dure is developed which creates chromosomes preserving the imposed precedence

relationships by using the information of the precedence relation matrix.

(2, 1, 4) (2, 2, 3) (1, 1, 2) (3, 1, 1) (3, 2, 2) (1, 2, 1) (1, 3, 3) (3, 3, 4) (2, 3, 4)

( j, o, m )

r1, m4 r2, m4 r3, m4

Figure 7.1: Choromosome encoding

7.3.2. Genetic Operators

In this study, we propose a k-way tournament selection scheme to select k chro-

mosomes from population and choose one with highest fitness for reproduction.

The process is repeated with replacement until a desired size of mating pool has

been formed. This method is widely used in GA applications due to its efficiency

and coding simplicity. Crossover operators are applied directly on the pairs of

parent chromosomes identified from the selection step to give birth one or more

offspring. The algorithm incorporates two problem specific crossover operators,

assignment and sequencing operators. In the assignment operator, some machine
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assignments alleles m from each parent are arbitrarily chosen and then they repro-

duce offspring by exchanging this assignment of a subset of operations between

the two parents. Steps of applying the assignment crossover operator for each

pair of parents are as follows:

Step 1. Randomly select some machine assignment allele m for each parent (As

indicated by asterisks in Figure 7.2).

Step 2. Produce two offspring by copying all the genetic material of the par-

ents to their respective child except the assignment property of the

randomly selected operations.

Step 3. For completing the unassigned positions on the operation assignment

of the first offspring, Place corresponding operation assignment of the

second parent.

Step 4. For completing the unassigned positions on the operation assignment

of the second offspring, place corresponding operation assignment of

the first parent.

The procedure is illustrated in Figure 7.2. This operator is applied on each pair

of parents with probability ρ1.
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(2, 1, 4*)Parent 1 (2, 2, 3) (1, 1, 2) (3, 1, 1*) (3, 2 , 2) (1, 2, 1*) (1, 3, 3) (3, 3, 4) (2, 3, 4)

(3, 1, 4*)Parent 2 (2, 1, 3) (1, 1, 2) (1, 2 , 1) (1, 3, 4*) (2, 2, 2) (3, 2, 1) (3, 3, 1) (2, 3, 4)

(2, 1, 3)Child 1 (2, 2, 3) (1, 1, 2) (3, 1, 4) (3, 2, 2) (1, 2, 1) (1, 3, 3) (3, 3, 4) (2,3, 4)

(3, 1, 1)Child 2 (2, 1, 4) (1, 1, 2) (1, 2 , 1) (1, 3,  4) (2, 2, 2) (3, 2, 1) (3, 3 ,1) (2, 3, 4)

Step 1

Child 1

Step 3

Step 2

Step 4

Child 2

(2, 1,  *) (2, 2, 3) (1, 1, 2) (3, 1,  *) (3, 2 , 2) (1, 2,  *) (1, 3, 3) (3, 3, 4) (2, 3, 4)

(3, 1,  *) (2, 1, 3) (1, 1, 2) (1, 2 , 1) (1, 3, *) (2, 2, 2) (3, 2, 1) (3, 3, 1) (2, 3, 4)

An example of operation assignment 
exchange

Figure 7.2: Assignment crossover

Sequencing crossover operator only changes the order of the operations in

the parent chromosomes and the operation assignment is preserved in the off-

spring. The precedence preserving order-based crossover (POX) of Kacem et al.

(2002a) is used in the proposed algorithm. This operator respects the precedence

constraint among operations of the same job. As discussed in Section 6.8, a better

efficiency is obtained in GA search when operators are well designed to generate

feasible solutions and avoid repair heuristic. Hence, it is probable to design oper-

ators such that precedence constraints are not violated. Steps of the Sequencing

crossover for each pair of parents are performed as follows:

Step 1. Randomly select one operation for first parent.
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Step 2. Copy all operations of the job to which the selected operation belongs

to its child.

Step 3. Complete the offspring with the remaining operations, in the same

order as they appear in the second parent, while maintaining the as-

signment property of the operations in the first parent.

The procedure is shown in Figure 7.3. This operator is applied on each pair of

parents with probability ρ2.

(2, 1, 4)Parent 1 (2, 2, 3) (1, 1, 2) (3, 1*, 1) (3, 2 , 2) (1, 2, 2) (1, 3, 3) (3, 3, 4) (2, 3, 4)

(3, 1, 4)Parent 2 (2, 1, 3) (1, 1, 2) (1, 2 , 1) (1, 3*, 4) (2, 2, 2) (3, 2, 1) (3, 3, 1) (2, 3, 4)

(2, 1, 4)Child 1 (1, 1, 2) (1, 2, 2) (3, 1, 1) (3, 2, 2) (1, 3 , 3) (2, 2, 3) (3, 3, 4) (2, 3 , 4)

(2, 1, 3)Child 2 (2, 2, 2) (1, 1, 2) (1, 2 , 1) (1, 3,  4) (3, 1, 4) (3, 2, 1) (3, 3 , 1) (2, 3, 4)

Step 1

Child 1

Step 3

Step 2

Step 4

Child 2

(3, 1, 1) (3, 2 , 2) (3, 3, 4)

(1, 1, 2) (1, 2 , 1) (1, 3, 4)

* Arbitrary selected operation
An example of 

completing a child 

Figure 7.3: Sequencing crossover

Unlike the crossover operators, the mutation operators applied on each chro-

mosome to reverse a selected chromosome bit pattern. By this concept, lost or
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disturbing genetic information is recovered. In contrast to crossovers aim to ex-

ploit the current solution to create better fitted ones, mutations are considered

to assist whole solution space exploration. We propose Assignment mutation to

alter few allele m of a given individual chromosome in probability ρ3. Second

mutation operator, intelligent mutation, is used to randomly select an operation

on the machine with maximum workload and assign it to a eligible machine with

minimum workload. This mutation is applied with ρ4. Last mutation operator

is based on precedence preserving shift mutation (PPS) operators of (Lee et al.,

1998). PPS choose an operation from individual parent and moves it into another

position while respecting of the precedence constraints for that operation. Figure

shows an example of applying PPS operator. This operator is applied with a

small probability ρ5.

