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ABSTRACT

APPLICATION OF METAHEURISTICS IN

SCHEDULING CONTINUOUS/SEMI-CONTINUOUS

PROCESS INDUSTRIES AND A CASE STUDY

Mohammad Moein Jalalian Advisor:

University of Guelph, 2018 Professor F. M. Defersha

In today’s competitive industry, scheduling plays a significant role in im-

proving the efficiency of manufacturing systems. Hence, many scholars and prac-

titioners have been researching to enhance the quality of scheduling methods.

In this research, the focus is on solving a real-world scheduling problem in the

food industry which was previously dealt with a very time-consuming manual

method without high-quality solutions. The problem is to find the best schedule

for producing multiple products on multiple machines in a semi-continuous man-

ufacturing system. Having a continuous section in the system makes scheduling

too complicated than the manual method could deal with properly. So, similar

to many scheduling problems, in this thesis, metaheuristics (GA and MPSA) are

applied to the problem in order to address the defects of the manual method.

Selected methods show promising results and performance against the manual

method used before. Statistical analysis shows better performance of the genetic

algorithm while the other method is more robust to the selected parameters.

Keywords: Continuous Manufacturing; Food Industry; Genetic Algorithm; Multiple-

Path Simulated Annealing.
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Chapter 1

Introduction

Throughout the history, production systems have developed dramatically in all

aspects. First manufacturing equipment was used in the middle of the eighteenth

century; however, in late 1800s factories with small production systems started

to be concerned about the productivity of their resources. The chart proposed by

Henry Gantt in 1916 played a significant role in the rise of scheduling methods

from years until the early 1950’s when scheduling methods were strengthened by

computers (Herrmann, 2006). Scheduling is the most typical common point be-

tween business and manufacturing systems. Several factors in production systems

are evaluated by schedulers based on the requirement of the business in order to

keep costs down while operations are done according to the budget (Bodington,

1995). Scheduling methodologies are to allocate limited resources of companies

such as machines and workers to the tasks in such a way that the predefined

objective of the plant is optimized. The objective could be minimizing the com-

pletion time of all activities, or minimizing the number of activities that are

done after due dates (Pinedo, 2012). One of the factors that must be considered

before making any decision about the scheduling methods is the nature of indus-

tries. Considering the products produced in manufacturing systems, two types of

industries are distinguished: discrete product industries and process industries.
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Chapter 1. Introduction

Several factors make these two types of industries different such as:

• In process manufacturing, products are made using various formulations

and multiple recipes while in discrete product systems multilevel Bills of

Materials (BOM) are used to produce final products.

• In discrete manufacturing, parts may be taken apart to be used on another

product if need be, whereas in process industries it is impossible to take

apart an ingredient from a finished product.

• Discrete manufacturers produce or assemble parts that are distinguishable

as a distinct product (e.g., airplanes, smartphones, automobiles) in contrast

with process industries that the materials are in bulk quantities, such as

pharmaceuticals, beverages, and refineries.

Other than the type of products, there exist other factors which should

be taken into account in order to find out the best scheduling approach for the

manufacturing systems. In the following, first the nature of different production

industries are classified in more details in section 1.1 and then in section 1.2 the

classification of scheduling problems based on the time scale is presented.

1.1. Typology of Manufacturing Systems

There are various types of production which can be categorized into three or four

larger classes based on the level of production and diversity of products. As it

is depicted in figure 1.1, these four types are job production, batch production,

continuous production, and mass production which is classified as a subset of

continuous production (Roy, 2007).

2



Chapter 1. Introduction

Figure 1.1: Different Types of Production Systems Roy (2007)

1.1.1. Job Production (JP)

JP is the oldest type of production which involves producing small-scale produc-

tion and used for custom or individual requirements of customers. This system

has a lot of flexibility of operation, and therefore needs general purpose machines.

This flexibility often prevents using automated manufacturing systems; however

computer-aided design(CAD) is used. In general, this system can be used for

three different situations:

(a) A limited number of products manufactured only once.

(b) A limited number of products are manufactured whenever the needed.

(c) A limited number of products are manufactured periodically at specific times.

One of the advantages of this system is that the reduction in demand can-

not lead to failure in the plant since changeovers can be done easily. However,

production of a variety of products with different machines requires labors with

multiple skill which increases the labor cost (Roy, 2007). Plants and shops that

use this type of production systems are often called job shops. In a job shop

jobs often include some operations that need to be done on single or multiple ma-

chines. The route through which each job has to follow is different in another job.

3



Chapter 1. Introduction

Several operations of different jobs have to be scheduled such that the objective

criteria such as minimization of makespan or the number of late jobs are met.

A particular case of job shops are flow shops where the routing of all jobs are

the same, and all jobs go through the same sequence of machines to be operated

(Pinedo, 2012).

1.1.2. Batch Production (BP)

Batch production falls between mass and job production systems since various

products are produced in higher amounts than job shops. This system is typically

used in medium-size plants with a capacity of higher than demand. Generally,

two or more types of products are intermittently manufactured in batches of

same items with the size that can range from one to as many as thousands units.

The number of processing operations is often large as well as routing complexity

(Rippin et al., 1991). So, three different systems are distinguished for batch

production:

(a) A batch of products are produced only once.

(b) A batch of items are manufactured at irregular intervals when it is needed.

(c) A batch of products are produced periodically at predefined time intervals

to meet the continuous demand.

One of the advantages of this system is its flexibility for changeovers between

different jobs with no additional costs and at low risk of loss in the production

system. However, this variability of jobs needs specially designed jigs and fixtures

that could be costly (Roy, 2007).

Both discrete product manufacturing systems and process industries may

adopt this type of production in different circumstances. In discrete product

industries, a batch contains a limited quantity of parts which are usually processed

4



Chapter 1. Introduction

one at a time and not all together. In contrast, in process industries, the concept

of batch production means that finite amount of raw materials which are either

in liquid or bulk form, go through the production line and the process is done

for all of them simultaneously as a unit (Groover, 2008). Differences between

discrete product and process industries in this type of production are shown in

figure 1.2.

(a)

(b)

Batches

Discrete Manufacturing 

Industries
Process

Batches

Process
Input = Batches

Process Industries
Output = Batches

Figure 1.2: Batch production for process industries (a) and discrete manufacturing industries
(b) (Groover, 2008)

In process industries two types of batch production can be distinguished:

multiproduct and multipurpose batch process industries. If the routing is

similar for all products, it is called multiproduct, whereas if various products

follow different routings (e.g., job shops) it is called multipurpose batch process

industry. Since in process industries intermediate products are unstable, they

need to send to the next station to be processed with no delay. Consequently, the

capacity of multipurpose batch process industries is lower than the other model

(Raaymakers and Weijters, 2003).

5
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1.1.3. Continuous Production (CP)

In this type, production lines often run for 24 hours on a three shifts basis, and

maintenance shutdowns happen at irregular intervals due to economic reasons.

Unlike the job production, this type is highly automated such that items transfer

from one stage to another automatically and continuously (Roy, 2007). Also in

contrast with two previous types, this type shows very low or even no flexibility.

So, the layout and equipment are designed to be used for producing only one type

of product or with minor changes (Cooke and Rohleder, 2006).

