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ABSTRACT

BALANCING, SEQUENCING AND DETERMINING

THE NUMBER AND LENGTH OF WORKSTATIONS

IN A MIXED MODEL ASSEMBLY LINE

Fatemeh Mohebalizadehgashti Advisor:

University of Guelph, 2016 Professor F.M. Defersha

The single model assembly line is a traditional type of assembly line, which as-

sembles only one product in a large quantity. On the other hand, the mixed model

assembly line assembles different models of a product simultaneously. Therefore, it

gives a chance to companies to retain the market by satisfying various demands of cus-

tomers. Because of this advantage, companies are motivated to change their assembly

line from the single model to the mixed model. Balancing and sequencing problems are

two important challenges in the mixed model assembly line. There are a large number

of studies that have focused on balancing and sequencing problems separately. How-

ever, in this thesis, we study balancing and sequencing problems of the mixed model

assembly line simultaneously. A mixed integer linear programming model is proposed to

solve these problems simultaneously when the assembly line has the continuous motion

and when common tasks between different models of a product can be assigned to dif-

ferent workstations. Objectives in this thesis are minimizing the length of workstations,

minimizing the stations cost, and minimizing the tasks duplication cost. A branch and

bound algorithm is exploited to solve the model. Following that, the proposed model

is extended to show that it can satisfy the assembly line with the synchronous config-

uration. At the next step, a hybrid genetic algorithm, which is a combination of the

genetic algorithm and linear programming algorithm, is employed to solve the proposed

model for large size problems. Finally, numerical examples are presented to show how



the proposed hybrid genetic algorithm solves the proposed model effectively.

Keywords: Balancing; Sequencing; Mixed Model Assembly Line; Hybrid Genetic Algo-

rithm
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Chapter 1

Introduction

In the past decade, assembly lines have attracted more attention with the advance

of technology and the growing competition between companies for retaining cus-

tomers and market. Ghosh and Gagnon (1989), Kriengkorakot and Pianthong

(2007) and Sivasankaran and Shahabudeen (2014) explained assembly line system

as following: an assembly line includes a set of different workstations, which usu-

ally have been fixed along the conveyor belt by allocating the specific machines

or operators. A base part is launched at the beginning of the line. The launched

part moves from station to station along the conveyor, where different compo-

nents are added or some operations are performed by machines or operators. The

total amount of work is broken into the various tasks, which are allocated to the

different workstations according to their precedence relationships. Specifically,

precedence constraints help to determine the sequence of operations in worksta-

tions. Each operation has a specific time. Therefore, the total time of a set of

operations, which is assigned to each workstation, defines the workstation time

that should not be longer than the cycle time, which is the time interval between

two released final products at the end of the assembly line. The cycle time is

also known as the maximum available time for each workstation. The significant
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Chapter 1. Introduction

problem of designing an assembly line is how to assign resources to different work-

stations in order to satisfy product requirements with minimum cost (Graves and

Redfield, 1988). On the other hand, increasing efficiency is the main objective

of assembly line design (Rekiek et al., 2002b; Yaman, 2008). In this thesis, we

develop a model and a solution procedure for designing an assembly line with

the aim of solving balancing and sequencing problems simultaneously. In the

following sections, some basic assembly line concepts, design considerations, and

general information about assembly line balancing are discussed.

1.1. Basic assembly line concepts

Some fundamental concepts of an assembly line, which are based on the definition

of an assembly line, are explained in this section. These concepts, which give a

good overview about the assembly line, are as follows:

Work piece

A work piece is an unfinished product, which is made up of different components

and also needs to be processed with various operations in order to form a final

product (Torenli, 2009).

Sub-assembly

Sub-assembly is a complex part that needs to be assembled with different com-

ponents before being added to the main work piece in the assembly line (Torenli,

2009).

2
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Operation

Operations are various tasks that are performed on the work piece in order to

produce a final product.

Operator

Operators are responsible for performing different operations on the work piece

in workstations along the conveyor belt.

Workstation

Workstations are established along a conveyor belt with the aim of performing

different operations on the work piece in the assembly line. They are equipped

with materials, machines, and operators.

Operation time

Operation time is the time that an operation needs to be completed in a work-

station (Scholl, 1999).

Workstation time

Workstation time is the total time of all operations that are performed in that

workstation.

Cycle time

Cycle time is the time between two final outputs of the assembly line, which has

inverse relationship with the number of workstations. Therefore, if cycle time

increases, the number of workstations decreases and vice versa (Sivasankaran

and Shahabudeen, 2014).

3
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Idle time

Idle time is the time that work piece undergoes a waiting time until it moves to

the next workstation. In this time, other operations are being completed on other

work pieces in some workstations.

1.2. Design for assembly line

Design is an important basic step, which should be considered before starting

production or product assembly in order to prevent extra costs in future steps

like material selection, manufacturing and equipment selection (Abdullah et al.,

2003). The design of an assembly line has different objectives, which help com-

panies to better exploit their resources, like human, machine, space, and money,

to satisfy the customer demand. These objectives can be minimizing the number

of work stations or minimizing the cycle time (Sivasankaran and Shahabudeen,

2014). The basic data which are required for design of the assembly line are as

follows (Sivasankaran and Shahabudeen, 2014):

• Precedence relationships between operations, which show the sequence and

priority of operations

• Task time

• Cycle time or number of workstations

Designers deal with some problems at the beginning of the design process

(Chow, 1990): the first problem is lack of enough information. Specifically, there

are a large number of unknowns at first. The second problem comes from un-

certainty. This means that available information can change during the design.

For example, the product demand is dependent on the market. Therefore, it is

impossible to forecast an exact demand at the beginning of the design. The third

4
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problem is variation. A large number of the assembly line parameters are in their

average values, like mean process time or mean repair time. Hence, there is no de-

terministic system. Finally, the last problem is complexity, which is related to the

different characteristics of the line and also communication between members of a

design team. Specifically, there are a large number of design alternatives for mak-

ing decisions about various factors, like material handling, inventory, work pieces,

labour, and information. Making a proper decision to select a proper combina-

tion of these factors is very important. What is more, communication between

people in a design team, who come from different departments like production,

quality control, and marketing, is another problem of the design, which makes

it complicated. Abdullah et al. (2003) divided design for assembly (DFA) into

two groups: qualitative and quantitative methods. Qualitative methods provide

guidelines with examples for designers (Andreasen et al., 1983). These methods

are general and they do not provide a specific method for designers (Abdullah

et al., 2003). On the other hand, quantitative methods focus on some specifi-

cations of operation like time and cost (Miyakawa and Ohashi, 1986; Poli and

Fenoglio, 1987). In addition, physical disassembly of the product is considered

in quantitative methods in order to improve the structure of a product for easier

assembly (Abdullah et al., 2003).

1.3. Assembly line components

An assembly line has different components that should be considered by designers

in order to increase efficiency of the line and also to meet the customer demand.

One division of components can be as follows:

• Operators

• Operations

5



Chapter 1. Introduction

• Precedence graph

• Workstations

• Equipment

• Material handling

• Buffer

• Feeder line

• Pallet

• Fixture

• Line layout

• Inspection

Operators

Operators are responsible for performing different operations on the work piece

in the workstations. Therefore, designers should consider various factors when

they design tasks for operators, namely, capacity of operators, skill level (John-

son, 1983), operator physical demand and fatigue (Carnahan et al., 2001), and

ergonomic (Chow, 1990).

Operations

Operations are assigned to the different workstations based on some rules. For

example, the precedence relationships between operations should not be violated.

Also, some operations, which are called compatible operations, must be assigned

to the same workstation. Because they should use the same resources. However,

6
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incompatible operations are not allowed to be assigned to the same workstation

(Boysen et al., 2007). Each operation has a specific time, which can be different

based on the operation nature, operator skill, and machine reliability (Rekiek

et al., 2002a).

Precedence graph

The precedence graph shows the basic information about operations like operation

names, operation times, and forward and backward path (Boysen et al., 2007).

Specifically, it provides information about the sequence and priority of various

operations that need to be performed on the work piece to reach a final product.

workstations

All operations are performed in workstations by operators. Different factors

should be considered by designers in each work station, namely, the number

of operators, type of equipment, length of workstation, and workstation time.

Equipment

Equipment is one of the most important components in the design of an assembly

line. Equipment is selected based on the different factors such as requirement of

operations in each workstation (Becker and Scholl, 2006), and investment cost

(Boysen et al., 2007). The investment cost will be reduced if some operations,

which need the same equipment, are assigned to the same work station. Because

this matter decreases the number of installations (Boysen et al., 2007).

Material handling

Material handling is to move materials, for example, from one workstation to

another or from warehouse to the assembly line site, in front of the workstation

7
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that needs to be assembled. Although material handling does not add any value

to the final product, it should be considered in order to prevent some waste in

the system such as delay time (Chow, 1990).

Buffer

Buffers are used between some workstations in order to store work pieces tem-

porarily. If a buffer is necessary in the line, some factors should be considered by

designers such as location and capacity of the buffer (Groover, 2007)

Feeder line

Feeder lines are used to feed the main assembly line with subassemblies, which

will be added to the main work piece. Cycle time of the feeder line is the same

as the cycle time of the main assembly line. Therefore, it is better to determine

the cycle time of the main assembly line at the first and following that, applying

that cycle time for the feeder line (Boysen et al., 2007).

Pallet

Pallets are used for moving materials. Hence, they are part of the material han-

dling subject. Using pallet in an assembly line has some advantages (Groover,

2007): they help to transfer multiple items instead of individual items. Further-

more, they prevent product damage. Also, using pallets can decrease loading and

unloading times. Some factors should be considered by designers for using pallets

in the assembly line like size of pallets and safety (Groover, 2007).

Fixture

Fixture is a tool that is applied to support and hold the work pieces during

operations.
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Line layout

Line layout is a physical arrangement of different elements of assembly line. Most

of components of assembly line should be considered in the layout. An efficient

layout can facilitate the production flow.

Inspection

Inspection is carried out on the work pieces in the different stages of the assembly

process in order to detect problems. Then, the root of problem is determined with

the aim of reducing the faults and following that extra cost.

1.4. Line balancing

Line balancing is one of the important subjects in the assembly line design. Specif-

ically, line balancing is a method to increase the efficiency of the assembly line

with the aim of reaching the highest production rate and/or shortest line. It

consists of assigning tasks to the different workstations in such a way that the

precedence of tasks as well as other restrictions are satisfied by using the var-

ious algorithms and methods (Ghosh and Gagnon, 1989; Erel and Sarin, 1998;

Becker and Scholl, 2006; Kriengkorakot and Pianthong, 2007; Boysen et al., 2008).

Line balancing is performed to reach different objectives, namely, minimizing the

number of workstations and minimizing the cycle time. Although there are a

large number of studies, which have focused on the assembly line balancing prob-

lem, only a few companies have utilized presented methods (Ghosh and Gagnon,

1989; Boysen et al., 2007, 2008). The gap between the academic studies and the

real-world manufacturing environment is a result of several reasons (Ghosh and

Gagnon, 1989): the first reason is that companies do not know how to use algo-

rithms. The second reason is that there is no consistency between studies and real

problems in assembly lines. Finally, the difficulty of techniques and algorithms is
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another problem, which causes line balancing methods not to be used by compa-

nies. Line balancing research has focused on the simple assembly line balancing

problem (SALBP ) and the general assembly line balancing problem (GALBP ).

The simple assembly line balancing has following assumptions (Baybars, 1986;

Scholl, 1999; Scholl and Becker, 2006):

• It is used for the mass-production of one product with a specific known

production process.

• Precedence constraints are the main restrictions.

• Workstations are equipped with an equal level of machines and labour.

• It has a constant cycle time.

• Operation times are deterministic.

• The line has one-sided stations with the serial progression.

• It is not possible to separate a task between two or more workstations.

The precedence diagram is a key tool of the simple assembly line balancing (Boy-

sen et al., 2007). However, some of the features and assumptions of the simple

assembly line balancing are removed or edited in the general assembly line bal-

ancing (Ghosh and Gagnon, 1989; Becker and Scholl, 2006; Boysen et al., 2007;

Scholl and Becker, 2006). This type of line balancing can help to solve more

real-world problems (Becker and Scholl, 2006).

1.5. Organization of the thesis

The outline of this thesis is as follows: In Chapter 2, a review of the literature on

the classification of the assembly line as well as the classification of the assembly

line balancing problems are presented. In addition, Chapter 2 reviews earlier
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studies on objectives in assembly line balancing as well as different techniques

for solving line balancing problems. Furthermore, the mixed model assembly

line is reviewed in terms of balancing and sequencing at the end of Chapter 2.

In Chapter 3, a mixed integer-linear programming (MILP) model is presented,

which is based on the studies conducted by Bukchin and Rabinowitch (2006) and

Mosadegh et al. (2012a). In addition, the proposed model is extended in Chapter

3. In Chapter 4, a detailed solution procedure is depicted for the proposed model

based on the hybrid genetic algorithm (HGA). Numerical examples are introduced

in Chapter 5. Finally, conclusions and future research directions are presented in

Chapter 6.
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Chapter 2

Literature Review

2.1. Introduction

In this chapter, a classification of the assembly line is discussed based on differ-

ent studies conducted in the past. Following that, a review of the literature on

the classification of assembly line balancing problems, objectives in assembly line

balancing, and different methodological techniques for solving assembly line bal-

ancing problems are presented. Then, the mixed model assembly line is reviewed

in terms of balancing and sequencing problems.

2.2. Classification of the assembly line

Different classifications have been defined for the assembly line system, which have

explained various specifications of an assembly line. The following explanations

summarize the classification of the assembly line based on the studies conducted

by Becker and Scholl (2006), Boysen et al. (2007), and Boysen et al. (2008). They

classified the assembly line according to different factors, which are the number of

models, type of line control, level of automation, task duration, and line layout.
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2.2.1. Number of models

2.2.1.1 Single model assembly line

In the single model, which is known as the traditional model of the assembly line,

only one type of product is produced in the assembly line. Figure 2.1 shows the

single model assembly line.

Figure 2.1: Single model assembly line

2.2.1.2 Mixed model assembly line

In the mixed model, different models of a product, which have similar operations,

are assembled in the same assembly line. Therefore, the set up time can be ignored

between models. Mixed sequence of models is emphasized in the mixed model

assembly line as illustrated in Figure 2.2.

Figure 2.2: Mixed model assembly line

2.2.1.3 Multi model assembly line

In the multi model, different products are assembled in batches. Therefore, one

model or similar models of a product are assembled in each batch. The set up

time is not ignored in the multi model assembly line because different models are

produced with different machines or operators. Figure 2.3 shows the multi model

assembly line.
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Set upSet up

Figure 2.3: Multi model assembly line

2.2.2. Type of line control

2.2.2.1 Paced assembly line

In the paced assembly line, the same limited time is assigned to all workstations

as the cycle time. Therefore, workstations have a common cycle time and their

time does not exceed the defined cycle time. Hence, the paced line has a fixed

production rate. In addition, the assembly line can have continuous motion or

even the intermittent configuration when the line is paced.

2.2.2.2 Unpaced assembly line

In an unpaced assembly line, workstations do not have a time restriction for com-

pleting operations and they are not restricted with the same cycle time. Specif-

ically, each workstation has its own time to complete operations on the work

piece. The unpaced line is divided into two groups (Boysen et al., 2007, 2008):

asynchronous line and synchronous line. In the asynchronous line, work pieces

can move to the next workstation whenever required operations are completed.

Therefore, workstations have different times and speeds. This characteristic leads

to the use of a buffer in order to minimize the waiting time for receiving work

pieces from the previous work station (starvation) or to prevent blocking the next

work station. In contrast, in the synchronous line, all work stations wait for the

slowest work station to complete its required operations. This type of unpaced

assembly line can behave as a paced line with intermittent motion if task times
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are deterministic. Hence, the cycle time is the time of the slowest workstation.

2.2.3. Level of automation

2.2.3.1 Manual line

In the manual line, human operators are responsible for performing operations.

This type of assembly line is used in different situations. For example, if some

products are very sensitive and fragile, the manual line is the best choice to

produce them. Furthermore, some operations need more accuracy. Therefore,

operators can perform them better than robots (Bi and Zhang, 2001). Using

a manual line has some advantages. For example, operators can support each

other in adjacent workstations when they are dealing with overload in worksta-

tions. This support can easily occur in the U-shaped line (Aase et al., 2004).