Step 1. Set l = 1

Step 2. Set the values of indices j, o and m as obtained from the gene at

location l of the chromosome under consideration.

Step 3. Calculate the completion time co,j,m

7.3.3. Fitness Evaluation

The fitness of a solution is calculated by combining the two objectives into a

weighted sum. As noted in Section 6.4, the objective values on the two criteria

have to be normalized before they are summed because they are of different range

and magnitudes. Let CM(s) be the makespan of the sth chromosome. The scaled

makespan Ctrans
M (s) of a solution s is as follows:

Ctrans
M (s) =


CM (s) − Cmin

M (s)

Cmax
M (s) − Cmin

M (s)
; If CM(s) 6= Cmin

M (s)

0 ; Otherwise

(7.16)
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where Cmin
M (s) = min{CM(s)}; Cmax

M (s) = max{CM(s)}; For all 1 ≤ s ≤ K

(7.17)

Where K is the total number of solution candidates to be evaluated in a genera-

tion. With the same method, we can normalize total traveling distance for each

solution s,as given in Eqs. (7.18) and (7.19).

MHCosttrans(s) =


MHCost(s) − MHCostmin(s)

MHCostmax(s) − MHCostmin(s)
; If MHCost(s) 6= MHCostmin(s)

0 ; Otherwise

(7.18)

where MHCostmin(s) = min{MHCost(s)}; MHCostmax(s) = max{MHCost(s)};

For all 1 ≤ s ≤ K .

(7.19)

During scaling fitness value for genes within a population, it is possible that both

MHCosttrans and Ctrans
M (s) equal to zero for a particular gene and that gives ob-

jective function of zero. This situation arises where MHCost(s) = MHCostmin

and CM(s) = Cmin
M (s) for a particular gene. This individual can be excluded from

the existing population and included to a new population will create in the next

generation. By doing that, one can maintain the individual solution with good

quality in search process and also avoid algorithm stagnation.

After scaling, the two objectives all take values from the range of [0, 1]. In or-

der to guide the genetic and local search to the most promising area of search
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space, makespan is given somewhat more weight because it is typically the most

important criterion in practical production environments.

7.3.4. Determination of the Staring and Completion Times

of Jobs

In order to determine the starting and completion times of jobs for an individual

solution, one need to obtain assignment and sequencing information from the

chromosome. By doing it, a makespan can be calculated and used as a measure

of this chromosome fitness. To properly calculate the makespan, all attributes

incorporated in the model need to be taken into account. These are sequence-

dependent setup, machine release date, lag time and the nature of the setup

(anticipatory and non-anticipatory). The decoding procedure is consisted of five

steps based on the sequencing and assignment information obtained from gene of

the chromosome under consideration.

Step 1. Set l = 1

Step 2. Set the values of indices j, o and m as obtained from the gene at

location l of the chromosome under consideration.

Step 3. Calculate the completion time co,j,m

• If (1) operation o of job j is the first operation assigned on machine

m and (2) o = 1, then co,j,m = Dm + S∗o,j,m +Bj · To,j,m.

• If (1) operation o of job j is the first operation assigned on machine

m, (2) o > 1, and (3) operation o-1 is assigned on machine m′,

then co,j,m = max{Dm +(1−Ao,j) ·S∗o,j,m; co−1,j,m′ +Lo,j}+Bj×

To,j,m + Ao,j · S∗o,j,m.

• If (1) operation o′ of job j′ is the operation to be processed imme-

diately before operation o of job j on machine m and (2) o = 1,
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then co,j,m = co′,j′,m + So,j,m,o′,j′ +Bj · To,j,m.

• If (1) operation o′ of job j′ is the operation to be processed im-

mediately before operation o of job j on machine m, (2) o > 1,

and (3) operation o-1 is assigned on machine m′, then co,j,m =

max{co′,j′,m + (1−Ao,j) ·So,j,m,o′,j′ ; co−1,j,m′ +Lo,j}+Bj ·To,j,m +

Ao,j · So,j,m,o′,j′ .

Step 4. If l is less than the total number of operations, increase its value by 1

and go to Step 2; otherwise go to Step 5

Step 5. Calculate the makespan of the schedule as cmax = max{co,j,m; ∀(o, j,m)}

and set the fitness of the individual under consideration to cmax.
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Numerical Examples: Scheduling

Since literature does not yet exist for an integrated model that considers simulta-

neously machine assignment and scheduling in manufacturing systems with dis-

tributed layouts, there is no comparable data for us to use. Therefore, we gener-

ated several data sets to illustrate the problem and demonstrate the performance

of the proposed solution procedure. A small problem instance (id : Small20×22)

consisting of the processing of 25 jobs in a manufacturing with a distributed lay-

out comprised of 22 machines. The processing data for Problem id : Small20×22

is given in Table 8.1 and Table 8.3. Table 8.1 contains the batch size, material

handling cost per unit distance for one unit of job j, the number of operations

for each job, the nature of setup (attached or detached) and lag time. Similar

to Problem 1 which is given in Section 5.1, we considered a system composed of

20 resource elements and 22 machine tools with four different levels of sharing

processing capabilities (REs) which is shown in Table 8.2. Recall that Case 1

represents a situation in which a particular RE is available on several machine

tools; Case 4 represents a situation where most of the machines have unique ca-

pabilities; and Cases 2 and 3 lie in between the two extremes. Table 8.3 provides

indices of the alternative resource elements (REs) available in machines, and cor-

responding processing times for a layout with Case 1.
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Table 8.1: Lag time and the nature of setup for the parts in Problem id :
Small20× 22