Mass Production (MP) and Flow Production (FP) are the two

types of continuous production systems. In both of them a large number of iden-

tical products is produced automatically; however, in the former, the flexibility

of layout and tooling for producing another item in same production processes is

more than the latter. In other words in flow production layout and equipment

are designed for only minor modifications, so, if the decision is made to switch

over to a different type of product, extensive changes in layout and equipment are

needed. There also exists another type of production which combines both con-

tinuous and batch production systems called Semi-Continuous Production

(SCP).

Since a large number of products are produced in this production type, a

higher amount of discount is probable, at the time of purchasing raw materials in

contrast with job and batch production industries. Lower labor cost is another

advantage of this type, as the production system is highly automated, and only

a few skilled workers are needed. On the other hand, the risk of failure could be

high, due to the change in demand and low flexibility of production line (Roy,

2007).

This type of production may be exploited in both discrete product and pro-

cess industries. In discrete product industries, continuous production means that

all the production equipment are dedicated to manufacturing a product without

6



Chapter 1. Introduction

any breaks for changeovers. By contrast, in continuous production process in-

dustries, the process is done on the materials while they are passing through the

equipment continuously and the output flow has no interruptions. Materials are

usually in the forms of liquid, gas, powder or similar state (Groover, 2008). In

continuous flow process industries, the focus of scheduling approaches is mostly

on bottleneck stages with only a single processing unit. This is due to the lack of

flexibility in this type of production that often reduces the chance of using mul-

tiple machines and consequently causes bottleneck production (Fransoo, 1993).

As a result, single-machine, multi-product, and lot-sizing problems are mostly

followed for scheduling of continuous process industries (Kılıç, 2011). Figure

1.3 shows the differences between continuous production in discrete product and

process industries.

(a)

(b)

Input is continuous

Outputs are discrete units

Discrete Manufacturing 

Industries
Process

Inputs are discrete units

ProcessProcess Industries
Output is continuous

Figure 1.3: Continuous production for process industries (c) and discrete manufacturing indus-
tries (d) Groover (2008)
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1.2. Classification of Scheduling Problems

The representation of time and processing events play a significant role in mod-

eling scheduling methodologies. Understanding the differences in various model-

ing approaches, the problems they can be applied to, and their advantages and

disadvantages are crucial to finding the best scheduling model (Hazaras, 2012).

Scheduling models can be classified according to three different time represen-

tations: discrete-time, continuous-time, and mixed-time. Each of these three

representations has its application considering the nature of industries. Sec-

tions 1.2.1, 1.2.2, and 1.2.3 provide more detail regarding these three models.

1.2.1. Discrete-time Models

Modeling the process scheduling was firstly based on the discrete-time represen-

tation in which the scheduling horizon is divided into some intervals with equal

durations such that the starting and ending of tasks are within predetermined

boundaries. Figure 1.4 illustrates the discrete time approach.

Figure 1.4: Discrete-time representation (Maravelias, 2005)

Making a reference network of time for all tasks is the advantage of this

approach which is useful in terms of monitoring tasks at predefined intervals.

8
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This feature reduces the problem complexity and makes it easier to be formu-

lated. However, since for an appropriate estimation of the initial problem the

time intervals need to be as small as the time of the shortest task, many vari-

ables are needed for the formulation and the size of the scheduling problem will

increase exponentially. So the problem transforms into a combinatorial problem.

Furthermore, for the problems that the processing time depends on the batch

size, operations are difficult to be accounted for discrete-time models (Hazaras,

2012).

1.2.2. Continuous-time Models

Since the nature of time is continuous, formulating the actual problems in discrete-

time models is only an approximation with less accuracy which might lead to a

suboptimal solution. Moreover, for operating systems with variable processing

times such as continuous flow systems, which runs continuously and are capable

of doing tasks for time periods with any durations, this approximate model-

ing may cause a considerable deviation from the true solutions. Limitations of

discrete-time approach have researchers to develop the continuous-time model

over the last two decades. In this model, processes can be started and finished

at any time within the time horizon. In fact, in this model, the duration of op-

erations are decision variables and to be found. Since in these models there is

no data dependency like in discrete-time models, and the timing of events can

be changed during the horizon, the size of the scheduling problem in terms of

mathematical programming is much smaller, and needless calculation. However,

this variable timing of events makes scheduling processes more complicated to be

modeled compared to discrete-time models (Floudas and Lin, 2004). The basic

illustration of continuous-time representation can be seen in the figure 1.5.

9



Chapter 1. Introduction

Figure 1.5: Continuous-time representation (Maravelias, 2005)

1.2.3. Mixed-time Models

Since there are some limitations for both discrete time and continuous time mod-

els, a mixed-time approach was presented by Maravelias (2005) to address these

limitations. In this approach the time is divided into intervals with equal duration

while the starting time of tasks are fixed just like the discretetime representation,

but there is no exact finishing time for production operations, so the number of

time intervals that operations can cover is not pre-specified and they can take

as many intervals as desired. However, they should be finished at or before the

ending of the last time slot (Maravelias, 2005).

One of the advantages of this time representation over the continuous time

models is to linearly handle back-order costs and carrying inventory costs which is

impossible in continuous models. Furthermore, this approach can model the due

dates and material delivery without any increase in computational costs. With

this model, semi-continuous production systems can be scheduled more precisely

than the pure discrete-time approaches (Hazaras, 2012). The basic illustration of

this model is shown in figure 1.6. The focus in this thesis is restricted to scheduling

problems of continuous production process industries in continuous-time scale.

Some of the basic characteristics of process industries and their importance are

10
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Figure 1.6: Mixed-time representation (Maravelias, 2005)

discussed in the following section.

1.3. Characteristics of process industries

A vast amount of research has been conducted regarding the characteristics of

process industries. Many of them are particularly focused on different situations

of production processes, demand management, and quality in both discrete prod-

uct and process industries (Kılıç, 2011). However, not all of those characteristics

are directly helpful in term of realizing the scheduling problem in the process

industry. The following characteristics are the ones with the highest importance

in terms of defining scheduling problems in process industries.

Raw materials

Raw materials play an important role in scheduling process industries. This

is mainly due to the fact that most of them are directly sent from mining or

agriculture industries and the quality of them may vary at different times. This

puts an uncertainty in the process of scheduling and makes it more difficult, and

the quality and availability of raw materials must be taken into account when

scheduling the manufacturing system (Gunasekaran, 1998).

11
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Recipes

Recipes show the ingredients of a product and the steps which they should take

to be mixed in order to produce the intermediate and final products. Since

several types of intermediate and final products are produced by only a few raw

materials, different recipes could potentially be used in case of facing different

limitations such as seasonal considerations and the scarcity of raw materials.

This can directly affect the decision made by the schedulers (Kılıç, 2011).

Perishability

In process industries, materials are perishable and could decay in each step of the

production. Hence, special attention must be paid for the handling of inventories

during all the production processes and shipping to the customer. This feature

puts another constraint on the process industries scheduling problem in terms of

considering the storage units and the corresponding time. In addition, perisha-

bility of material is one of the factors that must be considered when selecting

the batches size in order to avoid any wastage and back-order costs in process

industries (Akkerman and van Donk, 2009).