However, the manual line has some demerits. For example, operation time can

be stochastic in this type of assembly line. Therefore, workstation time can have

some deviations (Tempelmeier, 2003). In addition, quality level can be reduced

in the manual line if workstations have a high workload and operators work with

a high speed.

2.2.3.2 Automated line

In an automated line, operations are performed by robots. Using this type of

assembly line has some merits. For example, the operation time is deterministic.

Therefore, there is no deviation in the workstation time (Becker and Scholl, 2006;

Boysen et al., 2008). In addition, robots can work in a dangerous environment,

where operators can not work (Boysen et al., 2008). However, the automated line

needs a high investment cost (Boysen et al., 2007, 2008).

15



Chapter 2. Literature Review

2.2.4. Task duration

2.2.4.1 Deterministic

In this case, all operation times are constant or they have small deviations. There-

fore, workstation times are known and stable (Becker and Scholl, 2006; Boysen

et al., 2007).

2.2.4.2 Stochastic

Task time is stochastic if the operation time deviates from what it should be.

Therefore, the operation time is probabilistic (Becker and Scholl, 2006; Boysen

et al., 2007).

2.2.4.3 Dynamic

Dynamic task time occurs if the operation time has a dynamic variation because

of individual experience of a operator, who deal with a new assembly line or

a new product in the assembly line. Specifically, an operator needs time to

adjust himself with these new situations, which learning effects can impact on

the operation time and can reduce it (Simaria, 2006; Boysen et al., 2007).

2.2.4.4 Dependent

Operation time is dependent on different factors, which can increase times. One

of these factors can be the sequence of operations. For example, when two con-

secutive operations are performed in one workstation, extra time is needed for

preparing a workstation to perform the second operation such as changing tools

(Wilhelm, 1999). Hence, operation time is not fixed here.
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2.2.5. Based on the line layout

2.2.5.1 Serial lines

Serial lines are the traditional type of assembly line, in which the layout of work-

stations is straight along the conveyor belt.

2.2.5.2 U-shaped lines

In U-shaped lines, the layout of assembly lines is like U form. Therefore, operators

can have an opportunity to work in different workstations (Becker and Scholl,

2006; Boysen et al., 2007).

2.2.5.3 Two-sided lines

In two-sided lines, two serial lines are arranged in parallel in such a way that two

opposite workstations can perform operations simultaneously on the two different

sides of the work piece (Bartholdi, 1993). These lines are proper for some large

products like car.

2.2.5.4 Parallel lines

Parallel lines are installed when multiple products are assembled in the system.

Specifically, each line is used for each product or for a family of similar products

(Becker and Scholl, 2006).

2.2.5.5 Parallel workstations

In parallel workstations, work pieces are distributed in several workstations, which

have been arranged in parallel. Then, different operators perform identical oper-

ations on work pieces (Becker and Scholl, 2006).
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2.3. Classification of assembly line balancing prob-

lems

Different categories have been proposed in the past in order to classify assem-

bly line balancing problems. For example, Kriengkorakot and Pianthong (2007)

classified assembly line balancing problems based on the literature into two cat-

egories. The first category was described by Ghosh and Gagnon (1989), who

classified assembly line balancing problems in literature into two main models:

single model and multi/mixed model. Then, they considered two types of task

time and divided each model into deterministic and stochastic time. Finally, they

grouped the two task times into the simple and general assembly line. Figure 2.4

illustrates the related categorization.

ALB Literature
Single Model

Deterministic(SMD)
Simple(SALB) General(GALB)

Stochastice(SMS)
Simple(SALB) General(GALB)

Multi/MixedModel
Deterministic(MMD)

Simple(SALB) General(GALB)
Stochastic(MMS)

Simple(SALB) General(GALB)
Figure 2.4: Classification of assembly line balancing based on Ghosh and Gagnon

(1989)

The Single Model Deterministic (SMD) refers to a model with one product

in the assembly line, which has deterministic operation time. It is the simplest

type of assembly line balancing (SALB), which will be converted to the general
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assembly line balancing (GALB) if some constraints are added or some assump-

tions change. Introducing zoning constraints or using parallel workstations in the

assembly line are two examples that convert SALB to GALB. The Single Model

Stochastic (SMS) refers to a model with one product in the assembly line, which

has a probabilistic operation time. This type of model is used for the manual

assembly line. The Multi/Mixed Model Deterministic (MMD) refers to the deter-

ministic task time in the multi or mixed model assembly line. Various factors are

involved in the multi/mixed model such as launching rate and model sequences,

which are not considered in the single model. The Multi/Mixed Model Stochastic

(MMS) refers to the variable operation time in the multi/mixed model assembly

line. All of subjects which are associated with the SMS model are present in the

MMS model, but they are more complicated compared with the SMS model.

The second category was described by Scholl and Becker (2006) and Becker

and Scholl (2006). They proposed different classification compared with Ghosh

and Gagnon (1989) and classified assembly line balancing problems into two main

groups: the simple assembly line balancing problem (SALBP ) and the general

assembly line balancing problem (GALBP ). Then, they considered various objec-

tives and extended their divisions to SALBP −1, SALBP −2, SALBP −E, and

SALBP−F for the simple assembly line balancing problem, and MALBP/MSP

and UALBP for the general assembly line balancing problem. Figure 2.5, demon-

strates the related classification. The Simple Assembly Line Balancing (SALB)

is appropriate for a single product in a serial line with a straight conveyor belt.

Precedence constraint is the only restriction in the SALB. The objective of

SALBP − 1 (Type 1) is minimizing the number of workstations in the assembly

line when the cycle time is constant while the objective of SALBP−2 (Type 2) is

minimizing the cycle time when the number of workstations is known and given.

On the other hand, SALBP − E (Type E) focuses on maximizing the line effi-

ciency, which leads to minimizing the cycle time and the number of workstations
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simultaneously, and SALBP − F (Type F) focuses on finding a feasible solution

for the line balancing problem while the number of workstations and cycle time

are known and given.

In the general assembly line balancing (GALB), some features and assump-

tions of the simple assembly line balancing (SALB) are removed or edited. In

this category, the Mixed Model Assembly Line Balancing Problem (MALBP ),

focuses on finding the number of workstations, cycle time, and line balancing

techniques to optimize the cost and capacity (Scholl, 1999). On the other hand,

the Mixed Model Sequencing Problem (MSP ) focuses on detecting a sequence

for different models of a product in order to reach different objectives such as

minimizing line inefficiency (Scholl et al., 1998). The U-shaped Assembly Line

Balancing Problem (UALBP ) is appropriate for a single model in the U form

assembly line. In this case, operators can work in several workstations, which are

located on both sides of the U. Therefore, precedence constraints can be modified.

Different problems are identified in the U-shaped assembly line balancing prob-

lem in comparison with the simple assembly line balancing problem (Miltenburg

and Wijngaard, 1994; Erel et al., 2001).

Classification of assembly line balancing problem, Scholl and Becker (2006); Becker and
Scholl (2006)

Assembly Line Balancing Problems(ALBP)
Simple Assembly Line Balancing Problem(SALBP)

SALBP-1 SALBP-2 SALBP-E SALBP-F
General Assembly Line Balancing Problem(GALBP)
MALBP/MSP UALBP Others

Figure 2.5: Classification of assembly line balancing based on Scholl and Becker

(2006) and Becker and Scholl (2006)
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However, Sivasankaran and Shahabudeen (2014) defined another classifi-

cation for the assembly line balancing, which was similar to Ghosh and Gagnon

(1989) classification. Figure 2.6 shows their proposed categorization. The big dif-

ference between the last classification and Ghosh and Gagnon (1989) classification

is the layout of workstations, which has not been considered in Ghosh and Gagnon

(1989) classification. This layout is divided into two groups in Sivasankaran and

Shahabudeen (2014) classification: the straight line and the U-shaped line. In the

straight line, workstations are arranged beside the straight conveyor belt, where

different components are added to the launched part step by step. In contrast, in

the U-shaped line, the layout of workstations is U form. This type of assembly

line allows operators to work in more than one workstation.

Figure 7 Classification of assembly line balancing based on Sivasankaran and Shahabudeen,
2014

ALB Problems
Single Model

Deterministic(SMD)
Straight Type(SMDS) U Type(SMDU)

Probabilistic(SMP)
Straight Type(SMPS) U TYPE(SMPU)

Multi/MixModelDeterministic(MMD)
Sitraight Type(MMDS) U Tyape(MMDU)

Probabilistic(MMP)
Straight Type(MMPS) U Type (MMPU)

Figure 2.6: Classification of assembly line balancing based on Sivasankaran and

Shahabudeen (2014)

2.4. Objectives in assembly line balancing

Objectives in the assembly line balancing are divided into a single objective and

multiple objectives. In the single objective group, one objective is determined

to optimize the assembly line and also to balance it. However, when the goal is

to optimize several objectives at the same time, the optimization is dealing with
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multiple objectives in the assembly line (Malakooti and Kumar, 1996). Kriengko-

rakot and Pianthong (2007) divided the objective criteria in the literature into

two groups based on studies conducted by Ghosh and Gagnon (1989) and Scholl

(1999).

Ghosh and Gagnon (1989) divided the objective criteria of ALB in the lit-

erature into two main categories, which were Technical and Economic objectives.

Table 2.1 shows the related classification. Each number inside the table shows

the total number of articles which used a specific objective for each assembly

line balancing problem. They defined technical objectives with seven restrictions

which were correlated to the throughput or operational efficiency. Minimizing

the number of workstations was the most common objective, which was widely

used in different types of assembly line. They also described economic objectives

with the six criteria, which were associated with the assembly line operating cost

or profitability measures. As the Table 2.1 highlights, minimizing the labour cost

or the labour idleness cost was the main focus of a large number of studies. How-

ever, few studies focused on minimizing other costs such as product incompletions

(Kottas and Lau, 1973), penalty costs (Dar-El and Cucuy, 1977), and inventory

and set up cost (Caruso, 1965).

On the other hand, Scholl (1999) considered two objective criteria as prin-

ciple categories; capacity oriented goals and cost oriented goals. Maximizing the

capacity utilization of the assembly line is one of the main goals of the assembly

line balancing. This objective is measured by the line efficiency, which relies on

the cycle time and the number of workstations, if the line deals with the pro-

duction of the single model that has the constant operation time. Therefore,

minimizing the number of workstations for a given cycle time, minimizing the cy-

cle time for a given number of workstations, minimizing the balance delay time,

and the balance delay over all workstations are the most important objectives,
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which are considered to reach the maximum line efficiency. In addition, minimiz-

ing the total cost is one of the important goals of the assembly line balancing,

which deals with a large number of costs in a short time and also in a long time

such as costs of machinery and tools, wage costs, material costs, operation costs,

set up cost, and investment cost. The number of workstations and the cycle time

are two factors that affect the total cost.

Table 2.1: Assembly line balancing objective criteria based on Ghosh and Gagnon (1989)

Frequency of use

Type of objective SMD SMS MMD MMS Total

Technical
Minimize the no. of workstations 16 2 2 1 21
Minimize the cycle time 13 1 2 0 16
Minimize the total idle time 9 0 3 0 12
Minimize the balance delay 2 0 1 0 3
Minimize the overall facility or line length 0 0 2 0 2
Minimize the throughput time 0 0 1 0 1
Minimize the probability that one 0 1 1 1 3
or more work stations will exceed the cycle time

Total 40 4 12 2 58

Economic
Minimize the combined cost of labour, 0 3 0 1 4
workstations and product incompleteness
Minimize the labour cost 3 1 0 0 4
Minimize the total penalty cost 0 0 2 0 2
for a number of inefficiencies
Minimize the inventory, set up and idle time cost 0 0 1 0 1
Minimize the total in-process inventory cost 0 1 0 0 1
Maximize the net profit 1 0 0 1 1

Total 4 5 3 2 13

However, Boysen et al. (2007), defined following objectives:

• Minimizing the number of workstations for a given cycle time.

• Minimizing the cycle time or maximizing the production rate for a given

number of stations.
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• Maximizing the line efficiency.

• Minimizing the cost of the assembly line.

• Maximizing the profit, which is difference between the revenue and the cost.

• Smoothing the workstation times within a workstation and between work-

stations.

• Minimizing or maximizing some composite score related to the one or more

features describing bottleneck aspects or further measures of efficiency.

• Finding a feasible solution

As is obvious, some of the above objectives are similar to defined goals by

Scholl (1999), and also Ghosh and Gagnon (1989).

2.5. Methodological techniques for solving line

balancing problems

Different solution methodologies have been explored in order to reach the op-

timal solutions. Ghosh and Gagnon (1989), organized these methods into two

groups, which were exact and inexact methods, and analysed their use in the dif-

ferent models of the assembly line balancing. Table 2.2 demonstrates the related

methods. Each number inside the table shows the total number of articles, which

used a specific method for each assembly line balancing problem. Table 2.2 shows

that researchers focused on the SMD model and used various methods to reach

different objectives. In addition, Branch and Bound method (BB) was the most

popular method in exact methods group, while priority-ranking method was the

most common method in the second group.
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However, Sivasankaran and Shahabudeen (2014), organized methods with con-

sideration of different factors, which are various types of assembly line balancing

(type 1 and type 2), different assembly line balancing problems (SMD − S,

SMD − U , SMP − S, SMP − U , MMD − S, MMD − U , MMP − S, and

MMP − U), various objectives, computational effort levels (high, medium, and

low), and also different types of solution optimality (optimal, near optimal, very

near optimal, and far less from optimality). A summary of their research is

demonstrated in Table 2.3. Each number inside the table shows the total number

of articles, which have used a specific method for each assembly line balancing

problem. As it is clear from Table 2.3, the SMDS has the maximum number

of articles, which apply different methods to solve the problem. Also, few ar-

ticles have focused on the U-shaped assembly line balancing problem compared

with the straight type assembly line balancing. In addition, it is obvious that

the genetic algorithm has the maximum number of articles compared with other

methods. This means that researchers tended to utilize the genetic algorithm

more than other methods to solve problems. Following that, heuristic methods,

mathematical models, and optimization algorithms were more popular in the re-

search. However, memetic algorithm, bee algorithms, critical path method, and

particle swarm optimization algorithm were the least common methods in the

research with smallest number of articles.
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Table 2.2: ALB methodological techniques based on Ghosh and Gagnon (1989)

Frequency of use

ALB Techniques SMD SMS MMD MMS Total

Exact Methods

Linear Programming (LP ) 1 0 0 0 1

Integer Programming (IP ) 7 0 1 0 8

Dynamic Programming (DP ) 4 2 0 0 6

Goal Programming (GP ) 1 0 0 0 1

Shortest-path technique (SP ) 2 0 2 0 4

Maximal-path technique (MP ) 1 0 0 0 1

Branch and bound (BB) 11 1 0 1 13

Total 34

Inexact Methods

Priority ranking and assignment 10 5 7 2 24

Tree search (heuristic BB) 8 1 0 0 9

Trade and transfer 1 2 1 0 4

Random sampling 3 1 0 0 4

Other heuristic methods consist of 5 3 1 2 11

task grouping, approximation technique

Total 52

26



Chapter 2. Literature Review

Table 2.3: ALB methodological techniques based on Sivasankaran and Shahabudeen

(2014)

Frequency of use

SMD SMD SMP SMP MMD MMD MMP MMP

Methodological Techniques S U S U S U S U Total

Mathematical models 7 2 3 0 4 0 0 1 17

Petri net algorithms 2 0 0 0 0 0 0 0 2

Heuristics 13 2 3 1 0 2 0 0 21

Genetic algorithms 14 0 4 1 6 2 1 1 29

Simulated annealing 5 1 2 0 2 0 1 0 11

Tabu search algorithms 4 0 0 1 1 0 0 0 6

Ant colony 7 3 0 0 2 0 0 1 14

Shortest path 1 1 1 0 0 0 0 0 3

Memetic algorithm 1 0 0 0 0 0 0 0 1

Bee algorithms 1 0 0 0 0 0 0 0 1

Critical path method 0 1 0 0 0 0 0 0 1

Imperialistic competitive algorithm 0 1 0 1 0 0 0 0 2

Particle swarm optimization algorithm 0 0 1 0 0 0 0 0 1

Total 55 11 14 4 15 4 3 3

2.6. Mixed model assembly line

The mixed model assembly line is widely used in companies which have customers

with different demands because this type of assembly line gives a chance to com-

panies for producing different models of one product in an assembly line simulta-

neously. This means that workstations in the mixed model are flexible enough to

perform operations on different models. Differences of models in the mixed model

come from various factors such as size and colour diversity, applied materials or

even equipment. Therefore, various operations, operation times and/or prece-

dence relations are required to produce them (Becker and Scholl, 2006). Also,

each model has a specific precedence diagram that can be integrated to reach a

single precedence diagram. The combined precedence diagram was used first time

for balancing the mixed model assembly line by Thomopoulos (1967). This ver-

sion of precedence diagram has some advantages. For example, every repetition
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of an operation is performed by the identical workstation. This matter leads to

diminish training costs (Van Zante-de Fokkert and de Kok, 1997). Cycle time is

another subject, which is very important in the mixed model assembly line. Each

model can have its own cycle time in the assembly line but it is usually calcu-

lated based on the average cycle time for all models (Boysen et al., 2009b). The

precedence diagram and the cycle time are two main restrictions that must be

satisfied in balancing of the mixed model assembly line. Several subjects should

be considered for design of the mixed model assembly line, namely, line balanc-

ing (Manavizadeh et al., 2012), layout design (Ho, 2005), and model sequencing

(Boysen et al., 2009b). However, the main problems for the planners of the mixed

model assembly line are as follows (McMullen and Frazier, 2000):

• How to balance the assembly line?