Operation data (Ao,j , Lo,j)
Job Bj F o = 1 o = 2 o = 3 o = 4 o = 5
1 210 2 (1, 0) (0, 10)
2 200 3 (1, 0) (1, 10) (1, 10)
3 170 2 (1, 0) (0, 90) (1, 10) (1, 10)
4 220 1 (1, 0) (1, 10)
5 160 2 (1, 0) (1, 10)
6 200 2 (1, 0) (1, 10)
7 180 2 (1, 0) (0, 10) (1, 90) (0, 10)
8 150 1 (1, 0) (1, 10) (1, 10) (1, 10) (1, 10)
9 160 3 (1, 0) (0, 10) (1, 10) (1, 10) (1, 10)
10 170 1 (1, 0) (1, 10) (0, 10) (1, 10)
11 190 3 (1, 0) (1, 10) (1, 10)
12 140 2 (1, 0) (0, 10) (0, 10)
13 230 3 (1, 0) (1, 10) (1, 90)
14 210 2 (1, 0) (1, 10) (1, 10) (1, 90)
15 210 3 (1, 0) (1, 10) (1, 10) (1, 90)
16 160 2 (1, 0) (1, 10) (1, 10) (1, 90)
17 180 3 (1, 0) (1, 50) (1, 10)
18 210 3 (1, 0) (1, 10)
19 150 1 (1, 0) (1, 10) (0, 10) (1, 90) (1, 10)
20 180 2 (1, 0) (1, 10) (1, 10)
21 140 2 (1, 0) (1, 10) (1, 90) (1, 10)
22 160 3 (1, 0) (0, 10) (1, 10) (1, 10)
23 190 1 (0, 0) (0, 10) (1, 10) (0, 10)
24 210 3 (0, 0) (0, 10) (0, 10) (1, 10)
25 200 2 (1, 0) (1, 10) (1, 10)

We also proposed an optimized distributed layout depicted in Figure 8.1. The

machine configuration is obtained from solving the Problem id : Small20 × 22

with Case 1 using the developed model and solution procedure in Part I of this

thesis. The material handling distances between each pair of locations are shown

in Table A.6 in the Appendix ??.
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Table 8.2: Resource Elements data in Problem id : Small20× 22

Resource Indices of machines having
Element resource element r

r Case 1 Case 2 Case 3 Case 4
1 (1, 2, 3, 4, 5, 6) (1, 2, 4, 6) (1, 6) (1)
2 (1, 2, 3, 4, 5, 6) (1, 3, 5) (2, 5) (2)
3 (1, 2, 3, 4, 5, 6) (2, 4, 6) (3) (3)
4 (1, 2, 3, 4, 5, 6) (1, 3, 5, 6) (4) (4)
5 (7, 8, 9, 10) (7, 8, 10) (8) (5)
6 (7, 8, 9, 10) (9, 10) (7, 10) (6)
7 (7, 8, 9, 10) (7, 8, 10) (9) (7)
8 (7, 8, 9, 10) (8, 9) (7, 10) (8)
9 (11, 12, 13, 14, 15, 16) (11, 14, 15) (14, 15) (9)
10 (11, 12, 13, 14, 15, 16) (11, 13, 16) (11, 16) (10)
11 (11, 12, 13, 14, 15, 16) (12, 14, 16) (16) (11)
12 (11, 12, 13, 14, 15, 16) (11, 13, 15) (12, 13) (12)
13 (11, 12, 13, 14, 15, 16) (11, 12, 14) (11, 15, 16) (13)
14 (17, 18, 19) (18, 19) (18) (14)
15 (17, 18, 19) (17, 19) (17) (15)
16 (17, 18, 19) (18, 19) (19) (16)
17 (20, 21, 22) (20, 22) (22) (17)
18 (20, 21, 22) (21, 22) (20) (18, 21)
19 (20, 21, 22) (20, 21) (21) (19, 22)
20 (20, 21, 22) (20, 22) (20, 22) (20)
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Figure 8.1: An optimized distributed layout obtained from solving Problem id :

Small20× 22 - dimensions are in unit distance
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In our experiments, we also consider two others layout sizes having 45 and 75

machines with 34 and 56 resource elements (Problem id : Mediume45 × 34 and

Problem id : Large75× 56).

In order to examine the impact of transportation time and proposed algo-

rithm’s efficiency, several numbers of jobs and maximum number of operation for

each job were considered for both size of above mentioned layouts.

Multi Objective Genetic Algorithm described in Section 7.3 was coded in C++

programming language using MPI message-passing library for communication.

The code was tested in a parallel computation environment composed of 872

waiters containing each one Pentium 4 processor (3.2 GHz, 2GB RAM).

We conducted numerical experiments to answer the following three ques-

tions:

1. How can decision makers trade-off between makespan and martial handling

cost?

2. How much cost saving can be realized by introducing material handling cost

in scheduling of a system with distributed layout?

3. Is that desirable to explicitly incorporate transportation time in the model

or can it influence the completion time of the jobs?

4. How the levels of sharing processing capabilities (Case1 to 4) can affect

the cost saving resulting from incorporating material handling cost in the

scheduling?

5. How good is the quality of the solution we obtain, and how is it affected

by problem characteristics, such as number of jobs and maximum number

of operation for each job?
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8.1. Trade-off between Makespan and Martial

Handling Cost

Figure 8.2 quantifies the trade-off between makespan performance and material

handling performance in solving Problem id : Small20× 22 for various weighting

parameter (α) from 0 to 1 in the interval of 0.1. When α = 1, only the makespan

objective is considered and when α = 0, only the material handling cost objec-

tive is accounted. It is obvious that the makespan decreases when the weighting

parameter increases from 0 to 1. However, material handling cost (labeled MH

Cost) increases much more slowly when weighting parameter increase from from

0 to 1. This means that for higher alpha values, the shorter makespan obtained,

while the material handling performance advantage tends to disappear. There-

fore, the choice of a scheduling policy is a key decision that greatly affects model’s

ability to meet pragmatic constraints. Two curves meet each other at one point

where two conflicting objective functions are minimised. No other solution has

better value than this solution for makespan and is not worse than the solution

for the material handling cost. This means that the solution is global Pareto

optimal.
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Figure 8.2: Trade-off between makespan and martial handling cost in Problem

id : Small20× 22

Recall that the solutions that are non-dominated within the entire search space

are denoted as Pareto optimal solution and constitute the Pareto optimal set.