Traceability

In process industries, it is often needed to have a system in which the origin of

materials and products can be tracked. Especially in food processing industries

where it leads to food safety. The advantage of traceability is mostly for when

products are recalled in case of any quality problem (Rong and Grunow, 2010).

Keeping track of materials can be a very challenging job since batches of materials

are either merged or separated in consecutive processing and storage operations.

12
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Storage

Obviously, storage limitations are common between both types of production

systems. However, due to the nature of materials in process industries, stor-

age limitations are more challenging. In spite of discrete manufacturing systems

that use buffer or warehouses for storing intermediate products or raw materi-

als, in process industries storage operations are done by discrete storage units

(e.g. tanks, vessels, silos) that can store only one type of material at a time.

This causes a capacity constraints for every single product rather than the total

capacity of storage. Furthermore, in case of the flexibility of the storage units

that can be used for different materials, they need to be allocated properly to

maintain traceability and avoid perishability of materials. All these constraints,

put complex restrictions into scheduling problem (Kılıç, 2011).

Setups

Production setups is another issue which is required to be considered in scheduling

problems. In process industries, production setups are more time-consuming and

need more effort than discrete part productions. This is due to the fact that in

addition to the time for configuration of machines in case of any changeovers, there

is a time needed for cleaning them as well. Consequently, in process industries,

it is common to have sequence dependent setups to minimize the cleaning time

(Van Wezel et al., 2006).

Each of the characteristics mentioned above can have a significant effect on

scheduling problems. However, all these limitations should be dealt with simul-

taneously in process industries scheduling which highly increases the complexity

of the problem.
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Chapter 1. Introduction

1.4. Organization of the thesis

The remainder of this study proceeds as follows. In chapter 2, the literature

of scheduling problems on continuous and semi-continuous process industries is

reviewed. Both direct and metaheuristic methods are considered. In chapter 3

the problem and its goal are described in detail, and a numerical example is given

to clear the objectives of the problem and terms to be optimized. In chapter 4,

solution procedure for selected metaheuristics is depicted in detail. Chapter 5

compares the performance of considered methods to find the best among them.

Also, the design of experiments on the proposed algorithms has been done to

analyze the performance of each method individually. And finally, conclusions

and future research are presented in chapter 6.
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Chapter 2

Literature Review

2.1. Introduction

Scheduling of both continuous and batch process industries is mainly concerned

with the efficiency of processing operations in manufacturing systems. There exist

several factors and constraints that make process industries scheduling compli-

cated such as equipment networks, complex product recipes, storage limitations,

material delivery, and utility restrictions. Due to these constraints, a vast amount

of research has been conducted to explore and analyze various methods for plan-

ning and scheduling manufacturing systems in process industries over the last

three decades (Hazaras, 2012). These methods are classified into two main cat-

egories: mathematical programming such as Mixed Integer Programming(MIP)

and Branch and Bound (BB) method and metaheuristics such as Genetic Al-

gorithms (GA) and Simulated Annealing (SA). Figure 2.1 shows the methods

reviewed in this study.
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Figure 2.1: Taxonomy on the reviewed scheduling methods in process industries

2.2. Mathematical Programming

Mathematical programming is an approach on which strong and effective op-

timization methods for production planning or scheduling can be based. This

approach has received much attention and interest from researchers in recent

years. This is mostly due to the recent progress in information technology which

makes organizing production data easier to be based on the time (Shapiro, 1993).

Many search methods have been explored in the literature; however, mathemat-

ical programming especially Mixed Integer Linear Programming (MILP) is the

most widely used method for scheduling as the solutions achieved by them are

highly acceptable (Floudas et al., 2005). Mendez (2006) proposed a method based

on MILP for the optimization of the off-line blending and scheduling problem of

an oil refinery simultaneously. The method can be used for problems with both

discrete and continuous time representations. They presented an iterative pro-

cedure to address the nonlinearity of the recipes variability for different gasoline
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grades. Also, a set of variables and equations were considered to prevent infea-

sible solutions by defining penalties in the objective function. Jia et al. (2003)

proposed a model in continuous-time scale which results in a MILP problem to

address the scheduling problem in a crude oil refinery. They only considered the

first section of the refinery operations which includes crude oil unloading, mixing,

and inventory control. The proposed mathematical formulation was applied to

four case studies to show that continuous time representation can achieve solu-

tions more efficiently than discrete time models. The model for scheduling the

last part of the refinery was developed by Jia and Ierapetritou (2003) which in-

cludes gasoline blending and distribution system. They also exploited continuous

time formulation to avoid big size problems in terms of variables and constraints.

Perfect mixing, negligibility of the time between changeovers, and most impor-

tantly the fixed recipe for each product are the assumptions made in this model.

A mixed integer optimization model was proposed by Lee et al. (1996). A branch

and bound method which is based on Linear Programming (LP) was also used

to solve the model. Also for reducing the computation time, they used priority

branching and bounding. The objective was to minimize the transition time and

inventory costs. Shah and Ierapetritou (2011) proposed a mathematical model

based on continuous-time representation for short-term scheduling in large-scale

refineries. The model integrates quality, quantity, and logistic decisions in order to

schedule real-life refinery operations. A set of valid inequalities corresponding to

tanks scheduling and loading/unloading events was included into the model con-

straints intending to reduce the computation time. However, their model cannot

find the optimal solution of a real-life refinery in a reasonable time. A mixed-time

representation based MILP was developed by Kopanos et al. (2009). The aim of

the proposed model was to address a lot sizing and production scheduling prob-

lem in multi-product semi-continuous food industry. Same holding cost for same

product families, fixed demand during the scheduling time horizon, and sequence
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dependency of time and costs are the main assumptions of their model.

A mixed integer programming model and a solution approach for schedul-

ing a multi-stage multi-product plant with the semi-continuous production were

proposed by Kopanos et al. (2011) in order to minimize the production time.

They tested their model in several real-life industrial case studies to illustrate the

capability of it to be utilized in fresh food industries. Their model was enhanced

by Kopanos et al. (2012) via defining new sets of constraints to tighten the search

area in achieving solutions with more efficient computational efforts. In their

work, a MILP formulation was also proposed based on a continuous time scale

to address the scheduling problem of a real-world multistage food industry. The

model is to integrate and simultaneously optimize all production stages to make

an interaction between different stages easier. This model does not guarantee the

global optimal solutions, however, a reasonable time needed for finding them.

2.3. Metaheuristics

During the recent decades, metaheuristics have been employed in various schedul-

ing problems. This is due to the robustness of their solutions over heuristics and

the time limitations of exact algorithms (Xhafa and Abraham, 2008). All meta-

heuristics are to enhance the current best solution among a set of solutions by

performing guided stochastic search which is either done broadly(exploration)

or locally (exploitation, refinement). An attractive feature of this approach in

comparison to mathematical programming is that they can be easily matched

with the simulation models that indicate many details of the problem including

constraints that are difficult to be modeled by equations. The main ability of

metaheuristics is to escape from the local optima in non-convex nonlinear prob-

lems or problems with disconnected feasible regions. In fact, metaheuristics direct

the search algorithm into favorable regions by using penalty functions with large
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enough value to dominate the worst value of cost function. Generally, meta-

heuristics do not guarantee to find the global optimum for the problem at hand

but often lead to good solutions that meet the constraints within a reasonable

amount of time (Harjunkoski et al., 2014). Metaheuristic methods fall into two

categories: population-based and single point methods. Single point approaches

such as Simulated annealing and Tabu Search (TS) modify and improve a single

candidate solution in each iteration until convergence happens. Population-based

methods try to improve multiple solutions often by guiding the search by pop-

ulation characteristic. Evolutionary Algorithms (EA) such as genetic algorithm

(GA) and Genetic Programming (GP), Ant Colony Optimization (ACO), Bee

Colony Optimization (BCO), and Particle Swarm Optimization (PCO) are some

of the most famous population-based methods.