• How to determine the optimum launch sequence?

These two problems are discussed in the following sections.

2.6.1. Mixed model assembly line balancing

The mixed model assembly line balancing includes assigning tasks to different

workstations with consideration of various constraints in order to minimize cost

and to satisfy demands of the products (Simaria and Vilarinho, 2004). The ob-

jective of the mixed model assembly line balancing is similar to the single model

assembly line balancing, which is assigning tasks to workstations as evenly as pos-

sible (Groover, 2007). Different constraints should be considered when tasks are

assigned to workstations. Three simple but important constraints are explained as

follows: the precedence constraint, the cycle time constraint, and restriction of as-

signing tasks to one workstation. The first constraint is precedence relationships.

Specifically, precedence constraints with defining predecessors and successors for
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each task can limit alternative assignments of tasks to the workstations. The sec-

ond constraint is the cycle time, which can determine the total task times that are

allocated to each workstation. Therefore, this leads to limit the number of tasks

that are assigned to each workstation. Finally, the last constraint is to assign

each task to only one workstation. Simaria (2006) proposed different constraints

for assignment of tasks to workstations as follows: zoning constraints, worksta-

tion constraints, position constraints, and operator constraints. The first group is

related to assign the compatible (incompatible) tasks to the same (different) work-

stations. Compatible tasks are those, which can use the same equipment or are

performed in the same conditions like temperature. However, incompatible tasks

are not assigned to the same workstation because of several reasons such as safety

requirements or capacity restriction of equipment. The second defined group by

Simaria (2006) is workstation restrictions. Specifically, some workstations have

special equipment, which are not available in other workstations. Therefore, tasks

that need that equipment are assigned to those workstations. The third group

is position constraints that limit assignment of tasks to the different positions.

These constraints make easy to produce large products that have a fixed position

by grouping tasks based on their positions in a two-sided assembly line. The last

group is operator constraints. Some complicated tasks require operators with a

high skill level. Therefore, qualified operators are selected in order to perform

complex tasks. However, Boysen et al. (2007) proposed different constraints for

assignment of tasks to workstations. These constraints are as follows:

• Zoning constraints

• Cumulative restrictions of task-station-assignment, which consider the cu-

mulative value of different factors for task assignment such as space at a

workstation and work content.

29



Chapter 2. Literature Review

• Fixed task assignment to a particular workstation because of different re-

strictions, namely, using a special equipment that can not be moved to other

workstations

• Assigning task to a certain type of workstation such as those tasks that

need to be performed by a subset of machines (Boysen et al., 2008), and

vice versa

• Minimum and maximum restriction between tasks.

Assignment of tasks to workstations is characterized by two types of vari-

ability in the mixed model assembly line (Bukchin, 1998): model variability and

station variability. The first variability is related to a certain model with the

variability of the assembly times on the different stations, while the second one

is related to the different models with variability of the assembly times at a spe-

cific station. These types of variability can cause blockage and starvation and

following that, high idle time within stations, which totally lead to have the low

throughput. Equal division of total assembly time of each model between work-

stations as well as having equal assembly times for different models can reduce

these types of variability. Mixed model assembly line balancing problems are

divided into two categories (Scholl, 1999): MALBP − I, which focuses on min-

imizing the number of workstations for a given cycle time, and MALBP − II,

which focuses on minimizing the cycle time for a given number of workstations.

MALBP − I is frequently used when demand is foreseeable and the goal is to

design a new assembly line, while MALBP − II focuses on maximizing the pro-

duction rate of an existing assembly line. Both of MALBP−I and MALBP−II

are NP- hard (Bukchin and Rabinowitch, 2006). The mixed model assembly line

balancing problem has the following specific characteristics (Simaria, 2006):

• Different models, which have some similarities, of a product are assembled

in the assembly line at the same time.
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• The demand of each model is known in a planning horizon.

• The cycle time of the line is known.

• Each model has a specific precedence diagram, which can be combined in

order to have one precedence diagram.

• Each task has a specific time that may vary in different models.

• Workstations are flexible to perform various tasks of different models.

Different studies have been conducted in the past about mixed model as-

sembly line balancing. For example, Simaria and Vilarinho (2004) presented a

mathematical model to solve the mixed model assembly line balancing problem

by using a genetic algorithm. Their objectives were minimizing the cycle time and

also balancing the workload within each workstation. Bukchin and Rabinowitch

(2006) used a branch and bound algorithm to solve the mixed model assembly

line balancing problem with the aim of minimizing workstation costs and task

cost. They allowed common tasks of different models to be assigned to different

workstations. Akpinar and Bayhan (2011) proposed a hybrid algorithm contain-

ing of genetic algorithm, kilbridge and wester heuristic, Phase-I of Moodie and

Young method, and ranked positional weight technique to solve a mixed model as-

sembly line balancing problem. They focused on three objectives in their study:

minimizing the number of workstations, maximizing the workload smoothness

between workstations, and maximizing the workload smoothness within worksta-

tions. Manavizadeh et al. (2012) introduced a multi objective genetic algorithm

to solve a mixed model assembly line balancing. The objectives were minimizing

the cycle time and minimizing the number of workstations. Tiacci (2015) focused

on solving the mixed model assembly line balancing problem and also buffer al-

location problem simultaneously in such a way that task times are stochastic

and using parallel workstations are allowed. They applied simulation techniques
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with a genetic algorithm to solve these problems. Ramezanian and Ezzatpanah

(2015) focused on solving multi-objective mixed model assembly line balancing

problem as well as worker assignment problem. The objectives were minimizing

the cycle time as well as minimizing total operating costs simultaneously. A goal

programming approach was used to solve these problems.

2.6.2. Mixed model assembly line sequencing

A large number of studies have been conducted in the past about the mixed

model assembly line sequencing, which show the importance of this subject. For

example, Yano and Rachamadugu (1991) minimized the total utility work by

solving models sequence problem in the mixed model assembly line. Kim and

Jeong (2007) minimized unfinished work within workstations by solving a se-

quencing problem in the mixed model assembly line with a sequence-dependent

set-up. Fattahi and Salehi (2009) proposed a heuristic model to minimize the

total utility work and idle times. They solved sequencing problem of the mixed

model assembly line with a variable launching interval between products. Salehi

et al. (2013) proposed a meta-heuristic model to solve the sequencing problem in

the mixed model assembly line. Three objectives were considered in their study:

minimising the total idle cost, minimizing the total production rate variation

cost, and minimizing the total set-up cost. Different objectives are exploited by

researchers for solving sequencing problem in the mixed model assembly line,

which can be explained namely through the following classification (Akgunduz

and Tunali, 2011):

• Keeping a constant rate of the part usage, which has a direct relationship

with the demand rate of actual production.

• Minimizing variation of production rates, which helps to have a constant

rate of part usage (Mansouri, 2005).
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• Minimizing work overload, which leads to minimize the operation time or

even workstation border. The work overload can be compensated by addi-

tional utility workers and it can be avoided by determining a sequence of

models (Boysen et al., 2009b).

• Minimizing the set-up cost/time.

• Minimizing line length, which leads to minimize the investment cost (Boysen

et al., 2009b).

• Levelling workloads, which leads to have a balanced workload in each work

station (Ding et al., 2006).

• Minimizing throughput time, which is the time interval between the launch-

ing of the first work piece and the finishing of the last work piece.

• Minimizing the duration of line stoppages, which refers to the time when

a line is stopped. Therefore, no work pieces can be completed during this

time. Hence, this objective helps to minimize the cost for lost sales (Boysen

et al., 2009b).

One of the important concerns for solving the sequencing problem in the

mixed model assembly line is launching discipline of models, which is defined as a

time interval of launching the base parts into the beginning of the assembly line

(Groover, 2007; Boysen et al., 2009b). This time interval is constant and equal to

the cycle time in a single model assembly line. However, that is complicated in the

mixed model assembly line because of having different models of a product in the

same assembly line (Groover, 2007). The launching discipline was divided into

two groups (Wester and Kilbridge, 1964): fixed rate launching and variable rate

launching. Base parts are launched in the constant time interval, which is equal

to the cycle time, when the assembly line is dealt with the fixed rate launching

(Wester and Kilbridge, 1964). This time interval relies on the product mix and
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production rates of the models. Selecting the sequence of models is an important

subject in the fixed rate launching which can avoid station congestion and/or idle

time in the assembly line (Groover, 2007). However, the time interval is based on

the cycle time of the current base part in the variable rate launching. Sequencing

of models is not important in the variable rate launching. Therefore, models can

be launched in any sequence desired without causing idle time or congestion at

workstations (Groover, 2007).

Different methods have been used for solving the sequencing problem in

the mixed model assembly line, such as heuristic (McMullen and Frazier, 2000;

Mansouri, 2005), branch and bound algorithm (Bard et al., 1994; Drexl et al.,

2006), integer programming (Dar-El and Cucuy, 1977; Drexl and Kimms, 2001),

dynamic programming (Yano and Rachamadugu, 1991), tabu search (McMullen,

1998), simulated annealing (McMullen and Frazier, 2000; Boysen et al., 2009a),

and genetic algorithm (McMullen et al., 2000; Kim et al., 2000; Mansouri, 2005;

Kim et al., 2006; Akgunduz and Tunali, 2010). The genetic algorithm was the

most common method, which has attracted more researchers for solving the se-

quencing problem.
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Mathematical Model

3.1. Problem definition

In the mixed model assembly line, some differences are considered between several

products, which have a common basis and are assembled in one assembly line.

Two important problems of the mixed model assembly line are line balancing and

models sequencing. Line balancing is how to assign tasks to different worksta-

tions in the line while models sequencing is how to select the sequence of different

models of a product. These two problems have been studied together in a hierar-

chical manner or simultaneously. The hierarchical manner focuses on balancing

the assembly line first. Following that, the sequencing problem is solved to de-

termine the sequence of models based on the obtained results from line balancing

(Mosadegh et al., 2012a). Specifically, the optimal model sequencing depends on

the obtained results from line balancing (Hwang and Katayama, 2010).

A large number of studies have been conducted on the balancing and se-

quencing problems. For example, Hwang and Katayama (2010) solved balancing

and sequencing problems in a hierarchical manner to minimize the number of

workstations and also variance of workload. Mosadegh et al. (2012b) solved bal-

ancing and sequencing problems simultaneously in the mixed model assembly
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line with station-dependent assembly times. They proposed a mixed-integer lin-

ear programming model to minimize the total utility work. Manavizadeh et al.

(2015) solved balancing and sequencing problems simultaneously to minimize the

cycle time, the wastages in each station, and also the work overload by proposing

a heuristic approach. In this thesis, we solve balancing and sequencing problems

simultaneously with the aim of minimizing the workstation length, the worksta-

tion cost, and task duplication cost in the mixed model assembly line.

Several aspects should be considered in the design of the mixed model as-

sembly line. One aspect is satisfying the demand of each model of a product

in a planning horizon. This demand is broken into h cycles in order to use a

cyclic production strategy; h is the greatest common divisor of demand values.

For example, if the demand of product m during the entire planning horizon is

shown with Dem (where m = 1, . . . , M is the number of models), then the

vector de = de1, . . . , dem, where dem = Dem
h

, represents the product mix, a set

of models which is called Minimum Part Set (MPS) and is manufactured in each

repetitive cycle. Specifically, repetition of producing the MPS products for h

times can satisfy the total demand in the planning horizon (Hyun et al., 1998;

Mosadegh et al., 2012a). To explain the MPS vector, an example is presented

here. Imagine that three models of a product, like A, B and C are produced in

the same assembly line. The demand of each model during the entire planning

horizon is 12, 8, and 4 respectively. Therefore, h = 4 and the MPS vector is

de = (3, 2, 1), which needs to be repeated 4 times in order to meet the total

demand of each product in the planning horizon. In this thesis, demand of each

model of a product is based on the MPS strategy.

Another aspect that should be considered in the mixed model assembly

line is selecting the operator schedule. There are two types of operator schedule:

early start and late start. In the early start schedule, all operations are started at

their earliest start while in the late start schedule, operations are started in their
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latest time which does not increase the duration of the entire project. The first

schedule is more common and helps an assembly line to have the shortest length

(Hyun et al., 1998). Therefore, in this thesis the early start schedule is used. A

third aspect is selecting the type of workstation. Two types of stations are used

in the assembly line: closed and opened stations. In a closed station, operators

can not cross boundaries to work while in an opened station, operators can cross

boundaries (Hyun et al., 1998). In this thesis, closed type stations are used.

The objective of this thesis is to balance and sequence the mixed model

assembly line simultaneously based on the studies conducted by Bukchin and

Rabinowitch (2006) and Mosadegh et al. (2012a). Bukchin and Rabinowitch

(2006) focused on solving only the line-balancing problem in the mixed model

assembly line. The objective of their study was to develop an integer linear

programming model to minimize the total cost, which is the sum of the stations

cost and tasks cost. In their study, common tasks were permitted to be assigned

to different workstations with respect to the precedence constraints. This is called

task duplication. On the other hand, Mosadegh et al. (2012a) focused on solving

balancing and sequencing problems simultaneously in the mixed model assembly

line. The aim of their study was to develop a mixed-integer linear programming

(MILP ) model to minimize the total utility work, which is the total amount of

work that is not completed within the given length of workstation. In their study,

the uncompleted tasks were passed to the utility workers. Also, they assumed that

the cost of assigning tasks to workstations is minimal. In addition, they assumed

that the common tasks are allowed to be assigned to different workstations with

respect to the precedence constraints. Unlike the first study, the second study

did not consider task cost, which includes task duplication cost. Specifically, the

authors of the first study divided the total tasks cost into two parts: a fixed part

and a variable part. The fixed part is associated with the cost of performing each

task in a single station without duplication while the variable part is dependent
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on task duplication, namely, duplication cost of machinery and tools.

This thesis combines different conditions of the above two studies to simul-

taneously balancing and sequencing problems in the mixed model assembly line.

One of the main contributions of this thesis is to develop a mixed-integer linear

programming (MILP ) model to minimize the workstation length, workstation

cost, and task duplication cost. Therefore, we deal with a multi-objective function

in our mathematical model, but we need a single solution point to minimize these

objectives simultaneously. Hence, the multi-objective function is transferred to a

single-objective function by adding weight to each objective. These weights show

the importance of each objective.

The number of opened workstations in the assembly line as well as length

of each workstation are unknown in our mathemathical model. We focus on the

mathematical model of the study conducted by Mosadegh et al. (2012a), and we

call this mathematical model the reference mathematical model in this thesis.