This set is also known as Pareto optimal front. Pareto optimal front in 11 separate

runs for Problem id : Small20× 22 is also shown in Figure 8.3.

8.2. The Effect of Overlapping Capabilities

In order to examine the role of levels of sharing processing capabilities on material

handing cost in optimized schedule, Problem id : Small20×22 with four different

Cases and 25 parts are considered. The weights used for combining multiple

objectives into a scalar fitness function (α) are arbitrarily selected such that

0 ≤ α ≤ 1. Figure 8.4 indicates that material handling cost is optimized in greater
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Figure 8.3: Pareto optimal front for Problem id : Small20× 22 with various (α)
from 0 to 1

extend in case 1 and 2 compared to case 3 and 4. The obtained result supports

the idea that Case 1 and 2 representing systems with more highly overlapping

machine capabilities have more potential to be optimized than other Cases.

8.3. Scheduling in Distributed versus Functional

Layout

The aim of this Section is to illustrate the greater effectiveness of incorporat-

ing material handling cost in scheduling of a manufacturing system with dis-

tributed layout compared with functional layout where machines are aggregated

in shops by the nature of skills and technological processes involved. The Prob-

lem id : Small20 × 22 with Case 1 was solved to optimize simultaneously both
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Figure 8.4: A comparison of material handelig cost for all Cases 1-4 in optimized
solution

makespan and material handling cost. With assigning a set of weight values

(α) ranging between 0 and 1 to makespan objective, several optimized solution

were obtained such that material handling cost optimized ingreater extend while

weight value decreases from 1 to 0. Figure 8.5 shows that material handling cost

drastically decreases in distributed layout scheduling with assigning α from 1 to

0. In contrast, in the functional layout scheduling, optimization leads to mild de-

crease in material handling cost with a same assigned set of weight values. This

difference is mainly related to separation of machines in shop floor in distributed

layout and thus increases total traveling distance. The result shows the impor-

tance of incorporating material handling cost into objective function in order to

simultaneously find optimum allocation of the jobs to machine and starting times

of the job on each machine in distrusted shop environment compared to functional

one.
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8.4. The Effect of Transportation Time

In order to examine the influence of time taken to transport jobs on makespan,

we solved Problems id : Small20 × 22 and id : Mediume45 × 34 with 25 and

50 parts respectively. In this experiment, we also considered different average

transportation time for all jobs involving in the system. This means the trans-

portation time is not job dependent. In this situation, transportation time was

modeled simply as a minimum time lag with the average time it takes to carry

out jobs between machines.

Figure 8.6 reveals that transportation time has a limited influence on makespan in

both size problems because average transportation time is increased by 50 times

and the makespan is remained remarkably unchanged. The main reason might

be that machines are busy and have queues of jobs before them at almost all

time in this type of multi-product manufacturing system. Efficient utilization of

resource in modern manufacturing system doesn’t allow to machines become free.
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As shown in Figure 8.7, the optimized schedule indicates that machine utilization

is high and the shop is almost fully loaded.

In fact, transportation time can be added to the job waiting time in queues. As

result, it only very slightly affects makespan. The results obtained in this Section

prove that why the proposed model has not explicitly considered transportation

time, because optimized makespan is largely independent of transportation time.
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Figure 8.6: The influence of time taken to transport jobs on makspan
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Conclusions and Future Research

9.1. Conclusions

In today’s increasingly competitive and demanding marketplace, a high-performance

production, responsiveness, efficiency and flexibility are challenges.

Research in design of layouts for multi-product enterprises working in dynamic en-

vironment has been conducted extensively, however, only a few publications have

addressed these changes using a comprehensive model to design a distributed

layout. A comprehensive design methodology is essential since the facility lay-

out, material handling system, process routings and production plan must all fit

together to enable a competitive manufacturing performance. Another aspect

which is rarely addressed when designing distributed layouts is the optimization

of several cost elements in an integrated manner instead of trying to consider

only material handling cost. Thus, several important design challenges need to

be addressed in order to maximize the benefits of layouts design.

The first goal of this research was to develop a design methodology which

addresses the challenges of meeting high operational efficiency and flexibility in

highly volatile environments. In the first part of research, we developed a new

mathematical model that integrates layout configuration and production planning
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in the design of dynamic distributed layouts. The model incorporates a number

of important manufacturing attributes such as demand fluctuation, system re-

configuration, lot splitting, work load balancing, alternative routings, machine

capability and tooling requirements. In addition, the model allows the optimiza-

tion of several cost elements in an integrated manner. These include material

handling, machine relocation, setup, inventory carrying, in-house production and

subcontracting costs. However, optimal solutions for the proposed mathematical

model can only be found for small size problems due to NP-complexity. This leds

to the development of three heuristic methods which can handle large distributed

layout problems in a reasonable amount of time. These heuristics are as follows:

• Linear programming embedded simulated annealing algorithm (LPSA)

• Linear programming embedded genetic algorithm (LPGA)

• Pure simulated annealing algorithm ( PSA)

Although the solution representation encoding integer variables of solution is

identical in both LPSA and LPGA and they use a same approach to hybridize a

metaheuristic with linear programming, their metaheuristic parts are incredibly

diverse in nature. Such fact motivated us to develop and investigate performance

of these solution procedures.