2.3.1. Genetic Algorithm (GA)

The genetic algorithm is one of the population-based metaheuristics which mimics

the biological evolution. A population of feasible solutions is firstly initialized,

then in each iteration, it tries to improve the solutions by applying reproduc-

tion and mutation operators until the stopping criteria are met (Erdogdu, 2008).

Oliveira et al. (2011) developed two approaches including a GA and an MILP

to address the scheduling problem of a refinery in order to minimize the unmet

demand, operational changes, total stock at the end of the scheduling horizon

(only for MILP), and number of products not allocated to the tanks (only for the

GA). In their MILP method downtime and inspection of products in tanks were

not considered. Both methods provide good solutions in terms of demand, but

GA could find a fewer number of operational changes since it is capable of updat-

ing the weights corresponding to the objectives during the evolutionary process.

Shaw et al. (2000) proposed two genetic algorithms in order to find the solution

for a scheduling problem in a semi-continuous production system. The purpose
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of their model is to find out whether or not a batch started and finished, whether

or not a batch is idle, and the flow rate of the continuous stage with the objec-

tive of maximizing the profit. Santos and Dourado (1999) presented a genetic

algorithm to be applied for scheduling a continuous production system in order

to minimize the energy costs and maximize the production rate. In their GA,

Pareto Ranking Method (PR) is used for generating the new population. They

consider both shutdowns forced by maintenance necessities and consequently the

effect on production rate. In order to make genetic algorithm applicable for the

refinery scheduling problem Hou et al. (2017) firstly used schedulability condi-

tions proposed in Wu et al. (2011), Wu et al. (2008), and Wu et al. (2009) to

transform the problem into a resource assignment problem and then applied a

Nondominated Sorting Genetic Algorithm (NSGA-II) to it. However, they did

not consider the effects of pipeline flow rate in the costs of crude oil refining.

Amorim et al. (2011) simultaneously addressed both the lot-sizing and

scheduling problems of a semi-continuous production system by considering the

perishability of products. In the first step, they developed two multi-objective

MILP models and then implemented Make-To-Order (MTO) and a combination

of it and Make-To-Stock (MTS) environments to those and finally applied an

NSGA-II to the models. The advantage of their multi-objective framework is to

offer a trade-off between the freshness of the products or the total cost. Dahal

et al. (2001) proposed a Hybrid Genetic Algorithm (HGA) including a GA and

a heuristic for scheduling storage tanks in the ballast water treatment system.

They decomposed the problem into integer and real-number subproblems, so the

GA was used for the integer subproblems while the heuristic approach was ex-

ploited for the real-number subproblems within a GA framework. The proposed

approach was tested in three case studies to evaluate its robustness over random

search method. Ramteke and Srinivasan (2012) proposed a new GA for scheduling

the continuous flow production in an oil refinery. To increase the computational
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efficiency of the model, they based the chromosomes representation on the con-

cept of scheduling graphs, which changes the GA to a Structure Adapted Genetic

Algorithm (SAGA). Toledo et al. (2014) presented a method in which genetic

algorithm is combined with the mathematical programming to simultaneously

solve the lot-sizing and scheduling problems in a soft drink industry. The GA

was used for addressing the sequencing of the production lots which simplifies

the linear programming model for the lot sizing problem. The setup times are

supposed to occur for each preparation tank even if the raw materials are same. A

multi-population GA with the ability of migrating solutions between populations

was proposed by Toledo et al. (2009) to address the problem of lot-sizing and

scheduling a semi-continuous production system. Unlike the work of Toledo et al.

(2014), the sequence-dependency of setup times was considered in this method.

2.3.2. Simulated Annealing (SA)

Simulated Annealing is a single point metaheuristic which is inspired by the

process of annealing in metallurgy. In the annealing process, in order to reach

the most stability in the materials, they are heated first and then started to be

cooling slowly. Simulated annealing uses this method by defining a temperature

factor (T) which affects the probability of accepting a new point as the current

best solution during the search steps. In each iteration, an adjacent point is

randomly selected and compared to the current solution. If the newer one has

a better fitness value, it would be selected as the new solution, but if not, it

still has a chance to be selected according to the acceptance probability function.

The temperature factor is reduced in each iteration until it becomes zero which

means the current solution cannot be improved more. This feature makes SA

more strong in terms of finding the global optima, since worse solutions are able

to be accepted, in order to search their neighborhood.
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Huegler and Vasko (2007) proposed a strategy for scheduling a steel indus-

try with continuous casting process which combines a domain-specific heuristic

with any one of three metaheuristics such as simulated annealing, Generational

Evolutionary Programming (GEP), or Steady State Evolutionary Programming

(SSEP). In their proposed method, a near-optimal solution is firstly generated

by the heuristic and then used as the initial solution for the metaheuristic. The

comparison between the performance of three different metaheuristics shows bet-

ter performance of the steady-state method. Toledo et al. (2013) proposed a

hybrid multi-population evolutionary algorithm which combines a genetic algo-

rithm with simulated annealing and a heuristic called cavity heuristic in order to

solve the lot-sizing and scheduling problem of a two-stage semi-continuous pro-

duction process. In their proposed method, the role of SA is to reinforce the

search for better solutions in the neighborhood of the best solution generated by

the GA in the converged population. A simulated annealing was applied as a part

of optimization method proposed by Chen et al. (2017). In this method which

was employed for scheduling the delivery/injecting plans of different stations in a

pipeline, the objective is to minimize variations in the pump rate. In their method

SA works between two heuristics, the first one finds an initial solution and after

solution improvement by SA, the second heuristic provides a solution refinement.

They assumed a high cost for flow restarts in the pipeline segment, so none of

the intermediate delivery stations can be full-stream. Meyr (2000) introduced a

new MIP model to simultaneously address lot-sizing and scheduling problem of

a multiproduct capacitated production line. In their model continuous lot sizes

and deterministic dynamic demands without backlogging were considered with

the objective of minimizing inventory holding cost and the sequence-dependent

setup costs. A simulated annealing approach was applied to the model to find

near-optimal solutions in terms of the sequence of setups.
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2.3.3. Tabu Search (TS)

Tabu search is also a single point metaheuristic which uses a local search tech-

nique for solving optimization problems. In fact, it improves the performance

of local search by relaxing its basic limitation in order to avoid getting stuck

in local optima. Once no other improved solution is available, TS can accept a

worse solution to search its neighbourhood in hopes of improvement. Meanwhile,

in order to prevent tracing back to the point, it came from in next iterations,

previously visited solutions are memorized in a memory called tabu list, so they

cannot be visited again. Toledo et al. (2011) proposed a Tabu search approach

to solve the scheduling and lot sizing problem of a soft drink plant simultane-

ously. Sequence-dependent setup time and setup cost, as well as inventory cost

for an excessive number of products, are considered in their model. Hence, the

objective of their model is to minimize all costs including production, setup, and

inventory costs for products and raw materials in lines and tanks. Zandieh et al.