Modifications are made in the reference mathematical model to minimize the

length of workstation, workstation cost as well as task duplication cost. The

first modification is that the utility work is ignored in this thesis for two reasons:

first, our mathematical model will be complicated if the utility work is considered;

second, if the utility work goes outside the workstation boundary, as it occured

in the reference mathematical model, we cannot identify the exact length of the

assembly line. The second modification is that the station cost and task cost are

considered in our mathematical model based on the study conducted by Bukchin

and Rabinowitch (2006). However, this task cost includes only task duplication

costs associated with assigning common tasks to different workstations, because

we believe that performing each task in a single workstation has unavoidable task

cost that cannot be optimized. Therefore, our mathematical model will focus only

on minimizing the task duplication cost. Details of the proposed mathematical

model will be discussed in the next section. The following assumptions are made
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to deal with the problem:

• There is a conveyor which moves along workstations with a constant speed.

• Fixed rate launching is used to launch different models of a product into

the conveyor.

• All workstations are closed type and there is no buffer between the work-

stations.

• The number of workstations is unknown in the assembly line and the gap

is not permitted between the two consecutive workstations.

• The early start schedule with a reference point for each work station is used

for all workstations. Therefore, operators are not allowed to work beyond

the reference point.

• The utility work is ignored in all workstations.

• The common tasks can be assigned to different workstations with consider-

ation of related precedence constraints; also, there is no conflicting prece-

dence relationships among tasks of different models of a product.

• Operation times are deterministic and known for all tasks while they might

differ in various models of a product.

• Demand of each model of a product must be satisfied in a planning horizon

with respect to the cyclic production strategy in the assembly line.

• The time of moving workers along a workstation from the previous product

to the next product is ignored.

In addition, each model is specified by its order in the MPS because tasks’

assignment might be different in models. Therefore, the order of models is shown

by A1B1C1A2B2A3 instead of ABCABA.
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3.2. Problem formulation

In this section, a mathematical model is proposed based on the study conducted

by Mosadegh et al. (2012a). A mixed-integer linear programming (MILP ) model

is introduced in this section to minimize the workstation length, workstation cost,

and task duplication cost. Therefore, the length of each workstation as well as

the number of workstations are unknown in the MILP model. A branch and

bound (B&B) algorithm is used to solve the model for small size problems. The

indices, parameters and variables of the MILP model are as follows:

Indices:

m Index for model

t Index for task

h Indice for tasks

s Index for sequence

k Index for station

Parameters:

M Total number of models where models are indexed by m = 1, . . . , M

T Total number of tasks where tasks are indexed by t = 1, . . . , T

S Total number of sequences where sequences are indexed by s =

1, . . . , S

K Total number of workstations where workstations are indexed by k =

1, . . . , K

v Speed of conveyor

Lr Launching rate of each model

Prem,t Set of immediate precedent tasks for task t of model m
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Dm,t Assembly time for task t of model m

dm Demand of model m in the MPS

SC Station cost, fixed cost associated with each workstation

TC Task duplication cost

B A large positive number

jm,t Binary data which equals to 1 if Dm,t ≥ 0, 0 otherwise

Variables:

Continuous Variables:

wk Length of workstation k

ps,k Start position of operator at sequence s in workstation k

Binary Variables:

xm,t,s,k Binary variable which equals to 1 if task t of model m at sequence s

is assigned to workstation k, 0 otherwise

at,k Binary variable which equal to 1 if task t of any model is assigned to

workstation k

zk Binary variable which equals to 1 if workstation k is open, 0 otherwise

ym,s Binary variable which equals to 1 if sequence s is assigned to model

m

MILP Model

Minimize:

Objective = f1 ·
∑
k

wk + f2 ·
∑
k

SC · zk + f3 ·
∑
t

TC · ((
∑
k

at,k)− 1) (3.1)
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Subject to:

ps,k + (
∑
m

∑
t

Dm,t · xm,t,s,k) · v ≤ wk ; ∀(s, k) (3.2)

ps,k + (
∑
m

∑
t

Dm,t · xm,t,s,k) · v − Lr · v ≤ ps+1,k ; ∀(s, k)|(s < S) (3.3)

pS,k + (
∑
m

∑
t

Dm,t · xm,t,s,k) · v − Lr · v ≤ p1,K ; ∀(k) (3.4)

∑
k

xm,t,s,k = ym,s · jm,t ; ∀(m, t, s) (3.5)

∑
s

ym,s = dm ; ∀(m) (3.6)

∑
m

ym,s = 1 ; ∀(s) (3.7)

∑
k

k · xm,h,s,k ≤
∑
k

k · xm,t,s,k ; ∀(m, t, s, h)|h ∈ Prem,t (3.8)

wk ≤ B · zk ; ∀(k) (3.9)

xm,t,s,k ≤ zk ; ∀(m, t, s, k) (3.10)

zk ≥ zk+1 ; ∀(k) (3.11)

at,k ≥ xm,t,s,k ; ∀(m, t, s, k) (3.12)

xm,t,s,k, ym,s, at,k and zk are binary (3.13)
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ps,k and wk are greater than equal zero (3.14)

The objective function of the model in Eq. (3.1) minimizes the length of

workstations and also the total cost, which is the sum of workstations cost and

tasks duplication cost. The constraint set in Eq. (3.2), declares that all operations

should be performed within the length of the workstation. The constraint given in

Eq. (3.3) determines the starting position of the operator in the workstation after

finishing each task of each model in each sequence (except for the last sequence).

The constraint given in Eq. (3.4) determines the start position of operator in

the last sequence of each cycle. The constraint in Eq. (3.5) states that each

task of each model is assigned to a particular sequence, if its model is assigned

to that sequence before. Eq. (3.6) emphasises that the demand for each model

in the MPS must be satisfied. Eq. (3.7) guarantees that each model is assigned

to a specific sequence. Therefore, all tasks of a special model are completed in

the same sequence. Precedence constraints are satisfied in the constraint set of

Eq. (3.8). The constraint set in Eq. (3.9) declares that the workstation length

will be zero if that workstation is not open in the assembly line. Eqs. (3.10)

and (3.11) and Eq. (3.12) impose the logical constrains on the binary variables.

Specifically, the constraint set in Eq. (3.10) states that a task is assigned to

a particular workstation if that workstation is open. Eq. (3.11) prevents gap

between two consecutive opened workstations in the assembly line. Constraint

set of Eq. (3.12) declares that similar tasks of different models can be assigned

to different workstations. Eqs. (3.13) and (3.14) shows binary variables and

variables that are greater than equal zero respectively.
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3.3. Model extension

In this section, we extend the mathematical model, which was presented in sec-

tion 3.2. In section 3.1, we assumed that the conveyor moves along workstations

with a constant speed. Therefore, it moves work pieces steadily from station to

station. Hence, it has a continuous motion, and we can have two or more assem-

blies in one station at the same time. Also, we assumed that fixed rate launching

is used to launch different models of a product into the conveyor. This means

that we have a constant cycle time, which is equal for all models of a product in

the assembly line. Therefore, the assembly line is paced. Now, we will change

configuration of the assembly line in order to know how it affects our mathemat-

ical model. Specifically, we assume that we have a paced line with a synchronous

configuration, which means that the conveyor has an intermittent motion. There-

fore, we have a mixed model synchronous assembly lines (MMSAL) in the model

extension. In this situation, the conveyor moves work pieces between stations pe-

riodically. This means that work pieces stay in workstations for a fixed time

period, which is at least equal to the maximum operation time, and then they

move to the next station at the same time. Therefore, only one work piece is avail-

able in each station that needs to be assembled. The mixed model synchronous

assembly line (MMSAL) are more common for assembling large products such as

automotive, household appliances, aircrafts, and ships (Salehi et al., 2013). There

are a few studies in the past which focused on MMSAL. Kouvelis and Karabati

(1999) minimized the cycle time by introducing an integer programming model

to solve the scheduling problem in the MMSAL. Salehi et al. (2013) solved the

sequencing problem of MMSAL by exploiting simulated annealing algorithm.

Then, they compared their results with Lingo 9 software. They focused on three

objectives for solving this problem: minimizing the total idle cost, minimizing the

total production rate variation cost, and minimizing the total set up cost. Faccio
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et al. (2015) solved balancing and sequencing problems of MMSAL hierarchi-

cally with using a supplementary flexible operator, which is called jolly operator.

Objectives of their study are minimizing the number of jolly operators as well as

minimizing work-overloads .

The proposed mathematical model in this section focuses on solving bal-

ancing and sequencing problems of the mixed model synchronous assembly lines

(MMSAL) simultaneously. The following assumptions are made to deal with

the problem:

• There is a conveyor which moves along workstations with an intermittent

motion. Therefore, the synchronous configuration is used in the paced as-

sembly line.

• Fixed rate launching is used to launch different models of a product into

the conveyor. Therefore, models have a constant and equal cycle time.

• All workstations are closed type and there is no buffer between them.

• The number of workstations is unknown in the assembly line and the gap

is not permitted between two consecutive workstations.

• The early start schedule with the zero reference point is used for all work

stations. Therefore, all operations are started at the beginning of worksta-

tions.

• The utility work and also ideal time are ignored in all workstations.

• The common tasks can be assigned to different workstations with consid-

eration of precedence constraints; also, there is no conflicting precedence

relationships among tasks of different models of a product.

• Operation times are deterministic and known for all tasks while they might

vary in different models of a product.
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• Demand of each model of a product must be satisfied in a planning horizon

with respect to the cyclic production strategy in the assembly line.

• The time of moving workers along a workstation from the previous product

to the next product is ignored.

Now, two important outcomes, which are resulted from above assumptions,

are discussed. First, workstations will have an equal length if the line configu-

ration changes from the continuous motion to the synchronous motion because

the length of workstation will be equal to the launching rate value multiplied by

the conveyor speed value in this situation. Both launching rate and conveyor

speed values are constant here. Therefore, we have the same length for all sta-

tions. Hence, we do not have the continuous variable, wk, which was introduced

in section 3.2, when the assembly line deals with the synchronous motion. With

this outcome, objectives of the proposed mathematical model in section 3.2 will

change to reach the new objectives in the proposed extended model in this section.

Specifically, the extended model deals with minimizing the number of stations as

well as minimizing the total cost, which is sum of stations cost and tasks dupli-

cation cost. Second, ps,k is equal to zero because we assumed that workstations

have the zero reference point, which means that operations are performed on

work pieces at the beginning of stations. Therefore, we do not have the contin-

uous variable ps,k, which was introduced in section 3.2, when the assembly line

deals with the synchronous motion. The proposed extended model is presented

as follows:
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MILP Model

Minimize:

Objective =
∑
k

SC · zk +
∑
t

TC · ((
∑
k

at,k)− 1) (3.15)

Subject to:

(
∑
m

∑
t

Dm,t · xm,t,s,k) ≤ Lr · zk ; ∀(s, k) (3.16)

∑
k

xm,t,s,k = ym,s · jm,t ; ∀(m, t, s) (3.17)

∑
s

ym,s = dm ; ∀(m) (3.18)

∑
m

ym,s = 1 ; ∀(s) (3.19)

∑
k

k · xm,h,s,k ≤
∑
k

k · xm,t,s,k ; ∀(m, t, s, h)|h ∈ Prem,t (3.20)

xm,t,s,k ≤ zk ; ∀(m, t, s, k) (3.21)

zk ≥ zk+1 ; ∀(k) (3.22)

at,k ≥ xm,t,s,k ; ∀(m, t, s, k) (3.23)

xm,t,s,k, ym,s, at,k and zk are binary (3.24)
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The objective function of the model in Eq. (3.15) minimizes the total cost,

which is the sum of the workstations cost and tasks duplication cost. like the

constraint set in Eq. (3.2) of section 3.2, Eq. (3.16) declares that all operations

should be performed within the length of the workstation. However, the continu-

ous variable of ps,k has been removed in Eq. (3.16) based on the second outcome

of changing conveyor’s motion which was discussed before. In addition, the work-

station length is constant and known in Eq. (3.16) based on the first outcome of

changing conveyor’s motion which was discussed before. Constraints in Eq. (3.3)

and Eq. (3.4) of section 3.2 have been removed in the above model because ps,k

is equal to zero. Eq. (3.5) to Eq. (3.8) are remained the same from section 3.2

and inserted into the above model as constraints from Eq. (3.17) to Eq. (3.20)

respectively. The constraint given in Eq. (3.9) is removed in the above model

because of having the constant workstation length that affects Eq. (3.9) when

the workstation length is equal to the launching rate multiplied by the speed of

the conveyor. Constraints from Eq. (3.10) to Eq. (3.13) are kept the same from

section 3.2 and inserted into the above model as constraints from Eq. (3.21) to

Eq. (3.24) respectively. The constraint in Eq. (3.14) is not considered in the

above model because of the first and second outcomes of changing the conveyor’s

motion which were discussed before introducing the above model.
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The Proposed Algorithm

Balancing and sequencing problems are individually NP-hard in the mixed model

assembly lines (Mosadegh et al., 2012b). This comes up with this result that our

proposed model, which includes balancing and sequencing problems simultane-

ously, is also NP-hard. Therefore, a metaheuristic method is used to solve the

proposed model in a short amount of time. Specifically, metaheuristic methods

are approximate algorithms, which explore search spaces to find near-optimal

solutions (Blum and Roli, 2003). These methods, which are utilized for opti-

mization of various large-sized problems, can solve problems in a reasonable time

(Talbi, 2009). Different classes of metaheuristic methods are as follows (Bat-

taia and Dolgui, 2013): neighbourhood methods, evolutionary approaches, and

swarm intelligence based metaheuristics. Neighbourhood methods include various

optimization techniques such as Tabu search (TS) (Ozcan et al., 2009; Kalayci

and Gupta, 2014), Kangaroo method (Minzu and Henrioud, 1998), Greedy ran-

domized adaptive search procedure (GRASP ) (Guschinskaya et al., 2011; Essafi

et al., 2012), and Simulated annealing (SA) (Cercioglu et al., 2009; Ozcan, 2010).

Evolutionary approaches are divided into different methods, namely, differential

evolution methods (Nourmohammadi and Zandieh, 2011; Mozdgir et al., 2013),

Imperialist competitive algorithms (Bagher et al., 2011), and Genetic algorithms
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(GA) (Akgunduz and Tunali, 2010; Tiacci, 2015). Swarm intelligence based meta-

heuristics also include several methods such as Particle swarm optimization algo-

rithms (Nearchou, 2011; Chutima and Chimklai, 2012), Bees algorithms (Tapkan

et al., 2012), and Ant colony optimization (ACO) (Simaria and Vilarinho, 2009;

Yagmahan, 2011). The most common techniques of metaheuristic methods are

tabu search, simulated annealing, ant colony optimization, and genetic algorithm.

In this thesis, a combination of Genetic algorithm (GA) and Linear programming

(LP ) is utilized to create a hybrid genetic algorithm, which solves the proposed

mathematical model in section 3.2 effectively. In the following section, different

steps of the hybrid genetic algorithm, which is used in this thesis, are discussed.

Then, these steps are illustrated in a flowchart.

4.1. Hybrid genetic algorithm

Currently, researchers are more interested to use hybrid metaheuristics algorithms

instead of applying a single metaheuristic method, because hybrid algorithms en-

able them to solve big real-world problems more effectively. A combination of

a metaheuristic method with other metaheuristic methods or with other tech-

niques outside metaheuristic methods is called a hybrid metaheuristic (Gendreau

and Potvin, 2010). Different classifications have been defined for hybrid meta-

heuristics. One classification, which is based on the study conducted by Raidl

(2006) is presented here. This classification is categorized with respect to four

factors: type of algorithms, level of combination, order of execution, and control

strategy. Type of algorithms determine what kind of algorithms are combined.

For example, different metaheuristic methods can be combined or one metaheuris-

tic method can be combined with an exact technique such as branch and bound

(BB) or linear programming (LP ). In this thesis, a genetic algorithm, which is

one type of metaheuristic methods, is combined with LP. Level of combination
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is divided into two levels: high level versus low level. In the high-level combi-

nation, identities of algorithms are maintained and there is no strong or direct

internal relationship between algorithms. This means that algorithms work inde-

pendently. In contrast, in the low-level combination, algorithms depend on each

other in terms of different factors like function or individual components. Or-

der of execution, which determines the implementation sequence of algorithms,

is divided into three groups: batch execution, parallel execution, and interleaved

execution. For example, in the batch execution, algorithms are performed back

to back and results of each algorithm are used as the input for the next algorithm.