Since the comprehensive problem addressed in this study has not been pre-

viously presented, we had no comparable examples from the literature to use.

Therefore, in order to illustrate the considered problem and demonstrate the per-

formance of the proposed solution procedures, we generated several data sets.

The experimental study was designed to compare distributed layout with func-

tional layout and investigate some design factors affecting the performance of dis-

tributed layouts, namely, level of overlapping capabilities of machines, dynamic

configuration, workload balancing, production planning and subcontracting. Sev-

eral insights into distributed layout design can be stated as follows.
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1. Using distributed layouts results in significant savings in material handling

cost as important cost component within manufacturing.

2. Distributed layouts are highly desirable in a situation where there are many

machine tools with several shared capabilities.

3. Dynamic reconfiguration can bring a significant cost savings when the man-

ufacturing system has more unique machines with less shared capabilities.

4. Including several pragmatic issues of the manufacturing system can signif-

icantly effects manufacturing cost.

The performance of three heuristic methodologies was evaluated via a compara-

tive study from a solution convergence, solution quality and algorithm robustness

point of view. Overall, the heuristics performed well under different circum-

stances. The results from the experimental study can be summarized as follows.

1. Both LPSA and LPGA perform well under different circumstances.

2. The PSA is not capable of solving the model considering a workload balanc-

ing constraint since it tries to address workload balancing using a penalty

method which is an indirect way of constraint handling.

3. Both LPSA and LPGA outperform PSA in terms solution quality, solution

convergence and implementation simplicity.

4. LPGA is best with respect to solution convergence, solution quality and

algorithm robustness point of view. It reflects the fact that, Genetic algo-

rithms are superior to simulated annealing algorithms in covering a much

larger landscape of the search space at each iteration because GA uses a

population based selection while SA utilizes one point in each iteration.

The second goal of this research was to develop a comprehensive scheduling model

to determine an optimum schedule for a manufacturing system with distributed
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layout in a way that total transportation cost of parts and makespan are mini-

mized. To our limited knowledge, scheduling in manufacturing system with dis-

tributed layouts has not been addressed in the literature. Using a multi-objective

mixed integer programming model, machine assignment and scheduling are si-

multaneously optimized. In other words, one goal of the problem is to find a

schedule of operations on machines (starting time of operation) which minimize

the overall finishing time or makespan. Another one is to find assignment of jobs

to the machines such that total distance traveled by parts is minimized. There-

fore, selected objectives are essentially limited to those which are related the

nature of manufacturing with distributed layout. Most importantly, the model

incorporating sequence-dependent setup time, attached or detached setup time,

machine release dates, and time lag requirements because there is clearly need to

consider an integrated scheduling model to address multi-faceted nature of the

real world.

However, mathematical models for scheduling problems are normally much

more difficult to solve due to the nature of combinatorial optimization. In order

to efficiently solve the developed model, we proposed a parallel genetic algorithm

that runs on a parallel computing platform. Since the comprehensive scheduling

model has not been previously presented, we have no comparable examples from

the literature to use. Therefore, in order to examine the model and evaluate the

performance of heuristic, we generated several data sets and scenarios that take

into account several numbers of machines and parts, maximum number of oper-

ation per each part, and levels of overlapping capability. We first compared the

results from the scheduling model in two different shop environment, distributed

and functional layouts, to observe material handling costs which is explicitly cap-

tured in the model. We also focused on the two system characteristic on the

schedule solution: (1) the level of overlapping machine capabilities and (2) the

average transportation time.
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Our analysis provides several insights into scheduling in distributed layout

which can be stated as follows.

1. An additional cost saving can be realized by incorporating material han-

dling cost in scheduling objective optimization of a system with distributed

layout. We achieved average total martial handling cost savings of over 40%

relative to scheduling in system with functional layout.

2. It is not desirable to explicitly incorporate transportation time in the model

since it does influence the completion time of the jobs due to nature of

manufacturing system.

3. The martial handling cost saving resulting from a system with less shared

process capability was lesser than system with highly overlapping capabili-

ties due to limited number alternative jobs routings.

The performance of the parallel GA approach was evaluated against a sequential

GA. The algorithm demonstrates substantial reductions of computing time and

improves the search.

9.2. Contributions

The major contributions of our research lie in the following aspects:

1. We formulated mixed linear integer program that accurately captures the

design of dynamic distributed layouts in a comprehensive manner. The dis-

tributed layout represents an attempt to achieve an aggregation of machines

through the facility in meaningful manner. Thus, in contrast to traditional

facility, the layout can address changes in the production environment and

adapt to volatilities.
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2. Three new heuristics for solving dynamic distributed layouts problems in

a reasonable amount of time was developed. We developed two hybrid

approaches that exploit the structure of the formulation using a heuristic

procedure which embeds linear programming and follows multiple search

paths. These algorithms provide near-optimal solutions in many instances.

3. We achieved average total distributed layout cost savings of over 55% rela-

tive to functional layout. That is, we can substantiate distributed layouts

are highly desirable especially in situation where there are many machine

tools with several shared capabilities. This is because when there are several

machine tools with several shared capabilities, the distribution of these ma-

chine tools makes these capabilities easily accessible from different regions

of the layout thereby reducing material handling cost significantly.

4. In this work, also a multi-objective mixed integer programming model for

scheduling of manufacturing systems with distributed layouts was developed

such that machine assignment and scheduling are simultaneously examined.

By incorporating the material handling cost into objective function, we were

able to show that a significant martial handling cost saving can be obtained

while maintain an appropriate schedule for production. Refining our anal-

ysis, we examined several data sets and determined that it is particularly

beneficial for a system comprised of machines with higher overlapping of

capabilities. It validates and extends results presented in first part of our

work that prove distributed layouts are highly desirable in a situation where

there are many machine tools with several shared capabilities.