(2016) developed a tabu search approach which is called gradual transition tabu

search for scheduling both batch and continuous manufacturing systems. The

objectives of their model are to minimize production time and delay in meeting

the demand. Hindi (1995) applied a tabu search for a capacitated single-item

lot-sizing problem. Startup costs for switching the production facility on or off

and reservation cost for keeping the facility on, regardless of involving with the

work, were considered in their model. However, they did not use sophisticated

measures such as multiple starts, diversification and intensification strategies to

improve the performance of the Tabu search. Göthe-Lundgren et al. (2002) firstly

formulated a MILP model for the problem of scheduling in a refinery where the

capacity of inventory is limited. Secondly, two approaches were applied for solv-

ing the MILP: using a MILP solver and using tabu search. The objective was to

minimize the costs of changing the mode of operation and completely satisfying

the demand.
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2.3.4. Ant Colony(AC) and Bee Colony(BC) Optimization

ACO and BCO are both population-based methods inspired by the behaviour

of ants and bees for finding foods respectively. In the real world, ants initially

search for food randomly and once they find a source return to the colony while

laying down pheromone trails. So other ants can stop random search once they

find a path, and lay down their own pheromone each time coming back. Thereby,

continuing to do so, have other ants to focus on more strong paths. Real-world

bees, however, wait for a small portion of their colony to search randomly and

bring back food. The profitability of food is evaluated by scouts and other bees

focus on more profitable food resources. In both methods, the population is the

colony, solutions are food sources, the fitness value is the profitability of food

and pheromone strength, and species are the search operators. Pan et al. (2013)

proposed a bee colony algorithm for steel-making manufacturing system with

the continuous casting process. They first presented a mixed integer program-

ming model and then applied BC for solving the scheduling problem. Also, two

heuristics were used to increase the performance of the BC. They did not con-

sider breakdowns in the machines or error when processing products. Pan (2016)

proposed a co-evolutionary bee colony algorithm for scheduling a steel-making

process with continuous casting. They employed the decomposition method to

divide the problem into two sub-problems including a hybrid flowshop and con-

tinuous casting scheduling problems. Furthermore, the proposed BC method has

two sub-swarms, each addressing one sub-problem. Two heuristics were applied

to enhance the performance of the proposed co-evolutionary BC. They also con-

sidered deterministic and uninterrupted setup times of all casts and transporta-

tion time between stages. Gravel et al. (2002) presented an ant colony method

for solving the scheduling problem of the continuous aluminium casting centre.

Four objectives were considered in their model: minimizing the unused capacity

of facilities due to setup times, satisfying demand on-time, minimizing the total
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number of draining when changing alloys, and minimizing the total unused ca-

pacity of transportation vehicles. Atighehchian et al. (2009) proposed a method

which combines ant algorithm with non-linear optimization in order to solve the

scheduling problem of a steel-making process with continuous casting. They con-

sidered assurance of continuity of the production process and minimizing costs as

the objectives of their method. Ferretti et al. (2006) applied an ant algorithm to a

scheduling problem in a steel-making process in order to find the most profitable

schedule. Their main emphasis is to consider finished product warehouse as a

cooling area which is a part of the production process.

2.3.5. Research Motivation

As already discussed, continuous production systems are used in industries with

high levels of production rates and high volume of products. Consequently, they

are accounted for a larger percentage of the Gross Domestic Product (GDP) of

the country. Scheduling continuous productions and process industries is often

not as simple as in discrete production systems such as job shops and flow shops.

This could be due to the lack of flexibility in the system layouts and machines for

different products in this type of production. Moreover, scheduling approaches

may change in various process industries with different products which are also

considered as a problematic issue.

Conducting research and developing models case by case can cover different

scheduling problems in continuous production systems which is a good way of un-

derstanding certain features and aspects of problems by the research community.

So that necessary knowledge can be accumulated based on the area of research

for the specific problem under consideration which may not be applicable for a

wider range of process industries, and eventually, different algorithms could be

developing based on those approaches. A local process industry has been con-

sidered in this thesis as a scheduling problem since it is not commonly found in
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the literature and is very different from the standard problems which make it a

unique problem which deserves more research.
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Problem Definition

3.1. Problem Description and notations

In this section, the scheduling problem under consideration and its corresponding

notations are described. The scheduling problem is based on a case study which

belongs to food processing manufacturing system with a continuous flow produc-

tion. Products are categorized based on their flavors and packaging sizes. So,

those with the same flavors and different package sizes are considered as different

products as well as products with different flavors. With this classification, there

manufactures 57 different products in the system (Pi, i=1,. . . ,57). The materials

move continuously on a conveyor which passes through a fryer in the first step.

The fryer should process 2770 kilograms of them per hour to keep the quality at

a high level. Changing the speed of the conveyor and consequently, the amount

passes through the fryer can make materials burned or oil-soaked. In the next

step, processed materials go through the seasoning and packaging machines and

are used in different product types. There are 10 stations each includes a season-

ing and a packaging machine (Mi, i= 1, . . . ,10). There are 2 important factors

that affect the machine scheduling procedure. Machine capacity and machine

efficiency. Different machines can process different amount of materials based on
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the type of seasoning or packaging. It means that the capacity of machines can

differ by changing the products on which they are going to work. In addition

to the capacity, there exist different rates of efficiencies for processing different

products by different machines. Efficiency rates are the probability with which

the machines can keep processing without failing on average. This means if a

machine is not capable of processing a special type of product, its efficiency for

that product is zero and would be called an ineligible machine.

Here, the scheduling problem can be defined as the problem of finding the

amount of time that each seasoning and packaging machine should take for each

product in such a way that the demand can be met on-time while minimizing

three objectives discussed in section 3.1.1.

3.1.1. Objective functions

The scheduling problem in this thesis is defined as a multi-objective problem.

There are three objectives to be optimized simultaneously, but different weights

may be assigned to objectives based on the priority of decision makers. All

calculations are done based on the demand for products which may vary from one

schedule horizon to another. This fact makes implementation of the scheduling

procedure necessary before starting every schedule horizon.

Minimizing the average percentage over-pull (A)

As discussed in section 3.1, the performance of machines can differ based on

the product on which they work. There are two different indices defined for

the capacity of machines: theoretical and actual capacity. In theory, a machine

may be able to process a certain number of products, but when it comes to real

production, there exist some problems that may lead machines to fail to process

well. It cannot be certainly specified that when a machine fails to process a

product properly; however, it can be estimated that how many breakdowns a
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machine has during working on a product on average. This estimation is called

efficiency of that machine for a specific product.