Finally, control strategies are divided into two groups: integrative and collabora-

tive. Integrative strategy uses one algorithm as a subordinate algorithm, which

is embedded in a main algorithm. However, in the collaborative strategy, there

is no relation between algorithms but they can exchange information. With con-

sideration of the above explanations, an integrative strategy is employed in this

thesis. Specifically, a linear programming, which is a subordinate algorithm, is

embedded in the genetic algorithm as the main algorithm. Therefore, a hybrid

genetic algorithm (HGA) is used in this thesis.

The HGA has attracted more attention in the recent decade for solving

balancing and sequencing problems of an assembly line. Haq et al. (2006) uti-

lized a HGA, which was combination of a genetic algorithm and the modified

rank position weight method to solve a mixed model assembly line balancing

problem with the aim of minimizing the number of workstations. Wang et al.

(2008a,b) exploited a HGA, which was a combination of a genetic algorithm and

a simulated annealing for solving the sequencing problem with limited interme-

diate buffers in the mixed model assembly line. Wang et al. (2008a) focused on

minimizing the total production rate variation, the total set-up, and the total

assembly cost while Wang et al. (2008b) focused on minimizing the variation in

parts usage and minimizing the makespan. Akpinar and Bayhan (2011) used
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a HGA to solve a mixed model assembly line balancing problem with parallel

workstations. They exploited three well known heuristics, kilbridge and wester

heuristic, phase-I of moodie and young method, and ranked positional weight

technique, with a genetic algorithm. Objectives in their study were: minimizing

the number of workstations, maximizing the workload smoothness between work-

stations, and maximizing the workload smoothness within workstations. Kalayci

et al. (2014) employed a HGA that combines a genetic algorithm with a variable

neighbourhood search method to solve a sequence dependent disassembly line

balancing problem. However, in this thesis, a HGA is employed to solve balanc-

ing and sequencing problems simultaneously to minimize the workstation length,

workstation cost, and also task duplication cost in the mixed model assembly

line.

4.1.1. Genetic algorithm

A genetic algorithm is a stochastic search method, which was introduced by John

Holland in the 1970s. This method, which is classified as one of the metaheuristic

methods, has two main advantages: first, it focuses on the population instead of

a single point to search for solutions. Thus, many solutions are investigated

with this way to reach a near-optimal solution. Second, multiple fitness function

in different forms can be applied in this algorithm (Tasan and Tunali, 2008).

However, this algorithm has some disadvantages. For example, it has a slow and

premature convergence. In addition, it is not able to do local search. A genetic

algorithm usually starts with an initial solution space, which is known as an

initial population. This population is generated randomly. Candidate solutions

(individuals) in the population are encoded to start the search process (Tasan

and Tunali, 2008). In the following subsections, different steps of HGA, which

have been used in this thesis, are discussed in detail.
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4.1.2. Solution representation

Generating a good solution representation is the first step to implement the ge-

netic algorithm. The solution representation, which is encoded in this subsection,

includes three phases to address balancing and sequencing problems simultane-

ously in the mixed model assembly line. In the first phase, each task is assigned to

only one workstation. This means that common tasks between different models

are not allowed to be performed in different workstations. In the second phase,

common tasks are permitted to be assigned to different workstations but common

tasks in different occurrences of one model are assigned to only one workstation.

In the third phase, all common tasks are allowed to be assigned to different work-

stations, even common tasks in different occurrences of one model. In this way,

we can achieve the target solution in a short amount of time, because we have

limited the search spaces to the above three phases. In this thesis, the initial

solution is only generated for phase one. Therefore, phase two and phase three

use the generated initial solution from phase one. The initialization of each seg-

ment in phase one should generate a valid chromosome. However, there are some

situations that the initialization leads to having an infeasible solution such as

having a small number of opened workstations or assigning several tasks to only

one workstation. In these situations, the infeasible solution will be ignored and

the next initialization will be started.

Decoding the defined solution representation in this subsection gives us the

values of binary variables, which are xm,t,s,k, at,k, zk, and ym,s. Hence, constraint

sets from Eq. (3.5) to Eq. (3.8) and constraint sets from Eq. (3.10) to Eq. (3.12)

in section 3.2 are satisfied by this solution representation in different segments.

More explanations will be provided in the following subsections to show how these

constraints are satisfied by decoding the solution representation. The rest of the

constraints, which are related to continuous variables, are satisfied by solving the

LP -subproblem. The proposed solution representation is illustrated in Figure
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4.1. As is clear in Figure 4.1, this representation includes different segments,

which clarify various steps in the feasible tasks’ assignment to each workstation

and also feasible models’ assignment to each sequence based on the defined three

phases. These segments are explained in the following sub-subsections.

Segment-1

This segment, which is used in all three phases, provides information about a

feasible sequence of models in a production cycle. Specifically, the defined chro-

mosome in this segment determines the assignment of various models to different

sequences. Therefore, the length of the chromosome is equal to the sum of de-

mands of different models in the MPS. For example, if the MPS is de = (2, 1, 2)

for three models, A, B and C, the length of the chromosome should be equal

to five, which means that we have five sequences. Each gene in the chromosome

shows the name of the model which has been assigned to a particular sequence

with respect to the MPS vector. For instance, we have defined 2 demands for

model A, 1 demand for model B, and 2 demands for model C in the above exam-

ple. Therefore, model A and model C are repeated twice in the chromosome, but

there is only one gene for model B in the chromosome. Hence, the sequence of

(A1B1C1C2A2) can be an alternative feasible solution for segment-1. To sum up,

αS is presented by the index of the model, which has been assigned to the sequence

S. This index is used to decode the binary variable of ym,s using Eq. (4.1). Since

αS takes only a single value m, the decoded values of ym,s satisfy the constraint

set in Eq. (3.7) in section 3.2. In addition, since the length of the chromosome is

equal to the sum of demands of different models in the MPS, the constraint set

in Eq. (3.6) in section 3.2 will also be satisfied with this chromosome.

54



Chapter 4. Solution Procedure

ym,s =


1 ; if αS = m

0 ; otherwise

(4.1)

Segment-2

As with the previous segment, this segment is used in all three phases. The chro-

mosome in this segment shows the total number of workstations which are opened

in the assembly line. This number should be less than the given maximum number

of workstations. The binary variable zk is decoded by this segment. Therefore,

the constraint given in Eq. (3.11) is satisfied by decoding this chromosome.

 Segment-1 

 Segment-2 

 Segment-3  Segment-4 

 Segment-5  Segment-6 

TD� DSD�

Model assignment in
sequence s = 1, 2,..., S

Number of tasks Ek 
in station k = 1, 2,..., .

Sequence of tasks 
Ut for t = 1, 2,..., 7

E� E� E. U� U� U7 o1 o2 oD1

Number of taks per station and task sequece for model m = 1, 2, ..., M
at model's occurence o = 1, 2, ..., Dm in the sequence

oD2o2o1 oDMo2o1
model m = 1 model m = 2 model m = M

Number of stations opened

Details for m=1, o=1

Segment-7 Segment-8

Number of tasks EBmok in station
 k = 1, 2,..., .

EBmo� EBmo2 EBmo. UBmo2 UBmo.UBmo�

Sequence of tasks UBmot for  t = 1, 2,..., 7 = 4+ 2(D1 + ...+ DM)-1

= 4+ 2(D1 + ...+ DM)

Segment-? Segment-?

Figure 4.1: Solution Representation

Segment-3 and Segment-4

These two segments are used only in the first phase of the algorithm. Therefore,

each task is assigned to only one workstation, which means that common tasks

between different models are not allowed to be performed in different workstations

in these segments. Segment-3 provides information about the total number of
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tasks in each workstation. Specifically, it determines how many tasks are assigned

to each workstation. Therefore, the length of the chromosome is equal to the

maximum number of workstations, and the value of each gene in the chromosome

shows the number of tasks which have been assigned to each workstation. A

combined precedence diagram is used in this segment to determine the number of

tasks in workstations. In addition, the encoded solution in this segment should

satisfy the following equations:

β1 + β2 + ...+ βθ = T (4.2)

βθ+1 + βθ+2 + ...+ βK = 0 (4.3)

Eq. (4.2) ensures that the sum of the number of tasks which have been

assigned to different workstations are equal to the total number of tasks, T . Eq.

(4.3) states that the remaining workstations should be equal to zero if they are

greater than θ. A small example is presented to show how the chromosomes

of segment-3 and segment-4 are obtained. Imagine that there are three models

with the precedence diagrams, which are illustrated in Figure 4.2. The combined

precedence diagram of these three models is shown in Figure 4.3. Also imagine

that there are four opened workstations in the assembly line while the maximum

number of workstations is equal to seven. Therefore, these seven tasks should

be assigned to four workstations according to the combined precedence diagram.

One alternative feasible solution for this segment can be (2 2 2 1 0 0 0), which

means that 2 tasks are assigned to the first, second, and third stations separately,

and one task is assigned to the fourth station while the rest of the stations are

not open in the assembly line. Therefore, the above encoded solution satisfies the

combined precedence diagram, Eq. (4.2), and also Eq. (4.3).

Segment-4 gives information about the sequence of tasks. The length of

the chromosome in this segment is equal to the total number of tasks. The value
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of each gene in the chromosome shows the task number that has been assigned

to a particular sequence. As with the previous segment, segment-4 employs the

combined precedence diagram to determine the sequence of tasks. For example,

one alternative feasible solution for this segment can be (1 2 3 4 5 6 7) based on

Figure 4.3.

A combination of chromosomes in segment-1, segment-2, segment-3, and

segment-4 helps us to decode binary variables of xm,t,s,k and at,k. One example is

presented here to show how these two binary variables are decoded. To explain

this example, the combined precedence diagram in Figure 4.3 is used. We assume

that the maximum number of workstations is equal to 7 while only 4 workstations

are open in the assembly line. In addition, solutions which have been obtained for

segment-1, segment-3, and segment-4 are utilized in this example, and are shown

in Figure 4.4. Then, Table 4.1 shows the tasks’ assignment to each workstation

based on Figure 4.4. As is clear in Table 4.1, the models’ sequence corresponds

with the chromosome of segment-1 in Figure 4.4, and the tasks’ sequence cor-

responds with the chromosome of segment-4 in Figure 4.4. Each number inside

Table 4.1 determines a particular workstation to which a particular task has been

assigned. This number is obtained from chromosomes of segment-3 and segment-4

in Figure 4.4. For example, the first gene of the chromosome in segment-3 assigns

the first two tasks to the first station. Based on the chromosome of segment-4,

the first two tasks are task 1 and task 2. Therefore, task 1 and task 2 of all

models across all sequences are assigned to station 1 in Table 4.1. The rest of

the tasks’ assignment in Table 4.1 are carried out based on the above logic. The

binary variable of at,k is decoded based on the tasks’ assignment in Table 4.1 as

follows: a1,1=1, a2,1=1, a3,2=1, a4,2=1, a5,3=1, a6,3=1, and a7,4=1.

In addition, the binary variable of xm,t,s,k is decoded by extracting a table

from Table 4.1. Therefore, Table 4.2 shows the results for decoding the binary

variables of xm,t,s,k. As is clear in Table 4.2, a particular task of all models has
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been assigned to a particular station across all sequences. For example, the first

column of tasks’ assignment in Table 4.2 shows that task 1 of all models has been

assigned to station 1 across all sequences. Therefore, t and k are constant and

equal to 1 in the binary variable of xm,t,s,k in the first column of Table 4.2 while

the models’ numbers and their sequences change. The rest of the assignments

are carried out based on the above logic. Finally, the decoded values of xm,t,s,k

and at,k can satisfy constraint sets in Eqs. (3.5) and (3.8) and also constraint sets

from Eq. (3.10) to Eq. (3.12) in section 3.2.

Model A Model B

Model C

1 4 52 1

2

3

4

4

5

6

7

7 6 7

1 3

Figure 4.2: Precedence diagram for models A, B and C
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5

1

2

3

4

6

7

Figure 4.3: Combined precedence diagram for models A, B, and C

Chromosome of Segment- 5

Chromosome of Segment- 6

Chromosome of Segment- 7

Chromosome of Segment- 8

Model A

Chromosome of Segment- 9

Chromosome of Segment- 10

Model B

Chromosome of Segment- 11

Chromosome of Segment - 12

Chromosome of Segment - 13

Chromosome of Segment - 14

Model C

Chromosome of Segment- 1

Chromosome of Segment- 3

Chromosome of Segment- 4

1 1 2 1 0 0 0

1 2 4 5 7 0 0

2 1 1 1 0 0 0

1 2 4 5 7 0 0

1 2 1 2 0 0 0

1 2 3 4 6 7 0

2 2 1 1 0 0 0

1 3 4 5 6 7 0

1 1 2 2 0 0 0

1 3 4 5 6 7 0

A1 B1 C1 C2 A2

2 2 2 1 0 0 0

1 2 3 4 5 6 7

Figure 4.4: Obtained chromosomes from segment-1, segment-3, and segment-4

Table 4.1: Assignment of a particular task to a particular station for all models accross all

sequences (Phase one)

Tasks

Model’s Sequence 1 2 3 4 5 6 7

A1 1 1 2 2 3 - 4

B1 1 1 - 2 - 3 4

C1 1 - 2 2 3 3 4

C2 1 - 2 2 3 3 4

A2 1 1 2 2 3 - 4
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Table 4.2: Decoded binary variable of xm,t,s,k from Table 4.1

Assignment of a particular task to the particular station for all models

t = 1,k = 1 t = 2,k = 1 t = 3,k = 2 ..... t = 7,k = 4

Model’s Sequence xm,t,s,k xm,t,s,k xm,t,s,k xm,t,s,k

A1 (1,1,1,1) (1,2,1,1) - ..... (1,7,1,4)

B1 (2,1,2,1) (2,2,2,1) (2,3,2,2) ..... (2,7,2,4)

C1 (3,1,3,1) - (3,3,3,2) ..... (3,7,3,4)

C2 (3,1,4,1) - (3,3,4,2) ..... (3,7,4,4)

A2 (1,1,5,1) (1,2,5,1) - ..... (1,7,5,4)

Segment-5, Segment-6

These two segments are used in the second and third phase of the proposed

algorithm. In the second phase, common tasks between models can be assigned

to different workstations but common tasks at different occurrences of one model

are assigned to only one workstation. However, in the third phase, all common

tasks are allowed to be assigned to different workstations. This phase includes the

assignment of common tasks of one model to different workstations at different

occurrences of that model in the sequence.

Segment-5 determines a feasible tasks’ assignment of the first model to dif-

ferent workstations at the first occurrence of the model in the sequence. Specifi-

cally, this segment determines how many tasks of the first model are assigned to

different workstations at the first occurrence of the model. In contrast, segment-

6 specifies the sequence of tasks of the first model at its first occurrence in the

sequence. With these explanations, the length of the chromosome is equal to the

maximum number of workstations in segment-5 while that length is equal to the

total number of tasks in segment-6. The value of each gene in the chromosome of

segment-5 shows the number of tasks of the first model that have been assigned
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to a particular workstation at the first occurrence of the model in the sequence.

However, the value of each gene in the chromosome of segment-6 shows the task

number of the first model that has been assigned to a particular sequence at the

first occurrence of the model. Precedence diagram of the first model should be

considered in both segments. Moreover, the encoded solution in segment-5 should

satisfy Eqs. (4.4) and (4.5).

βm,o,1 + βm,o,2 + ...+ βm,o,θ = T (4.4)

βm,o,θ+1 + βm,o,θ+2 + ...+ βm,o,K = 0 (4.5)

Eq. (4.4) ensures that the sum of the number of tasks in the first model

that have been assigned to different workstations at the first occurrence of the

model are equal to the total number of tasks, T . This means that all tasks are

used to be assigned in segment-5 and also segment-6. Then, the redundant tasks

will be ignored in the investigation process based on the precedence diagram of

each model. Eq. (4.5) states that the remaining workstations should be equal

to zero if they are more than θ. As with the previous two segments, binary

variables of xm,t,s,k and at,k are decoded from defined chromosomes in segment-1,

segment-2, segment-5, and segment-6, but the major difference is that these two

binary variables show the assignment of common tasks to different workstations

in segment-5, and segment-6.