5. A novel multi-objective genetic algorithm for solving the scheduling in sys-

tem with distributed layouts problem was designed. Rather than consid-

ering sequential GA requires considerable size of computer memory when

the size of population needs to be very large, we followed a parallel GA
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using high performance parallel computing for this type of large and com-

plex problem. The parallel algorithm approach demonstrates substantial

reductions of computing time and improves the search performances.

9.3. Future Research

This section proposes several directions for future research on design of distributed

layouts, which are described as follow:

1. One area of future research in the distributed layout design problem in-

cludes the development of more effective and efficient solution procedures,

particularly for analysing large problem instances, i.e. more than 150 parts

with maximum number of operation equal to 50. Our limitation on access to

a parallel computing platform where there are linear programming solvers

for each processor make it necessary to use extended solution procedure for

further investigation.

2. We believe that the comprehensive distributed layout problem presented in

this study raises many interesting questions regarding machine aggregation

and part flow allocation that need further exploration.

3. One possibility would be to include some material handling aspects into the

facility design method. Clearly, there is a close link to layout and material

handling design. Especially when consecutive operations can be conveyed

on machines those are close to each other.

4. In the future, additional studies should be designed that simulate both the

facility design and scheduling models in order to investigate their perfor-

mance and to illustrate how the methods are applied to a real data set.

5. In the facility layout design model, due to the complex nature of the prob-

lem, there was so difficult to consider stochastic demand fluctuation, lot
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streaming, machines dimensions, closeness relationships and tools consump-

tion cost however, these constraints can be studied in the future researches.
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Framinan, J. M., Leisten, R., and Garćıa, R. R., 2014. Manufacturing Scheduling

Systems. Springer,

Ganesan, A., 2007. Modeling of distributed layouts for dynamic period cases.

Ph.D. thesis, Wichita State University.

Gao, J., Gen, M., Sun, L., and Zhao, X., 2007. A hybrid of genetic algorithm and

bottleneck shifting for multiobjective flexible job shop scheduling problems.

Computers & Industrial Engineering, 53, 149–162.

Garey, M. R., Johnson, D. S., and Sethi, R., 1976. The complexity of flowshop

and jobshop scheduling. Mathematics of operations research, 1 (2), 117–129.

177



Chapter 9. Mathematical Model

Gentry, R. J. and Elms, H., 2009. Firm partial modularity and performance in the

electronic manufacturing services industry. Industry and Innovation, 16 (6),

575–592.

Gindy, N., M.Ratchev, T., and Case, K., 1996. Component grouping for cell for-

mation using resource elements. International Journal of Production Research,

34 (3), 727–752.

Glover, F. and Kochenberger, G. A., 2003. Handbook of metaheuristics. Springer,

Goetz, W. G. and Egbelu, P. J., 1990. Guide path design and location of load

pick-up/drop-off points for an automated guided vehicle system. International

Journal of Production Research, 28 (5), 927–941.

Goldberg, D. E. and Holland, J. H., 1988. Genetic algorithms and machine learn-

ing. Machine learning, 3 (2), 95–99.

Gupta, Y., Gupta, M., Kumar, A., and Sundaram, C., 1996. A genetic algorithm-

based approach to cell composition and layout design problems. International

Journal of Production Research, 34 (2), 447–482.

Hamedi, M., Ismailand, N. B., Esmaeilian, G. R., and Ariffin, M., 2012. De-

veloping a method to generate semi-distributed layouts by genetic algorithm.

International Journal of Production Research, 50 (4), 953–975.

Heragu, S. S. and Ekren, B. Y., 2010. Manufacturing facility design and layout.

Wiley Encyclopedia of Operations Research and Management Science, .

Heragu, S. S. and Kochhar, J. S., 1994. Material handling issues in adaptive

manufacturing systems. The Materials Handling Engineering Division 75th An-

niversary Commemorative Volume, ASME. New York.

178



Chapter 9. Mathematical Model

Ho, N. B. and Tay, J. C., 2004. Genace: An efficient cultural algorithm for solving

the flexible job-shop problem. In: Evolutionary Computation, 2004. CEC2004.

Congress on. Vol. 2. IEEE, pp. 1759–1766.

Ho, N. B., Tay, J. C., and Lai, E. M.-K., 2007. An effective architecture for learn-

ing and evolving flexible job-shop schedules. European Journal of Operational

Research, 179 (2), 316–333.

Hosseini Nasab, H., 2014. A hybrid fuzzy-ga algorithm for the integrated machine

allocation problem with fuzzy demands. Applied Soft Computing, 23, 417–431.

Hurink, J., Jurisch, B., and Thole, M., 1994. Tabu search for the job-

shop scheduling problem with multi-purpose machines. Operations-Research-

Spektrum, 15 (4), 205–215.

Irani, S. A. and Huang, H., 2000. Custom design of facility layouts for multiprod-

uct facilities using layout modules. Robotics and Automation, IEEE Transac-

tions on, 16 (3), 259–267.

Jia, H., Nee, A. Y., Fuh, J. Y., and Zhang, Y., 2003. A modified genetic algo-

rithm for distributed scheduling problems. Journal of Intelligent Manufactur-

ing, 14 (3-4), 351–362.

Johnson, S. M., 1959. Discussion: Sequencing n jobs on two machines with arbi-

trary time lags. Management Science, 5 (3), 299–303.

Kacem, I., Hammadi, S., and Borne, P., 2002a. Approach by localization and

multiobjective evolutionary optimization for flexible job-shop scheduling prob-

lems. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 32 (1), 1–13.

179



Chapter 9. Mathematical Model

Kacem, I., Hammadi, S., and Borne, P., 2002b. Approach by localization and mul-

tiobjective evolutionary optimization for flexible job-shop scheduling problems.