When the system is running, machines are assigned to products based on

the schedule. So, in order for reaching the production level specified by the

schedule, all machines need to be supported by the materials on time. However,

in some cases, when some machines work with their theoretical capacities, the

volume of fried materials needed by machines at a certain period of time would

become higher than the maximum capacity of the fryer. The amount of material

that machines require more than the fryer capacity is called over-pull. The first

objective of this study is to minimize the average percentage over-pull, in order

to minimize the risk of having idle machines at the end of the production line.

Minimizing the difference between the target KG and fryer capacity

in each time slot (B)

The time representation used in this scheduling problem is a discrete time model,

as discussed in section 1.2.1, so the scheduling time is divided into equal time-

slots. This approach can simplify the scheduling formulation. On the other hand,

as it was already discussed, the speed of the fryer and consequently its capacity are

limited. By determining the sequence of products for each machine, all machines

can be working simultaneously. Considering 10 minutes for each time-slot and the

total capacity of the fryer, the amount of raw material that the fryer can process

at each time-slot will be 2770
6

= 461.66 KG. The term target KG can be defined

as the amount of material that actually needs to be processed by the system

within a time-slot. So the scheduling is basically done based on the target KG

which considers the efficiencies of machines, and the summation of all allocated

materials to all machines cannot be more than the actual capacity of the fryer

in a certain time-slot. On the other hand, if the amount of processed materials

required by machines at a specific time-slot is less than the provided amount by
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the fryer, under-pull happens. Having under-pull for a specific amount of time

could cause waste of materials, since they would not be allocated to any machines

and eventually have to be used as animal food.

Minimizing the number of products with production rate outside the

target range (C)

In this case study the level of demand is not a fixed number and may change in

the different period of times, but based on the history of the customers demand

in the past, a target range can be defined to show the approximate demand of

different products. This range has a minimum and a maximum target between

which the quantity produced needs to fall. Being in the target range can help the

production system to have lower wastage and backorder costs which can somehow

affect the first two objectives. So, it can be said that, in the scheduling problem

of this work, it is desirable to determine which machine should be allocated to

which product and for how long to keep the production level between the targets.

Once the objectives A, B, and C are defined individually, the total objective

function can be formulated based on the importance of the objectives and their

corresponding weights. The general form of the objective function can be defined

as shown in Eq 3.1 where W1, W2, and W3 are the weights that can be selected

at the discretion of the decision maker and the importance of the objectives.

Minimizing the total weighted sum= (W1 ∗ A) + (W2 ∗B) + (W3 ∗ C) (3.1)

3.2. Numerical Example

In this section, a small size numerical example is provided which is a simulation

of the real problem considered in this thesis. The aim here is to clarify different

concepts of the problem and illustrate what has been provided in the previous

section. So, this example is regardless of the optimization methods that could

30



Chapter 3. Problem Definition

possibly be used to solve the problem, and algorithm steps which are explained in

chapter 4 in more details. In this example, twenty products are produced by five

machines over a one-day production. For the sake of simplicity of demonstration,

each time-slot is thirty minutes and the hourly capacity of the fryer is 1300

KG. So in each time slot, only 650 KG of products can be processed. Also, for

products with the same flavours, only one time-slot is considered as setup time,

while it takes two time-slots to setup the machines when flavours are different.

Product weights, flavours used in products and their demands, production rates,

the efficiency of machines according to products, minimum and maximum target

for each product, and trial scheduled quantity are shown in table 3.1.

Figure 3.1 also shows the schedule of the example by considering data such

as production rates and efficiencies of the machines provided in table 3.1. The

scheduling horizon is only a day including three shifts starting 7 AM for twenty-

four hours. As mentioned in section 3.1.1, there is a theoretical capacity for

each machine processing a product, which is higher than the actual capacity of

the machine. So the concept of Instant KG is the summation of all scheduled

theoretical capacities in different time slots. Then there is a Target KG which is

the instant KG multiplied by the efficiencies of machines and the scheduling is

done based on this quantity. So a product cannot be processed in time-slots with

target KG more than the capacity. This has been demonstrated in figure 3.1 for

products 20 and 11 on machines 4 and 5 respectively.

Clearly, instant KG is higher than the target KG in each time-slot, and could also

pass the maximum capacity of the fryer. So the concept of over-pull is defined

here which has been shown in table 3.2. Over-pull can vary in different time slots

based on the difference between instant KG and the capacity. For instance, the

over-pull at 7 AM is around 14

As it can be seen in table 3.3, eleven products are scheduled to be produced

outside of the demand range which is fifty-five per cent of all products. This
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Table 3.2: Results achieved from figure 3.1

7AM 8AM 9AM 10AM 11AM 12PM

Capacity 650 650 650 650 650 650 650 650 650 650 650 650
Instant KG 744 744 744 744 883 505 700 700 660 786 786 645
Over-pull 14% 14% 14% 14% 36% -22% 8% 8% 2% 21% 21% -1%

Target KG 624 624 624 624 650 425 568 568 533 643 643 519

1PM 2PM 3PM 4PM 5PM 6PM

Capacity 650 650 650 650 650 650 650 650 650 650 650 650
Instant KG 645 769 769 769 769 769 769 769 769 658 658 776
Over-pull -1% 18% 18% 18% 18% 18% 18% 18% 18% 1% 1% 19%

Target KG 519 628 628 628 628 628 628 628 628 530 530 633

7PM 8PM 9 PM 10PM 11PM 12AM

Capacity 650 650 650 650 650 650 650 650 650 650 650 650
Instant KG 776 652 534 658 607 607 844 686 686 500 618 888
Over-pull 19% 0% -18% 1% -7% -7% 30% 6% 6% -23% -5% 37%

Target KG 633 524 421 530 516 565 650 555 555 391 600 650

1AM 2AM 3AM 4AM 5AM 6AM

Capacity 650 650 650 650 650 650 650 650 650 650 650 650
Instant KG 764 764 888 631 631 749 749 749 749 631 862 625
Over-pull 18% 18% 37% -3% -3% 15% 15% 15% 15% -3% 33% -4%

Target KG 606 650 650 508 508 611 611 611 611 569 650 533

shows the concept of the third objective of the problem explained in section 3.1.1

which is the minimization of the number of products with trial scheduled quantity

outside of the predefined range.

Finally, considering W1 = 800, W2 = 5, and W3 = 10 objective values of

the example would be as follows:

• Average Over-pull = 10%→ The first objective value = 800,

• Difference between capacity and target KG = 3211 KG → The second

objective value = 16055,
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Table 3.3: Difference between scheduled and target values (KG)

Products 1 - 10

1 2 3 4 5 6 7 8 9 10

Scheduled QTY. 1017 990 1020 348 442 309 820 515 412 890

Min Target 645 720 775 285 425 344 425 325 285 575

Max Target 930 1040 940 365 465 521 865 465 370 830

Products 11 - 20

11 12 13 14 15 16 17 18 19 20

Scheduled QTY. 3640 1308 981 872 780 624 3220 3916 3026 2873

Min Target 3612 747 762 621 544 546 2904 3147 3264 1455

Max Target 4160 1074 878 894 784 845 3607 3624 3987 2187

• Total KG outside target ranges = 1907 KG → The third objective value

= 19070.