One example is presented here to decode binary variables of xm,t,s,k and

at,k for phase two. This example is based on the assumptions of the example

provided in segment-3 and segment-4 to decode these two binary variables. First,

we define a solution for segment-5. As was demonstrated in the chromosome of

segment-1 in Figure 4.4, the first model is A in the models’ sequence. Therefore,

the precedence diagram for model A, which was shown in Figure 4.2, is used to

define a feasible solution for segment-5. This solution is (1,2,1,1,0,0,0), which

61



Chapter 4. Solution Procedure

determines the number of tasks of the first model, A, that have been assigned

to different workstation at the first occurrence of model A. The solution of

segment-5 for model A remains constant for the rest of the occurrences of this

model, because common tasks in different occurrences of one model are assigned

to only one workstation in phase two.

On the other hand, one alternative feasible solution for segment-6 can be

(1,2,4,5,7,0,0), which shows the sequence of tasks of model A at its first occur-

rence. This solution, which is constant in different occurrences of model A, is

based on the precedence diagram of model A. This process is carried out for the

rest of the models, B and C, to obtain related chromosomes. Results of defining

chromosomes for these two segments for all three models are shown in Figure

4.5. Table 4.3 shows the tasks’ assignment to each workstation based on Figure

4.5. As is clear in Table 4.3, models’ sequence corresponds with the chromosome

of segment-1 in Figure 4.4, and the tasks’ sequence corresponds with the chro-

mosomes of segment-6, segment-10, and segment-12 in Figure 4.5. Each number

inside Table 4.3 determines a particular workstation to which a particular task

of a particular model has been assigned. Table 4.3 shows that common tasks can

be assigned to different workstations while common tasks in different occurrences

of one model are assigned only to one workstation. The binary variable of at,k is

decoded based on the tasks’ assignment in Table 4.3 as follows: a1,1=1, a2,1=1,

a2,2=1, a3,2=1, a3,1=1, a4,2=1, a4,3=1, a5,2=1, a5,3=1, a6,3=1, and a7,4=1.

In addition, the binary variable of xm,t,s,k is decoded by using data from

Table 4.3 to create Table 4.4. Therefore, Table 4.4 shows results for decoding the

binary variable of xm,t,s,k in phase two. As is clear in Table 4.4, common tasks have

been assigned to different workstations, but common tasks at different occurrences

of one model have been assigned to only one workstation. For example, task 3

of model B and model C has been assigned to stations 2 and 1 respectively, but

task 3 of model C has been assigned only to station 1 at different occurrences of
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model C.

Binary variables of xm,t,s,k and at,k are decoded in a similar way to what has

been explained above in the third phase, but the main difference is that common

tasks of one model are also permitted to be assigned to various workstations

in different occurrences of that model. One example is also presented here to

decode binary variables of xm,t,s,k and at,k for phase three. This example is based

on the assumptions of the example provided in segment-3 and in segment-4 to

decode these two binary variables. Like phase two, in phase three we define

solutions for different segments. As was demonstrated in the chromosome of

segment-1 in Figure 4.4, the first model is A in the models’ sequence. Therefore,

the precedence diagram for model A, which was shown in Figure 4.2, is used to

define a feasible task’s assignment for segment-5. Tasks’ assignment can be varied

for different occurrences of model A, because common tasks can be assigned to

different workstations even in various occurrences of a model in phase three.

Therefore, the solution of segment-5, which is related to the tasks’ assignment

of the first occurrence of model A, varies from the solution of segment-7, which

is related to the tasks’ assignment of the second occurrence of model A. The

above logic is also used for tasks’ assignment in different occurrences of model B

and model C. The alternative feasible solutions for tasks’ assignment in different

occurrences of all three models are illustrated in Figure 4.6. Similarly, the tasks’

sequence for each model is determined based on the precedence diagram of each

model. The alternative feasible solutions for tasks’ sequence of all three models

are also shown in Figure 4.6.

Table 4.5 shows the tasks’ assignment to each workstation based on Figure

4.6. As is clear in Table 4.5, the models’ sequence corresponds with the chro-

mosome of segment-1 in Figure 4.4, and the tasks’ sequence corresponds with

defined chromosomes for each model in Figure 4.6. Each number inside Table

4.5 determines a particular workstation to which a particular task of a particular
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model in a particular sequence has been assigned. Table 4.5 shows that common

tasks can be assigned to different workstations, even common tasks in different

occurrences of one model. For example, task 6 of model B has been assigned to

station 4 while task 6 of model C has been assigned to two different stations in

different occurrences. These two stations are station 3 at the first occurrence of

model C and station 4 at the second occurrence of model C. The binary variable

of at,k is decoded based on the tasks’ assignment in Table 4.5 as follows: a1,1=1,

a2,1=1, a2,2=1, a3,1=1, a3,2=1, a4,2=1, a4,3=1, a5,2=1, a5,3=1, a6,3=1, a6,4=1 and

a7,4=1.

In addition, the binary variable of xm,t,s,k is decoded by using data from

Table 4.5 to create Table 4.6. Therefore, Table 4.6 shows results for decoding

the binary variable of xm,t,s,k in phase three. In Table 4.6, a particular task

of a particular model has been assigned to a particular station in a particular

sequence. Specifically, Table 4.6 shows the main feature of phase three that is

all common tasks can be assigned to different workstations even common tasks

in different occurrences of a model. For example, the second column in Table 4.6

shows that task 2 of model A has been assigned to station 2 at the first occurrence

of model A while this task has been assigned to station 1 at the second occurrence

of model A. However, task 2 of model B has been assigned to station 2 at its

first occurrence. Decoded values of xm,t,s,k and at,k can satisfy constraint sets in

Eqs. (3.5) and (3.8) and also constraint sets from Eq. (3.10) to Eq. (3.12).
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Chromosome of Segment- 5

Chromosome of Segment- 6

Model A

Chromosome of Segment- 9

Chromosome of Segment- 10

Model B

Chromosome of Segment- 11

Chromosome of Segment - 12

Model C

1 2 1 1 0 0 0

1 2 4 5 7 0 0

2 1 2 1 0 0 0

1 2 3 4 6 7 0

2 2 1 1 0 0 0

1 3 4 5 6 7 0

Figure 4.5: Obtained chromosomes for segment-5 to segment-12 for three models,

A, B, and C (Phase two)

65



Chapter 4. Solution Procedure

Chromosome of Segment- 5

Chromosome of Segment- 6

Chromosome of Segment- 7

Chromosome of Segment- 8

Model A

Chromosome of Segment- 9

Chromosome of Segment- 10

Model B

Chromosome of Segment- 11

Chromosome of Segment - 12

Chromosome of Segment - 13

Chromosome of Segment - 14

Model C

1 1 2 1 0 0 0

1 2 4 5 7 0 0

2 1 1 1 0 0 0

1 2 4 5 7 0 0

1 2 1 2 0 0 0

1 2 3 4 6 7 0

2 2 1 1 0 0 0

1 3 4 5 6 7 0

1 1 2 2 0 0 0

1 3 4 5 6 7 0

Figure 4.6: Obtained chromosomes for segment-5 to segment-14 for three models,

A, B, and C (Phase three)

Table 4.3: Assignment of a particular task from a particular model to a particular station

(Phase two)

Tasks

Model’s Sequence 1 2 3 4 5 6 7

A1 1 2 - 2 3 - 4

B1 1 1 2 3 - 3 4

C1 1 - 1 2 2 3 4

C2 1 - 1 2 2 3 4

A2 1 2 - 2 3 - 4
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Table 4.4: Decoded binary variable of xm,t,s,k based on Table 4.3 for phase two

Assignment of a particular task of a particular model to the particular station

Model’s Sequence xm,t,s,k xm,t,s,k xm,t,s,k ..... xm,t,s,k

A1 (1,1,1,1) (1,2,1,2) - ..... (1,7,1,4)

B1 (2,1,2,1) (2,2,2,1) (2,3,2,2) ..... (2,7,2,4)

C1 (3,1,3,1) - (3,3,3,1) ..... (3,7,3,4)

C2 (3,1,4,1) - (3,3,4,1) ..... (3,7,4,4)

A2 (1,1,5,1) (1,2,5,2) - ..... (1,7,5,4)

Table 4.5: Assignment of a particular task from a particular model to a particular station in a

particular sequence (Phase three)

Tasks

Model’s Sequence 1 2 3 4 5 6 7

A1 1 2 - 3 3 - 4

B1 1 2 2 3 - 4 4

C1 1 - 1 2 2 3 4

C2 1 - 2 3 3 4 4

A2 1 1 - 2 3 - 4
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Table 4.6: Decoded binary variable of xm,t,s,k based on Table 4.5 for phase three

Task’s assignment of a model to the particular station in a particular sequence

Model’s Sequence xm,t,s,k xm,t,s,k xm,t,s,k ..... xm,t,s,k

A1 (1,1,1,1) (1,2,1,2) - ..... (1,7,1,4)

B1 (2,1,2,1) (2,2,2,2) (2,3,2,2) ..... (2,7,2,4)

C1 (3,1,3,1) - (3,3,3,1) ..... (3,7,3,4)

C2 (3,1,4,1) - (3,3,4,2) ..... (3,7,4,4)

A2 (1,1,5,1) (1,2,5,1) - ..... (1,7,5,4)

4.1.3. Linear programming subproblem

In the previous subsection, the solution representation was presented to determine

the values of binary variables for theMILP model in section 3.2. In this section, a

linear programming (LP ) subproblem is introduced to obtain the optimal values

of continuous variables corresponding to the values of binary variables. The

proposed linear programming subproblem is formulated based on the MILP

model in section 3.2. Since the values of binary variables have been determined

already, these variables are known in formulating the LP-subproblem. As a result,

constraint sets from Eq. (3.5) to Eq. (3.8) and constraint sets in Eqs. (3.10)

and (3.11) and Eq. (3.12) from the MILP model in section 3.2 are removed

in formulating the LP model, because they have been composed of only binary

variables. On the other hand, constraint sets in Eqs. (3.2) and (3.3) and Eq.

(3.4) are modified by setting xm,t,s,k = 1 as the known binary variable; then,

these constraints are inserted into the LP -subproblem. A similar logic is applied

for the constraint set in Eq. (3.9) by setting zk = 1; then, the modified constraint

is inserted into the LP -subproblem. Moreover, knowing the binary variables of

zk and at,k leads to removing the station cost term and the task duplication cost
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term from the objective function of the MILP model in section 3.2, because these

two terms can be computed before solving the LP -subproblem. The complete

LP -subproblem is presented below.

LP: given (xm,t,s,k, zk, ym,t, at,k) for all (m, t, s, k)

Minimize:

Objective =
∑
k

wk (4.6)

Subject to:

ps,k + (
∑
m

∑
t

Dm,t) · v ≤ wk ; ∀(s, k) (4.7)

ps,k + (
∑
m

∑
t

Dm,t) · v − Lr · v ≤ ps+1,k ; ∀(s, k)|(s < S) (4.8)

pS,k + (
∑
m

∑
t

Dm,t) · v − Lr · v ≤ p1,K ; ∀(k) (4.9)

wk ≤ B ; ∀(k) (4.10)

In the above LP -subproblem, Eq. (4.10) can be removed if the maximum

number of k is equal to the number of opened workstations, θ, in segment-2.

4.1.4. Fitness function

The fitness value of each chromosome of a population is evaluated by a fitness

function, which is similar to the objective function of the proposed model in
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section 3.2. Eq. (4.11) shows the fitness function, which is used for each chro-

mosome after obtaining the binary variables and continuous variables from the

genetic algorithm and LP - subproblem respectively.

Minimize(V ) = f1 ·
∑
k

wk + f2 ·
∑
k

SC · zk + f3 ·
∑
t

TC · ((
∑
k

at,k)− 1) (4.11)

The population convergence toward the optimal solution stops the algo-

rithm. Different stopping conditions are considered to be the convergence criteria

such as evolving the maximum number of generations (Sivanandam and Deepa,

2007). In this thesis, the changing phase criteria, which leads to entering phase

two from phase one and phase three from phase two, and the stopping criteria

in phase three are determined based on two important conditions: evolving the

maximum number of generations and finding no improvement in the value of the

fitness function for a given number of generations.

4.1.5. Selection operator

The selection process is a strategy to select two individuals (chromosomes) as par-

ents from the population for producing offspring for the next generation. Finding

the fitter chromosomes, which generate offspring with the higher fitness, is the

main goal of the selection process (Sivanandam and Deepa, 2007). Two impor-

tant selection strategies are as follows: roulette wheel and tournament. The first

selection method focuses on finding two parents based on a probability, which

is proportional to the fitness of each chromosome. A roulette wheel, which has

different sections corresponding to the probability of each individual, is spun M

times; M is equal to the size of the population. In each spin, one individual is

selected. Those individuals, which have the larger space (largest fitness) on the

roulette wheel have more chance to be selected (Holland, 1975). Different steps

in this method are described as follows (Gen and Cheng, 1997):
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• Calculating the fitness value of each chromosome

• Summing the fitness values of chromosomes in the population to obtain the

total fitness value of the population

• Dividing the fitness value of each chromosome by the above sum to obtain

the selection probability of each chromosome

• Calculating the cumulative probability for each chromosome

• Generating a random number between 0 and 1

• Matching each random number with a chromosome based on the random

number being within the range of its cumulative probability

In the second strategy, which is the tournament selection, a set of k indi-

viduals is randomly selected from the population; k is the size of the tournament.

Then, a competition is held among k individuals. Specifically, an individual with

the highest fitness is selected as the best one for producing offspring for the next

generation. The number of repetitions of this procedure depends on the popula-

tion size (Goldberg and Holland, 1988).

One important point that must be considered for these two methods is

how to use the fitness function. Specifically, the roulette wheel selection method

uses the objective function value as the fitness value for each chromosome in

the maximization models. However, the objective function value needs to be

converted if the purpose of the model is minimization. In this thesis, the proposed

objective function in section 3.2 aims to minimize different objectives. Therefore,

the fitness function in Eq. (4.11) needs to be converted to Eq. (4.12) if the

selected method is the roulette wheel:
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V ′ =



1 ; if V = Vmin

Vmax−V
Vmax−Vmin

; if Vmin ≤ V ≤ Vmax

0 ; otherwise

(4.12)

However, there is no need to convert the objective function in the tourna-

ment selection method, neither for maximization problems nor for minimization

problems.

In this thesis, the tournament selection method is employed. The parent

selection is made using replacement, which helps the best individual to be selected

more often. The tournament size is two, which means that two individuals are

randomly selected from the population; then, one individual with smallest fitness

is selected as the best one, which is inserted into mating pool for producing an

offspring. This procedure is repeated based on the total number of individuals

in each population. In the mating pool, a random number is generated and

assigned to each parent. Then, the defined random numbers are sorted based on

the descending order. Following that, two parents are randomly selected in order

to produce a new population by crossover operators. After randomly selecting

two parents for reproduction generation, random numbers are created again for

each individual and sorted to select the new two parents. The repetition of this

procedure in the mating pool depends on the size of the mating pool.

4.1.6. Crossover operators

A crossover operator is a reproduction strategy which generates new offspring

from two parents. Specifically, two parents are randomly selected from the mating

pool as was mentioned in the previous subsection. Then, one random point, which

is called a crossover point, is selected in the chromosome of each parent. Finally,
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genes after this random point are exchanged between two parents to create new

offsprings which have some features of both parents. This is the process that

occurs when a single point cross over is used to create the new offspring (Talbi,

2009). However, there are various types of crossover operators with different steps

such as two-point crossover, which two crossover points are randomly selected

in the chromosome of each parent; then, genes between these two points are

exchanged between both parents. The main goal of using a crossover operator

is to generate a better offspring in terms of the fitness value (Sivanandam and

Deepa, 2007). One important point about crossover operators is that they should

generate a valid offspring (Talbi, 2009). This matter becomes significant when we

deal with solving balancing and sequencing problems simultaneously, because the

generated offspring should satisfy some constraints like precedence restrictions

and demand of each model.