IEEE Transactions on Systems, Man, and Cybernetics, 32, 1–3.
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Appendix A

Input Data for Problem-1

Table A.1: Resource Elements data

Resource Indices of machines having
Element resource element r

r Case 1 Case 2 Case 3 Case 4
1 (1, 2, 3, 4, 5, 6) (1, 2, 4, 6) (1, 6) (1)
2 (1, 2, 3, 4, 5, 6) (1, 3, 5) (2, 5) (2)
3 (1, 2, 3, 4, 5, 6) (2, 4, 6) (3) (3)
4 (1, 2, 3, 4, 5, 6) (1, 3, 5, 6) (4) (4)
5 (7, 8, 9, 10) (7, 8, 10) (8) (5)
6 (7, 8, 9, 10) (9, 10) (7, 10) (6)
7 (7, 8, 9, 10) (7, 8, 10) (9) (7)
8 (7, 8, 9, 10) (8, 9) (7, 10) (8)
9 (11, 12, 13, 14, 15, 16) (11, 14, 15) (14, 15) (9)
10 (11, 12, 13, 14, 15, 16) (11, 13, 16) (11, 16) (10)
11 (11, 12, 13, 14, 15, 16) (12, 14, 16) (16) (11)
12 (11, 12, 13, 14, 15, 16) (11, 13, 15) (12, 13) (12)
13 (11, 12, 13, 14, 15, 16) (11, 12, 14) (11, 15, 16) (13)
14 (17, 18, 19) (18, 19) (18) (14)
15 (17, 18, 19) (17, 19) (17) (15)
16 (17, 18, 19) (18, 19) (19) (16)
17 (20, 21, 22) (20, 22) (22) (17)
18 (20, 21, 22) (21, 22) (20) (18, 21)
19 (20, 21, 22) (20, 21) (21) (19, 22)
20 (20, 21, 22) (20, 22) (20, 22) (20)
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Table A.2: Processing data for the parts

Operation data (r, Up)

Part Θp Θ̂p Hp Fp Sp Np Op o = 1 o = 2 o = 3 o = 4 o = 5

1 6 12 5 2 300 2 2 (14, 1) (8, 3)

2 10 40 5 3 200 2 3 (17, 2) (19, 1) (1, 2)

3 6 18 2 2 150 2 4 (4, 2) (12, 3) (4, 2) (2, 3)

4 4 16 4 1 200 2 2 (14, 1) (18, 2)

5 6 18 4 2 300 2 2 (6, 2) (14, 1)

6 8 24 3 2 150 2 2 (13, 3) (14, 2)

7 8 24 3 2 350 2 4 (3, 2) (1, 1) (16, 3) (2, 1)

8 10 30 3 1 250 2 5 (0, 2) (9, 1) (13, 3) (1, 2) (4, 2)

9 4 16 5 3 400 2 5 (6, 2) (4, 2) (10, 2) (3, 2) (18, 2)

10 6 18 3 1 350 2 4 (18, 2) (6, 1) (19, 1) (19, 2)

11 2 6 2 3 150 2 3 (12, 1) (8, 1) (1, 3)

12 4 12 5 2 350 2 3 (6, 3) (15, 1) (4, 2)

13 4 12 4 3 250 2 3 (11, 2) (9, 2) (12, 2)

14 2 6 4 2 350 2 4 (16, 3) (14, 2) (7, 2) (14, 1)

15 4 8 3 3 250 2 4 (17, 2) (4, 1) (13, 2) (7, 2)

16 10 40 3 2 200 2 4 (2, 2) (12, 2) (13, 2) (3, 3)

17 2 6 4 3 200 2 3 (16, 2) (12, 3) (1, 2)

18 10 30 3 1 250 2 2 (19, 2) (11, 2)

19 8 16 6 2 350 2 5 (3, 2) (17, 1) (14, 3) (6, 1) (1, 1)

20 4 16 4 2 200 2 3 (16, 2) (9, 2) (6, 2)

21 6 18 4 3 300 2 4 (10, 2) (6, 1) (6, 2) (18, 3)

22 6 12 3 1 350 2 4 (14, 3) (18, 2) (1, 1) (10, 3)

23 8 24 2 3 400 2 4 (18, 2) (17, 1) (6, 2) (10, 1)

24 4 12 3 2 350 2 4 (6, 1) (10, 3) (2, 2) (7, 2)

25 4 16 3 2 350 2 3 (15, 2) (7, 2) (10, 2)

Note: Operation data (r, Up) is the index of the required resource element r and unit processing

time Up for the corresponding operation.
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Table A.3: Demand data for the parts

Demand Dp,t

Part t = 1 t = 2 t = 3 t = 4

1 50 100 0 650

2 0 50 550 200

3 150 300 300 0

4 400 0 150 350

5 0 100 450 450

6 250 600 0 0

7 550 0 0 200

8 0 100 400 100

9 650 150 700 100

10 0 350 0 0

11 550 250 0 350

12 450 0 0 0

13 0 450 200 50

14 100 650 600 0

15 400 150 0 0

16 0 100 700 250

17 750 0 300 200

18 200 700 700 0

19 0 0 200 0

20 150 0 100 200

21 150 0 0 500

22 700 700 150 450

23 700 450 250 300

24 600 100 450 200

25 500 450 350 0
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Table A.4: Machine relocation cost per unit distance

m Gm m Gm m Gm m Gm

1 80 7 100 13 80 18 80

2 80 8 80 14 80 19 60

3 60 9 80 15 100 20 80

4 80 10 80 16 80 21 100

5 60 11 80 17 60 22 80

6 80 12 100
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Figure A.1: Layout showing AGV path and locations for machines - dimensions

are in unit distance
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Table A.5: Machine location for the functional and five arbitrary generated dis-

tributed layouts

Machine index m at location l = 1 to 22

Functional Distributed Layouts

Layout l = m DL1 DL2 DL3 DL4 DL5

1 10 4 19 12 22

2 4 5 16 15 11

3 20 12 2 4 5

4 2 3 14 8 10

5 5 13 18 17 1

6 18 8 15 20 18

7 7 20 1 1 2

8 19 17 13 19 21

9 22 6 21 3 13

10 13 11 7 14 20

11 15 9 12 22 15

12 16 21 3 5 6

13 6 7 11 7 8

14 11 19 4 2 7

15 3 1 17 18 14

16 8 16 5 16 19

17 21 10 6 11 4

18 14 22 20 9 3

19 17 2 9 10 12

20 12 15 10 6 9

21 1 18 8 21 16

22 9 14 22 13 17
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Table A.6: Material handling distance between locations l and l′, El,l′