Therefore, Total objective value of the schedule is = 800 + 16055 + 1907 =

18762 which should be minimized.
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Chapter 4

Selected Metaheuristic

Algorithms

4.1. Introduction

In this chapter two metaheuristics are selected from several methods reviewed

in section 2.3 and applied to the scheduling problem of a case study which was

described in chapter 3: Genetic Algorithm (GA) and Multiple Path Simulated

Annealing (MPSA). The organization of this chapter is as follows: in sections

4.1.1 and 4.1.2 algorithms and their terminologies are introduced, then steps of

both algorithms are discussed in section 4.2.

4.1.1. Genetic Algorithm

Among all metaheuristics available for scheduling continuous process industries,

GA is the most adopted one. This could be due to the high quality of the solu-

tions and low computational time required. The algorithm starts with generating

the initial population which includes a number of solutions called chromosomes,

depending on the predefined population size. Chromosomes are formed by several
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genes which include information about the machines (Solution representation).

All chromosomes are evaluated based on the fitness function, and then fitness

values are assigned to the corresponding chromosomes (Evaluation). Most fitted

solutions are then selected to form the next population (Selection) which is pos-

sible through different methods. Finally, cross-over operator (reproduction) and

mutation operator (perturbation) are used with a predefined probability of ap-

plying to manipulate chromosomes with the hope of generating fitter solutions.

Tuning the GA parameters (probabilities and the population size) results in a

better final solution. Algorithm 1 shows the template of the GA method em-

ployed in this thesis.

Algorithm 1 Pseudocode of applied Genetic Algorithm

Begin
Generate the initial population (P0)
while termination criteria are not met do

for (c = 1 to S) do /*S=population size*/
Compute fitness value of chromosome c

end for

Use a selection operator to form next population (Pj+1)

Perform cross-over on r% of randomly selected chromosomes /*r=cross-
over probability*/

Perform mutation on m% of randomly selected chromosomes
/*m=mutation probabiliy*/
end while

Select the most fitted solution in the last population as the final solution

End
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4.1.2. Multiple Path Simulated Annealing (MPSA)

The basic simulated annealing was previously introduced in section 2.3.2. How-

ever, in order to improve the performance of simple SA in terms of quality of the

solutions, multiple path SA is adapted in this work. MPSA is a population-based

simulated annealing with the ability to simultaneously search different parts of

the solution space. This means that solutions with lower probabilities of error

can be found even in a shorter period of time in comparison to single path SA

(Defersha, 2015). The pseudocode of proposed SA can be seen in Algorithm 2.

4.2. Components of Proposed Algorithms

Optimization steps of both proposed algorithms are discussed in this section. It

is noteworthy that some algorithm steps are done similarly in both algorithms,

while others not. We categorize optimization steps into two main subcategories:

common steps and unique steps. Hence, the steps are not necessarily in the order

of their own algorithms.

4.2.1. Common steps

Solution representation, fitness evaluation, and perturbation mechanism are the

steps that both proposed methods employ in order to find the optimum solution.

However, they are not necessarily done through the same steps (e.g. perturbation

mechanism).

4.2.1.1 Solution representation

There has been presented numerous methods for solution representation in litera-

ture such as : (Shaw et al., 2000) , (Hou et al., 2017) ,(Dahal et al., 2001), (Toledo

et al., 2014),(Toledo et al., 2013), and (Ramteke and Srinivasan, 2012). However,
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Algorithm 2 Pseudocode of Multiple Path Simulated Annealing

Begin
Set k = 0, n = 0, T0 = initial temperature

Generate S solutions randomly X0,1 ,X0,2, ..., X0,S

while Tk > Tmin do

for (q = 1 to Q) do /* Q= Maximum number of iterations in (Tk) */

for (j = 1 to S) do /* S= number of independent search paths */

Generate X ′n,j from Xn,j

if (E(X ′n,j)− E(Xn,j) < 0) then

Xn,j = X ′n,j

else if exp
−(E(X′n,j)−E(Xn,j)

Tk
> r then

Xn+1,j = X ′n,j

else

Xn+1,j = Xn,j

end if

end for

n = n+ 1

end for
k = k + 1
Tk = γ × Tk−1

end while

Consider Xn,j∗ as the best solution

End
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the method proposed in this thesis has not been applied before. The first step

in both GA and MPSA implementation is to properly design a scheme from a

particular problem to which optimization steps can be applied. This scheme in

GA is a chromosome which can also be used as a solution in MPSA. Each chro-

mosome contains 57 genes which is equal the total number of products. There

are two elements by which a gene is formed. The first element is for indexes of

products(Pi) and the second one is for indexes of product factors (Fi). Product

factors (Fi) are random numbers and used for calculating the (Qi) which is the

quantity needs to be produced from the product exists in gene i during a schedule

horizon. Figure 4.1 shows how a sequence of products with corresponding factors

is encoded to a chromosome (solution).

52 14 33 38 11 43 7 26 44 4 23 55 40

F52 F14 F33 F38 F11 F43 F7 F26 F44 F4 F23 F55 F40

…
Products

Factors

Figure 4.1: Solution representation for the scheduling problem of the case study

Thousands of such solutions are generated randomly in each iteration to

form the initial population. Equation 4.1 shows the role of production factors

in the calculation of their corresponding products quantity. Where TRGmin and

TRGmax are the minimum target and the maximum target of that product re-

spectively.

Qi = Fi ×
TRGimax + TRGimin

2
(4.1)

The reason for using Fi as a random number is to help to prevent the total

production rate to pass the capacity limit of the production system as much as

possible. For instance, by ignoring the factors from the equation 4.1 (Fi = 1),

the production quantity for all the products would be placed on the middle of
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the target range which is not a feasible quantity regarding the capacity of the

manufacturing system.

Once a population is fully generated in a particular iteration, each chro-

mosome must be decoded in order to get ready for the evaluation procedure.

Thinking of a small example can be a good way to achieve a better understand-

ing of the decoding procedure. Table 4.1 shows an example of the problem with

the situation in which 5 products must be produced by 2 machines.

Table 4.1: A small example of manufacturing system under consideration

Products Machine capacity (bags per minute) Machine efficiency

Machine 1 Machine 2 Machine 1 Machine 2

1 55 55 0.85 0.88
2 0 40 0 0.88
3 50 55 0.85 0.88
4 64 0 0.85 0
5 100 60 0.85 0.88

In table 4.1 it can be seen that for product 1 the theoretical capacity of

both machines is similar, but machine 2 can work 0.03% more without failing and

eventually can produce around two more bags per minute. It also can be seen that

the machine 1 and machine 2 are not eligible for products 2 and 4 respectively.

So, the actual capacity of them and consequently their efficiency are zero for these

products. The first eligible product which is product 1 is allocated to machine 1.

Once machine 1 is done with product 1, the next eligible product is selected to be

allocated to it. As it can be seen in table 4.1 product 2 is not eligible for machine

1, so the next one will be product 3. It is noteworthy to point out that depends

on the variation in flavours of product 1 and 3 the setup time can differ. If they

both have same flavours, the setup time will be only for adjusting the machine

for different packaging, but if flavours are also different, the time of cleaning the

machine should be considered in the setup time. This can be seen in figure 4.2
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that the first two allocations of machine 1 have the same flavours, so the setup

time for starting the second allocated product is less than other setup times.