In this thesis, four crossover operators are presented in such a way that a

whole segment is exchanged between the chromosomes of two parents to gener-

ate two new offsprings. The first crossover operator is performed in segment-2

of parents chromosome. Specifically, the number of opened workstations, θ, is

exchanged between two parents in order to generate new offsprings in different

phases but this exchange will affect different segments in three phases as follows:

in phase one, the exchanging θ between two parents affects segment-3. Therefore,

both segments-2 and 3 are exchanged between two parents while the remaining

segments in each parent will be preserved in it’s corresponding child. In phase

two, the exchanging θ between two parents affects the first occurrence of each

model. This means that chromosomes in segment-5, segment-9, and segment-11

will change in two parents. Therefore, all these segments with θ are exchanged

between two parents in phase two while the remaining segments in each parent

will be retained in its corresponding child. In phase three, all occurrences of

models will change if the value of segment-2 is exchanged between two parents.
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Therefore, the chromosomes in segment-5, segment-7, segment-9, segment-11, and

segment-13 will also be exchanged between two parents.

The second operator is a sequence crossover operator, which is employed in

all three phases. Specifically, this operator is performed in segment-1 of parents

chromosome in order to exchange the whole segment between two parents. The

rest of the segments in each parent are copied in it’s respective child.

The third operator is an order crossover operator, which affects the sequence

of tasks in different phases. Specifically, the order crossover operator exchanges

segment-4 between two parents in phase one while the remaining segments in

each parent are preserved in it’s corresponding child. In phase two, one model is

selected randomly; then, the order of tasks in the first occurrence of that model is

exchanged between two parents. For example, model 1 is randomly chosen; then,

segment-6 is exchanged between two parents to generate two new offsprings. In

phase three, one model is randomly selected; then, one occurrence of that model

is arbitrary chosen. Finally, the order of tasks in that occurrence is exchanged

between two parents. The remaining segments in each parent are copied in the

corresponding child. For instance, model 1 is randomly chosen; then, the second

occurrence is arbitrary selected. Following that, segment-8 is exchanged between

two parents.

The last operator is a model crossover operator, which is employed only

in phase three if parents chromosomes have the same value of θ in segment-2.

Specifically, one model is randomly selected in the chromosome of parents; then,

the whole model is exchanged between two parents. The remaining segments in

each parent will be retained in it’s respective child.

A predefined crossover probability, which is equal for all crossover operators,

is used to perform the above operators. Therefore, each crossover operator is

applied based on the probability. In addition, a random number is generated in

the range of [0,1] whenever the crossover operator is applied. Then, for performing
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each crossover operator, the probability of that operator should be greater than

the generated random number. Otherwise, that operator is not able to generate

a new offspring.

4.1.7. Mutation operators

A mutation operator is a genetic operator that makes small changes in an in-

dividual of the population (Talbi, 2009). Specifically, this operator acts on the

obtained chromosome from the crossover step to maintain population diversity

(Sivanandam and Deepa, 2007; Akgunduz and Tunali, 2011). A crossover opera-

tor uses the current solution to create a better offspring in terms of fitness value

while a mutation operator acts as a simple search operator, which is exploited for

the whole search space exploration (Sivanandam and Deepa, 2007). The muta-

tion process avoids the local minima’s trap by preventing similar chromosomes in

a population. Therefore, it randomly modifies some genes in the chromosome to

maintain diversity (Sivanandam and Deepa, 2007; Akgunduz and Tunali, 2011).

As with the crossover operator, the mutation operator should generate a valid

solution (Talbi, 2009).

In this thesis, four mutation operators are presented. The first operator is

a sequence swap mutation operator, which is performed in segment-1 of parents

chromosome in all three phases. Specifically, this operator selects two random

points on the chromosome of segment-1. Then, values of two genes corresponding

to those random points are swapped. The obtained chromosome should satisfy

demands of each model.

The second operator is an order mutation operator, which is exploited to

make changes in the order of tasks in different phases. This operator affects

segment-4 in phase one by selecting a random position in the chromosome of

segment-4. This random position determines a gene that its value should be

swapped with the value of another gene. Therefore, we move to the left and
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right of the random position in order to find feasible locations (genes). Finding

a feasible location is based on the satisfying the combined precedence diagram of

models. After finding different locations, one location (gene) is randomly chosen

and its value is swapped with the value of the first selected gene. The same pro-

cedure is applied in phase two but one model is randomly chosen at first; then,

the above procedure is used to change the sequence of tasks in the first occur-

rence of that model. For example, model 3 is arbitrary selected; then, the above

procedure is applied in segment-12 in occurrence 1 of model 3. Similarly, the

defined procedure is used in phase three but after randomly selecting one model,

one occurrence of that model is arbitrary chosen; then, the above procedure is

used to change the order of tasks in that occurrence. For instance, model 1 is

randomly selected. Then, occurrence 2 is arbitrary chosen. Finally, the order

mutation operator is performed in segment-8.

The third operator is the number of tasks per station mutation operator,

which is applied in three phases. In phase one, this mutation operator is per-

formed in segment-3 in such a way that one position is arbitrary chosen. Then,

a gene in the left side or right side of that position is randomly selected. Fol-

lowing that, a decision is made to randomly increase or decrease the value of

the selected position. If an increasing value is preferred, the value of the gene,

which is arbitrary chosen in the left or right side of that position is decreased, and

vice versa. In addition, if the gene in each side of the selected position has zero

value, another side of that position is selected to perform the above procedure.

Moreover, if the selected position has zero value, its value will only be increased.

The above procedure is used in phase two but at first, one model is arbitrary

chosen. Then, the above procedure is applied to change the number of tasks per

station in the first occurrence of that model. For example, model 3 is randomly

selected; then, segment-11 in the first occurrence of model 3 is used to perform

the above procedure. Similarly, the defined procedure is exploited in phase three
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but after randomly selecting one model, one occurrence of that model is arbitrary

chosen. Then, the above procedure is performed to alter the number of tasks per

station in that occurrence. For instance, model 1 is randomly selected. Then, the

second occurrence of model 1 is arbitrary chosen. Finally, the defined procedure

is performed in segment-7.

Finally, the last operator is the number of opened stations mutation op-

erator, which decreases the value of segment-2, θ, by one in three phases. By

doing this, different segments will change in three phases. Decreasing θ affects

segment-3 in phase one. Specifically, if θ decreases by one, one station will get

zero value in the chromosome of segment-3. Therefore, tasks of that station are

distributed equally between the rest of the opened workstations. This logic is ex-

ploited in the remaining phases. In phase two, the number of tasks of each model

in each station will change if θ reduces by one. However, this matter occurs only

in the first occurrence of models. Therefore, the above procedure is performed in

segment-5, segment-9, and segment-11 if θ reduces. In phase three, decreasing θ

affects all occurrences of each model. Therefore, the defined procedure is applied

in segment-5, segment-7, segment-9, segment-11, and segment-13. One important

point that should be considered in decreasing θ is to have a valid solution after

performing the mutation operator. If decreasing θ leads to having an infeasible

solution, a big penalty is applied for the first term of the objective function. This

is caused to remove the infeasible solution in the rest of the process.

Like the crossover operator, each mutation operator is applied with a small

pre-specified probability on different segments. In addition, a random number is

generated in the range of [0,1] whenever the mutation operator is applied. Then,

for performing each mutation operator, the probability of that operator should

be greater than the generated random number. Otherwise, that operator is not

able to be performed.
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4.2. Flowchart of the hybrid genetic algorithm

Steps for applying the hybrid genetic algorithm, which is a combination of the

genetic algorithm and linear programming algorithm, are illustrated in a flowchart

in Figure 4.7. This flowchart shows that the binary variables are determined by

using the genetic algorithm while the continuous variables are determined by

solving the LP -subproblem corresponding to the values of binary variables. The

defined steps have been coded in C++. An ILOG-CPLEX modelling environment

is used to solve the linear programming model. Specifically, the CPLEX solver

uses the simplex algorithm to solve the LP-subproblem. The notations which are

used in the flowchart are as follows:

p Population size

c Index for a chromosome

g Generator counter

maxg Maximum number of generations

Phase An indicator number that takes number 1, 2, and 3 based on three

defined phases

H Number of iterations which generate populations successfully without

any improvement in the best fitness function value so far obtained

Hmax1 Maximum number of H that leads to entering to the second phase if

the previous Phase was equal to 1

Hmax2 Maximum number of H in the second phase that leads to entering to

the third phase if the previous Phase was equal to 2

Hmax3 Maximum number of H in the third phase that leads to stopping the

third phase

78



Chapter 4. Solution Procedure

Start

Set c=1, g=1, 
H=1, Randomly 
generate initial 

P 
chromosomes

Generate the 
parent 

population

Obtain binary variables for 
each chromosome

Solve the LP 
subproblem

Obtain continuous 
variables by LP 

Calculate fitness 
value for each 

individual

Is c = p ?

Noc = c + 1

Identify the current best 
solution

Is the current best 
solution better than the 

one found so far?

Yes

Update the best 
chromosome so 

far found

No H = H + 1

Is Phase = 1?

Is g = maxg ?NoIS H =  Hmax1

Yes

Set Phase = 2 H = 0

Is g = maxg?Nog=g + 1 and c=1

No

Is H = Hmax2?

Set Phase = 3

Yes

Yes

No

Yes

Is H = Hmax3?

NoIs g=maxg ?

Yes

No

Stop Yes

No
Yes

Yes

Select P chromosomes 
with replacement based 

on their fitness values 

Apply crossover operator 
to generate P offsprings. 

Then, apply mutation 
operator to each P 
offspring to create 

parents for the next 
generation

Figure 4.7: Flowchart of the hybrid genetic algorithm
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Numerical Example

5.1. Model illustration

In this section, one example is presented to explain and elaborate the behaviour

of the proposed models in sections 3.2 and 3.3. Therefore, the following example

shows how the proposed models act when the assembly line has a continuous

motion as well as an intermittent motion. Then, the solutions which have been

obtained from the branch and bound algorithm will be explained in detail.

5.1.1. Continuous motion

The example which is illustrated in this subsection addresses the proposed model

in section 3.2. Inputs of our mathematical model are as follows in this example:

total number of models of a product in an assembly line; demand of each model

in the entire planning horizon and following that in the MPS; total number of

tasks; total number of sequences; maximum number of workstations; speed of

conveyor; launching rate; a precedence diagram, where each node represents a

task and each arc represents a precedence relation; operation time of each task

in each model; workstation cost; and finally, the task duplication cost. Assuming
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that there are three models of a product A,B and C with demands of 100, 50 and

100 in the entire planning horizon respectively, the demand of each model in the

MPS will be de = (2, 1, 2). The launching rate value is equal to 6.39. The total

number of sequences is equal to 5 based on the sum of demands in the MPS.

The speed of conveyor is 1 unit distance per unit time and the workstation cost

is equal to 200 cost units. Also, it is assumed that there are seven tasks in our

example. Operation time (in time units) of each task in each model as well as

task duplication cost (in cost units) have been given in Table 5.1. The precedence

diagrams of three models are based on the diagrams which were illustrated in

Figure 4.2. According to the precedence diagram, models have common tasks.

The maximum number of workstations is equal to 7 in our example. Theoretically,

the maximum number of workstations is equal to the total number of tasks, which

are 7 in our example. But, we select the maximum number of workstations by

trial and error to make sure that we will reach the optimum number of opened

workstations in our result. With this way, at least one workstation will be closed

before reaching the defined maximum number of workstations.

Table 5.1: Operation time of each task in each model and task duplication cost

Tasks

Models 1 2 3 4 5 6 7

A 3 6 0 3 4 0 4
B 4 6 5 2 0 1 6
C 5 0 4 6 3 5 2

Task duplication cost 10 11 14 12 9 15 10

We solve the above example by the branch and bound algorithm in order to

compare two situations. In the first situation, common tasks are assigned to one

workstation while in the second situation common tasks can be assigned to differ-

ent workstations. With this comparison, we will clarify how the proposed model

will improve the objective function value by assigning common tasks to different
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workstations. Specifically, we compare these two situations in order to show the

effectiveness of the proposed model in terms of different factors, which are ob-

jective function values, workstations length, the number of opened workstations

in the assembly line, launching rate, the sequence of models, and distribution

of tasks in different workstations. Unknown variables are determined by using

the branch and bound algorithm. These variables are the length of each work-

station, the number of opened workstations in the line, the starting position of

the operator in each sequence for each workstation, the models’ sequence and

also the sequence of task assignment in each workstation. The objective function

values, which are determined by the branch and bound algorithm, show that the

proposed model gives us the smaller value by assigning common tasks to different

workstations. Objective function values are 1033.61 for the first situation, which

assigns common tasks to only one workstation, compared with 856.22 for the sec-

ond situation, which assigns common tasks to different workstations. In addition,

the number of workstations has decreased from 5 stations in the first situation to

4 stations in the second situation. Therefore, our proposed model has diminished

the number of workstations. This leads to a decreased station cost too. Table 5.2

shows the length of each workstation and also the total number of workstations

in both situations.

On the other hand, in the first situation, which we have forced performing

each common task to only one workstation, there is no task duplication. There-

fore, at,k is equal to 1 for each task. Hence, we do not have any task duplication

cost in this situation. Table 5.3 provides information about tasks’ assignment to

each workstation in the first situation. Each number inside the table determines

the workstation to which the task of a specified model has been assigned. How-

ever, in the second situation, in which common tasks can be assigned to different

stations, two common tasks have been assigned to more than one station. Table

82



Chapter 5. Research Outline

5.4 provides more details about task’s assignment to each workstation in the sec-

ond situation. Each number inside the table determines the workstation to which

the task of a specified model has been assigned. As is clear in Table 5.4, task 3 of

model C has been assigned to station 1, and task 3 of model B has been assigned

to station 3. In addition, task 4 of model C has been assigned to station 2, and

task 4 of models A and B has been assigned to station 3. Therefore, tasks 3 and

4 have one duplication. Information about models’ sequence in each situation is

also provided in Table 5.3 and Table 5.4. In addition, Figure 5.1 and Figure 5.2

illustrate the information of Table 5.3 and Table 5.4 respectively in two graphs.

Table 5.2: Length of each workstatin for two types of situations

Number of workstations

Type of situation 1 2 3 4 5 6 7

Assigning common tasks to one station 5 11 6 4 7.61 0 0
Assigning common tasks to different stations 9 6 7.61 7.61 0 0 0

Table 5.3: Task’s assignment of each model to each workstation for the first situation

Tasks

Model’s Sequence 1 2 3 4 5 6 7

A1 1 2 - 3 4 - 5

B1 1 2 2 3 - 5 5

A2 1 2 - 3 4 - 5

C1 1 - 2 3 4 5 5

C2 1 - 2 3 4 5 5

One of the main factors in the proposed mathematical model is the launch-

ing rate value. Results show that if we decrease launching rate, the number of

workstations will be increased in the situation, in which common tasks can be
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assigned to different stations. In addition, the objective function value will go

up significantly and common tasks will be distributed in more stations. Simi-

larly, decreasing launching rate leads to increase the number of workstations as

well as the objective function value in the situation, in which common tasks are

assigned to one station. However, there are some values of launching rate that

the proposed mathematical model does not have any feasible solutions if com-

mon tasks are assigned to only one workstation. This lack of feasible solution is

because the design principle that the total operation time in every 5 sequences in

each workstation should not exceed launching rate multiplied by the total num-

ber of sequences. According to this principle, there are some cases, in which

launching rate satisfies the proposed mathematical model by assigning common

tasks to different stations, while the launching rate dose not satisfy the proposed

mathematical model if common tasks are assigned to only one station.

Table 5.4: Task’s assignment of each model to each workstation for the second situation

Tasks

Model’s Sequence 1 2 3 4 5 6 7

A1 1 2 - 3 3 - 4

C1 1 - 1 2 3 4 4

B1 1 2 3 3 - 4 4

A2 1 2 - 3 3 - 4

C2 1 - 1 2 3 4 4
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Figure 5.1: Task’s assignment and model’s sequence based on Table 5.3
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Figure 5.2: Task’s assignment and model’s sequence based on Table 5.4

Table 5.5 shows whether or not the proposed mathematical model has a

feasible solution for different values of launching rate in two situations. F shows

that the mathematical model has a feasible solution, while Inf shows that the

mathematical model does not have any feasible solution. As Table 5.5 highlights,

the proposed mathematical model does not have any feasible solution when the
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launching rate value is equal to or less than 3.39. However, if the launching rate

value goes up, the mathematical model can satisfy the situation that common

tasks are assigned to different workstations while it does not have any feasible

solution for the situation that common tasks are forced to be assigned to only one

workstation. This matter is true for launching rate values between 3.40 and 3.99.