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 3 6 3 6 9 61 61 64 64 55 58 52 55 55 58 108 105 108 81 78 81

2 3 0 3 6 3 6 58 58 61 61 52 55 48 52 52 55 105 102 105 78 75 78

3 6 2 0 9 6 3 61 61 64 64 55 58 52 55 55 58 108 105 108 81 78 81

4 3 6 9 0 3 6 64 64 67 67 58 61 55 58 58 61 111 108 111 84 81 84

5 6 3 6 3 0 3 61 61 64 64 55 58 52 55 55 58 108 105 108 81 78 81

6 9 6 3 6 3 0 64 64 67 67 58 61 55 58 58 61 111 108 111 84 81 84

7 17 14 17 20 17 20 0 3 3 6 65 68 62 65 65 68 118 115 118 91 88 91

8 17 14 17 20 17 20 3 0 6 3 65 68 62 65 65 68 118 115 118 91 88 91

9 20 17 20 23 20 23 3 6 0 3 68 71 65 68 68 71 121 118 121 94 91 94

10 20 17 20 23 20 23 6 3 3 0 68 71 65 68 68 71 121 118 121 94 91 94

11 107 104 107 110 107 110 90 90 93 93 0 3 3 6 6 9 59 56 59 32 29 32

12 110 107 110 113 110 113 93 93 96 96 3 0 6 3 9 6 62 59 62 35 32 35

13 104 101 104 107 104 107 87 87 90 90 3 6 0 3 3 6 56 53 56 29 26 29

14 107 104 107 110 107 110 90 90 93 93 6 3 3 0 6 3 59 56 59 32 29 32

15 107 104 107 110 107 110 90 90 93 93 6 9 3 6 0 3 59 56 59 32 29 32

16 110 107 110 113 110 113 93 93 96 96 9 6 6 3 3 0 62 59 62 35 32 35

17 54 51 54 57 54 57 37 37 40 40 31 34 28 31 31 34 0 3 6 57 54 57

18 51 48 51 54 51 54 34 34 37 37 28 31 25 28 28 31 3 0 3 54 51 54

19 54 51 54 57 54 57 37 37 40 40 31 34 28 31 31 34 6 3 0 57 54 57

20 81 78 81 84 81 84 64 64 67 67 58 61 55 58 58 61 33 30 33 0 3 6

21 78 75 78 81 78 81 61 61 64 64 55 58 52 55 55 58 30 27 30 3 0 3

22 81 78 81 84 81 84 64 64 67 67 58 61 55 58 58 61 33 30 33 6 3 0
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Table A.7: Machine relocation distance between location l and l′, E ′l,l′

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 0 3 6 3 4 7 15 18 15 18 12 12 15 15 18 18 18 20 22 22 24 25

2 3 0 3 4 3 4 12 15 12 15 12 12 15 15 18 18 16 18 20 21 22 24

3 6 3 0 7 4 3 9 12 10 12 13 12 16 15 19 18 14 16 18 20 21 22

4 3 4 7 0 3 6 15 18 15 18 9 10 12 12 15 15 16 18 21 20 22 24

5 4 3 4 3 0 3 12 15 12 15 10 9 10 12 15 15 13 16 18 18 20 22

6 7 4 3 6 3 0 10 12 9 12 11 10 13 12 16 15 12 13 16 17 18 20

7 15 12 9 15 12 10 0 3 3 4 19 17 21 19 24 22 13 13 13 19 19 19

8 18 15 12 18 15 12 3 0 4 3 22 19 24 21 26 24 14 13 13 13 19 19

9 15 12 10 15 12 9 3 4 0 3 18 15 19 17 21 19 10 10 10 16 16 16

10 18 15 12 18 15 12 4 3 3 0 20 18 22 19 24 22 12 10 10 17 16 16

11 12 12 13 9 10 11 19 22 18 20 0 3 3 4 6 7 12 15 18 14 16 19

12 12 12 12 10 9 10 17 19 15 18 3 0 4 3 7 6 9 12 15 11 14 16

13 15 15 16 12 10 13 21 24 19 22 3 4 0 3 3 4 12 15 18 13 15 18

14 15 15 15 12 12 12 19 21 17 19 4 3 3 0 4 3 9 12 15 10 13 15

15 18 18 19 15 15 16 24 26 21 24 6 7 3 4 0 3 13 16 19 12 15 18

16 18 18 18 15 15 15 22 24 19 22 7 6 4 3 3 0 10 13 16 9 12 15

17 18 16 14 16 13 12 13 14 10 12 12 9 12 9 13 10 0 3 6 6 6 8

18 20 18 16 18 16 13 13 13 10 10 15 12 15 12 16 13 3 0 3 6 6 6

19 22 20 18 21 18 16 13 13 10 10 18 15 18 15 19 16 6 3 0 8 6 6

20 22 21 20 20 18 17 19 13 16 17 14 11 13 10 12 9 6 6 8 0 3 6

21 24 22 21 22 20 18 19 19 16 16 16 14 15 13 15 12 6 6 6 3 0 3

22 26 24 22 24 22 20 19 19 16 16 19 16 18 15 18 15 8 6 6 6 3 0
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