Therefore, according to this result, our proposed mathematical model can satisfy

demands of different models of a product by assigning common tasks to different

stations for launching rate values between 3.40 and 3.99, while our mathematical

model does not satisfy demands when common tasks are assigned to only one

workstation.

Table 5.5: Status of obtained solution from the branch and bound algorithm for two types of

situations

Launching rates

type of situation 3 3.20 3.40 3.60 3.80 4

Assigning common tasks to one station Inf Inf Inf Inf Inf F

Assigning common tasks to different stations Inf Inf F F F F

The next factor that affects the proposed mathematical model is conveyor

speed. We assumed that a conveyor moves along workstations with a constant

speed. Therefore, a conveyor moves work pieces steadily from station to station.

Now, we increase the conveyor speed in our mathematical model and solve the

model by the branch and bound algorithm. Results show that workstations will

have larger length if the conveyor speed goes up by more than 1. However, the

number of stations will not change by increasing the conveyor speed.

86



Chapter 5. Research Outline

5.1.2. Intermittent motion

The numerical example, which is used in this subsection, is the same as that

presented in the previous subsection to address the proposed model in section 3.3.

Also, the same precedence diagrams are depicted here. The obtained objective

function value from branch and bound algorithm is equal to the 1032 with 5

opened workstations in the line. Also, Table 5.6 provides information about the

task’s assignment to each workstation as well as the sequence of models in the

synchronous line. Each number inside the table determines the workstation to

which the task of a specified model has been assigned. As is clear in Table 5.6,

three common tasks, which are tasks 2, 4, and 5, have been assigned to more

than one station. Specifically, task 2 has been assigned to stations 2 and 3, task

4 has been assigned to stations 3 and 4, and task 5 has been assigned to stations

4 and 5. Therefore, these three tasks have one duplication.

Table 5.6: Task’s assignment of each model to each workstation for the synchronous line

Tasks

Model’s Sequence 1 2 3 4 5 6 7

A1 1 2 - 3 4 - 5

C1 1 - 2 3 5 4 5

C2 1 - 2 3 5 4 5

B1 1 3 2 4 - 4 5

A2 1 2 - 3 4 - 5

To summarise, it has been shown that the proposed mathematical model

in section 3.2 can satisfy the continuous assembly line as well as the synchronous

assembly line only by changing some assumptions.
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5.2. Branch and bound algorithm versus hybrid

genetic algorithm

In this section, several examples with different sizes are presented to show the

advantage of the proposed hybrid genetic algorithm (HGA) in comparison with

the branch and bound (BB) algorithm. The first example, which is solved in

two versions, is a small example with three models and four tasks. In the first

version, demands of models in the entire planning horizon are defined as follows:

2 units for model A, 1 unit for model B, and 2 units for model C. Therefore,

there are 5 sequences in this version. The launching rate value is equal to 20.

The maximum number of stations is equal to 6 and the station cost is equal to 50

cost units. The speed of conveyor is equal to 1. Table 5.7 provides information

about the operation time (in time units) of each task in each model as well as

the task duplication cost (in cost units). In addition, Figure 5.3 illustrates the

precedence diagram of each model.

Table 5.7: Operation time of each task in each model and task duplication cost, first example

Tasks

Models 1 2 3 4

A 14 22 14 11
B 25 16 21 14
C 11 8 20 17

Task duplication cost 10 9 7 12

This example is solved once by the BB algorithm and once by the HGA to

compare their convergences behaviour. The CPLEX solver is used to solve the

BB algorithm. Figure 5.4 shows the convergence behaviour of the BB algorithm

while Figure 5.5 illustrates the convergence behaviour of the HGA. 500 popula-

tion and three generations were used to obtain the convergence graph of HGA.

As has been shown in two figures, an improvement in the objective function value
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is obtained as the time is increased. The best objective function value is 4169.

The BB algorithm obtained this value in one minute while the value of the lower

bound was 4021. However, the BB algorithm continued to solve the example and

declared that the obtained value is an optimal value at t= 0:02:23. In contrast,

the HGA could reach the optimal value of 4169 only in 7 seconds. Therefore,

our proposed HGA could solve this example with much less computational time

compared with the BB algorithm.
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Figure 5.3: Precedence diagram for models A, B and C

In the second version, the number of demands for each model will be in-

creased because increasing demands leads to having more variables that make our

example more complicated. Therefore, the second version of the example is solved

by following demands: 3 units for model A, 2 units for model B, and 5 units for

model C. Therefore, the total number of sequences is equal to 10 in this version.

The rest of the data are similar to the first version of the example. Figure 5.6
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and Figure 5.7 illustrate the convergence graphs which have been obtained from

the BB algorithm and HGA respectively. The best objective function value is

still 4169. The BB algorithm reached to this value in one minute while the value

of the lower bound was 4000. However, the BB algorithm continued to solve the

example for three hours but it only could improve the lower bound to 4069. On

the other hand, the HGA could reach the optimal value of 4169 only in 12 sec-

onds. Therefore, our proposed HGA could also solve this version of the example

with much less computational time in comparison with the BB algorithm.

Hence, the above example shows the correctness of the proposed HGA.

In addition, this example illustrates that the solution representation does not

exclude the optimal solution, which means that the proposed HGA is potentially

able to find optimal solutions for larger problems as well.
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Figure 5.4: Convergence graph for the BB algorithm, first version of the first

example
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Figure 5.5: Convergence graph for the HGA, first version of the first example
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Figure 5.6: Convergence graph for the BB algorithm, second version of the first

example
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Figure 5.7: Convergence graph for the HGA, second version of the first example

In the next example, the number of tasks is four times more than the

number of tasks in the first example. Therefore, 16 tasks are defined for the

second example while we still have 3 models. Similar to the first example, the

second example is solved in two versions with different demands. Demands of

models in the entire planning horizon are defined as follows in the first version of

the second example: 2 units for model A, 1 unit for model B, and 2 units for model

C. Therefore, there are 5 sequences in this example. The launching rate value is

equal to 6. The maximum number of stations is equal to 10 and the station cost

is equal to 500 cost units. The speed of conveyor is equal to 1. Table 5.8 provides

information about operation time (in time units) of each task in each model as

well as tasks duplication cost (in cost units). In addition, Figure 5.8 illustrates

the precedence diagram of each model. Figure 5.9 and Figure 5.10 illustrate the

convergence graphs which have been obtained from the BB algorithm and HGA

respectively.
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Table 5.8: Operation time of each task in each model and task duplication cost, second
example

Tasks

Models 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A 2 2 0 3 0 3 0 0 2 0 0 0 0 3 0 2
B 1 0 2 0 2 0 4 3 0 2 3 3 5 3 4 3
C 1 3 0 0 4 3 0 1 3 4 0 4 0 2 0 1

Task duplication cost 10 11 14 12 9 15 10 9 9 10 8 13 14 11 20 10
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Figure 5.8: Precedence diagram for models A, B and C

As figures 5.9 and 5.10 show, the best objective function value is 4250. The
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BB algorithm obtained this value in about three minutes. In contrast, the HGA

could reach the optimal value of 4250 in only 40 seconds. In the second version

of the second example, the demand of each model is defined as follows: 2 units

for model A, 3 units for model B, and 5 units for model C. Therefore, the total

number of sequences is equal to 10. The remaining data are similar to the first

version of this example. Figure 5.11 and Figure 5.12 illustrate the convergence

graphs which have been obtained from the BB algorithm and HGA respectively.

As two convergence graphs illustrate, the best objective value is equal to 4359.

The BB algorithm reached the optimal solution after 1 hour and 40 minutes

while the time required to get the optimal value in the HGA was only doubled.

Therefore, although the total number of variables and constraints are increased

by nearly 100 percent in this version of the example compared with the first

version, the proposed HGA could solve this version with consuming shorter time

compared with the BB algorithm. As with the first example, the second example

showed that our proposed HGA can solve two versions of example with much

less computational time in comparison with the BB algorithm.
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Figure 5.9: Convergence graph for the BB algorithm, first version of the second

example
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Figure 5.10: Convergence graph for the HGA, first version of the second example
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Figure 5.11: Convergence graph for the BB algorithm, second version of the

second example
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Figure 5.12: Convergence graph for the HGA, second version of the second ex-

ample

Finally, in the last example, the number of tasks is significantly more than

the number of tasks in the second example. Therefore, 33 tasks are defined

for the third example while we still have 3 models. This example is solved in

two versions with different demands. In the first version of this example, we

have defined one unit demand for each model. Therefore, there are 3 sequences

in this version. Table 5.9 provides information about operation time (in time

units) of each task in each model as well as tasks duplication cost (in cost units).

In addition, Figure 5.13, Figure 5.14, and Figure 5.15 illustrate the precedence

diagrams of models. Figure 5.16 and Figure 5.17 show the convergence graphs

which have been obtained from the BB algorithm and HGA respectively.
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Figure 5.13: Precedence diagram for model A, third example
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Figure 5.14: Precedence diagram for model B, third example
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Figure 5.15: Precedence diagram for model C, third example
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Figure 5.16: Convergence graph for the BB algorithm, first version of the third

example
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Figure 5.17: Convergence graph for the HGA, first version of the third example

As figures 5.16 and 5.17 show, the BB algorithm could obtain the first

feasible solution, which is equal to 15195, in 8 minutes while the HGA could find

the better solution in a shorter time, 13200 in only 8 seconds. Then, the BB

algorithm continued to solve the example and after 38 minutes it obtained the

optimal value, which is equal to 11500. In contrast, the HGA obtained the value

of 11600 in only 1 minutes. Therefore, although the HGA did not obtain the

optimal value, it could reach the first feasible solution and also the acceptable

good value of objective in much less time compared with the BB algorithm.

In the second version of this example, demand of each model was increased

as follows: 3 units for model A, 2 units for model B, and 5 units for model

C. Figure 5.18 and Figure 5.19 illustrate the convergence graphs for the BB

algorithm and HGA respectively for this version. The BB algorithm could obtain

the first feasible solution, which is equal to 13337, in approximately 47 hours while

our proposed algorithm reached the first feasible solution, which is equal to 13300,

in only 8 seconds. The BB algorithm continued to solve the problem and reached
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the best objective, which is equal to 11557, in t = 104:57:25 and finally, after 115

hours declared that this value is the optimal value. In contrast, the proposed

HGA could obtain the acceptable good solution, which is equal to 11827, in only

5 minutes.
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Figure 5.18: Convergence graph for the BB algorithm, second version of the third

example

10000
10500
11000
11500
12000
12500
13000
13500
14000

46
:5

3:
32

48
:1

1:
50

50
:1

1:
09

51
:0

2:
42

52
:0

7:
58

53
:2

3:
36

55
:0

2:
52

56
:4

2:
50

58
:1

8:
47

60
:2

7:
36

62
:2

8:
07

64
:5

6:
59

66
:4

9:
53

68
:2

5:
53

70
:2

8:
16

72
:3

4:
10

75
:1

2:
35

78
:1

9:
42

81
:5

0:
38

83
:3

7:
39

84
:5

0:
29

86
:2

3:
44

87
:3

8:
00

89
:3

3:
30

91
:2

5:
20

94
:0

9:
08

96
:0

3:
15

99
:0

3:
30

10
1:

41
:1

2
10

4:
57

:3
7

10
8:

42
:5

4
11

2:
51

:4
8

O
bj

ec
tiv

es

Time

Best objective

11000

11500

12000

12500

13000

13500

   
 0

0:
00

:0
8

   
   

00
:0

2:
49

   
   

00
:0

6:
37

   
   

00
:1

1:
34

   
   

00
:1

8:
14

   
   

00
:2

5:
52

   
   

00
:3

5:
00

   
   

00
:4

5:
15

   
   

00
:5

6:
30

   
   

01
:0

9:
48

   
   

 0
1:

25
:2

0
   

   
 0

1:
44

:4
7

   
   

 0
2:

07
:5

4
   

   
 0

2:
35

:2
2

   
   

 0
3:

07
:3

2
   

   
 0

3:
47

:3
5

   
   

 0
4:

32
:4

9
   

   
 0

5:
25

:3
8

   
   

 0
6:

23
:5

6
   

   
 0

7:
34

:3
8

   
   

 0
8:

50
:1

2
   

   
10

:1
6:

06
   

   
11

:4
7:

23
   

   
13

:0
2:

48
   

   
14

:1
5:

34
   

   
15

:3
4:

55
   

   
17

:0
2:

15
   

   
18

:4
0:

38

O
bj

ec
tiv

es

Time

Figure 5.19: Convergence graph for the HGA, second version of the third example
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To sum up, two versions of the last example showed that our proposed

HGA could reach the first feasible solution in a shorter amount of time compared

with the BB algorithm. In addition, this solution was significantly better in the

HGA compared with the BB algorithm. Moreover, the HGA could obtain an

acceptable good solution, which was near to the optimal solution, in much less

time compared with the BB algorithm. Finally, it has been demonstrated that

the proposed algorithm is able to solve larger problems, because the third example

was significantly lager than the first two examples. Therefore, it can be declared

that the proposed HGA can solve problems even larger than the third example.
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Research Outline

6.1. Conclusion

In recent years, the mixed model assembly line has attracted more attention in

the manufacturing environment than the single model assembly line because this

type of the assembly line enables companies to satisfy different demands of cus-

tomers by producing several models of a product. Two indispensable challenges

in the mixed model assembly line are balancing problem and sequencing problem.

In this thesis, we developed a mixed integer linear programming model to solve

balancing and sequencing problems simultaneously in the mixed model assembly

line. In the developed mathematical model, we assumed that the assembly line

has a continuous motion, and common tasks between various models of a product

can be assigned to different workstations. The main objectives of this model are

minimizing the workstations length, minimizing the workstations cost, and mini-

mizing the tasks duplication cost. The branch and bound algorithm was used to

solve the proposed model in two types of situations: assigning common tasks to

different workstations and assigning common tasks to only one workstation. The

results showed that the objective function decreases by assigning common tasks

to different workstations.
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The next result was that changing the launching rate can greatly affect the pro-

posed mathematical model for satisfying demands. Specifically, our mathematical

model did not have any feasible solutions for some values of launching rate if com-

mon tasks were assigned to only one workstation, but this model had a feasible

solution for those values of launching rate when common tasks were assigned to

different workstations. Therefore, the proposed model satisfied demands of dif-

ferent models if common tasks were assigned to different workstations while this

matter was not possible for some values of launching rates if common tasks are

assigned to only one workstation .

At the next step, we changed the conveyor motion from a continuous mo-

tion to an intermittent motion. With this approach, we extended the proposed

mathematical model with the assumption that the mixed model assembly line has

a synchronous configuration. The extended model was solved by the branch and

bound algorithm; results showed that our proposed mathematical model satisfies

the continuous motion as well as the intermittent motion in the mixed model

assembly line.

Finally, a hybrid genetic algorithm, which was a combination of a genetic

algorithm and a linear programming algorithm, was employed to solve the pro-

posed mathematical model for large size problems. In the genetic algorithm, a

solution representation was introduced in three phases to determine the models’

sequence as well as tasks’ assignment to different workstations. Therefore, the

binary variables were obtained by solving the genetic algorithm. On the other

hand, the linear programming subproblem was solved to obtain the continuous

variables corresponding to the values of binary variables. To show the effective-

ness of the proposed hybrid algorithm, some numerical examples were solved,

and results were compared with the branch and bound algorithm. Based on the

obtained results, our proposed HGA outperformed the BB algorithm.

105



Chapter 6. Research Outline

6.2. Future research

Future research directions are suggested in this section as follows: first, other

objectives can be added to the objectives of this thesis such as to minimize equip-

ment cost for common tasks in different workstations. The equipment cost is re-

sulted from using common equipment in different stations based on the common

tasks assigned to those workstations. Second, the buffer allocation, which has

not been addressed in this thesis, can be of interest in future studies. Buffers are

used between some workstations to prevent starving or blocking. Third, changing

the type of operation time from deterministic, which has been considered in this

study, to stochastic can open another window for future study. Fourth, exploiting

parallel workstations and zoning constraints would be interesting. Finally, other

hybrid metaheuristic approaches can be employed to solve large problems such as

combining a simulated annealing algorithm with a linear programming algorithm.

Then, results can be compared with the proposed hybrid algorithm for further

analysis.
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