After assigning the whole available capacity of machine 1 during the scheduling

un

Fourth Allocation: Product 2 Fifth Allocation: Product 5

M1

M2

  First Allocation: Product 1 Third Allocation: Product 4Second Allocation: Product 3

Figure 4.2: Decoding procedure of example table 4.1

horizon, products are assigned to machine 2 based on products eligibility as well

as considering the total capacity of the fryer in each time slots. Hence, machine

2 cannot start processing product 5 until finishing product 3 (system capacity in

each time slot). Total steps of solution representation can be seen in figure 4.3

as a flowchart.

4.2.1.2 Solution perturbation

Perturbation is implemented on solutions in order to avoid trapping in local

optimum points. Although it is performed quite similar in both methods, the

steps in which it is done are different between these two algorithms. In the GA,

perturbation (mutation) is done after selection and cross-over while in the MPSA,

a perturbed solution is a basis for the selection operator. Solution perturbation

includes 3 steps as follows:

1. Swap: Swap operator randomly selects two genes from the chromosome

and exchange them.
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 start

Is i < 58 ?

Set: i = 1
j =1

Set: i = 1
Select machine j

Is j > 10 ?

i = i+1

Is product i eligible for 
machine j ?

Select product i

i < 58?

j = j+1
Assign product i to 

machine j

Is the remaining time of 
machine j sufficient?

i = i+1

Fryer capacity is enough ?

Calculate production 
quantity for product i

No

No

Yes

Yes

No

Yes

End

No

Yes

Yes

No
No

Figure 4.3: Solution representation flowchart
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2. Shift: In this operator, a gene is randomly selected and shift to a random

location.

3. Factors perturbation: Here, unlike the last two steps, the perturbation is

performed only on product factors and not the whole gene. In the last two

steps, the products could either exchange their positions or shift to another

position since the indexes of products are limited and no other product is

defined in the problem while factors are able to change to any other random

numbers within a predefined changeable range.

It is important to highlight that in all three above steps only a certain percentage

of genes (products and factors) are perturbed which is based on the perturbation

probability defined by the scheduler. Figure 4.4 shows the three steps of the

perturbation mechanism.

27 21

46 52 11 36
F27

50 7 19 47 44
F21

40 9

F46 F52 F11 F36 F50 F7 F19 F47 F44 F40 F9

11

46 52 36 21 50 7 19 47 44
F11

27 40 9

F46 F52 F36 F21 F50 F7 F19 F47 F44 F27 F40 F9

46 52 36 21 50 7 19 47 44 11 27 40 9

F46 F52 F36 F21 F50 F7 F19 F47 F44 F11 F27 F40 F9

F'46 F'7 F'19 F'40

…

…

…

Randomly select two genes 

and swap them

2) Shift

        1) Swap

3) Factors perturbation

Randomly select a gene and 

shift it to a random location

Some of the factors are slightly perturbed 

Figure 4.4: Steps of perturbation mechanism
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The procedure of factors perturbation has some details that are shown in

figure 4.5 . Below are the notations used in the flowchart.

i Gene counter

PS Step Factor Probability

Fmax Maximum acceptable value of factors

Fmin Minimum acceptable value of factors

F ′ New value of F after perturbation

Smax Maximum step that can be taken down or up

The flowchart shown in the figure illustrates that the procedure starts with

selecting (PS) per cent of factors to be perturbed. Then for each selected factor,

a random decision is made to decide whether the factor should be stepped up

or down. So the factors values do not follow a continuous trend. Factor values

cannot change more than the maximum step (Smax) which is a predefined value.

Then a random number is multiplied by the maximum step and the result is

added or subtracted to the current factor value (Fi). However, multiplying a

random number into a Smax can produce very large factors (while stepping up)

and negative ones (while stepping down) which cannot be accepted. To keep the

production quantities at target ranges, the factor values need to be between a

minimum and maximum value (Fmax and Fmin).
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Start

rand() < P?

i = i+1

Step Down or Step Up? 
(Randomly)

Yes

F (i) = Min{ Fmax , F(i) + (rand()* Smax) }

F (i) = Max{ Fmin , F(i) - (rand()* Smax) }

i < 58 ?

Yes

No

Up

No

Down

End

Set:  i=1

Figure 4.5: Procedure of factors perturbation
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4.2.2. Unique steps

In this section, steps that are not common between proposed algorithms are

discussed. These steps are either done in different ways (e.g. selection operator)or

done only in one of the algorithms (e.g. cross-over).

4.2.2.1 Selection operator

After fitness evaluation, solutions are selected based on their fitness value to be

used for next steps. Selection is a procedure which happens in both proposed

algorithms. However, the way by which algorithms select solutions are different

and the selected solutions are also used in different ways. Following sections

explain the selection procedure in both methods.

Genetic Algorithm

In the GA, several methods can be employed as a selection operator such as

roulette wheel and tournament selection. In this thesis, tournament selection is

used. In this method, k solutions are randomly selected and compared in terms

of fitness value, then the fitter one (the one with minimum objective value) is

directly copied to the next population. This process is repeated until the number

of solutions in the new population equals population size. It should be noted that

this process is done with replacements which means every time a fitter solution

is selected, it still has a chance to be in the previous population. Hence, in the

new population, there may be several copies of a specific chromosome while some

chromosomes may not be copied even once. This helps to generate a population

with more fitter chromosomes which improves the performance of the GA.

Multiple Path SA

The selection procedure is done quite differently in MPSA. Once a solution in

a particular path is perturbed, the algorithm decides which solution should be
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selected for the next iteration, hence, in MPSA selection operator is also called

Deicide. The selection is done via the energy function (the weighted sum of the

proposed multi-objective problem). If the perturbed solution (X ′n) has lower en-

ergy (lower fitness value) than the current best solution (Xn), it would be selected

as the solution for the next iteration. However, the converse is not always true, so,

if (X ′n) has higher cost than (Xn) while exp(−(E(X ′n)− E(Xn))/Tk) > rand(),

(X ′) would be the solution for the next iteration (Xn+1). Tk is the temperature

at kth iteration, where several iterations may be done at each temperature. The

sequence with which Tk decreases is called cooling schedule and should be done in

such a way that Tk > Tk+1 when limk→∞Tk = 0. In general, the selection proce-

dure in single path SA which is similar to the proposed MPSA can be summarized

in equation 4.2:

Xn+1 =


X ′n , if E(X ′n) ≤ E(Xn)

X ′n , if exp(E(Xn)−E(X′n)
Tk

) > rand()

Xn , otherwise

(4.2)

In equation 4.2, r is a randomly generated number which helps stochastic

decision for a new solution. Three factors should be considered while scheduling

a cooling process :

• The level of starting temperature

• The time of reducing the current temperature

• The amount of reduction in the current temperature

In this thesis, a popular cooling schedule is employed in which a prespecified

number of iterations are done at a constant temperature(Tk), then the tempera-

ture decreases via equation Tk =γ×Tk−1, where γ is a constant number in [0,1],
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called cooling coefficient and usually set as close to 1. Thus, it can be concluded

that the parameters of SA are the initial temperature (T0), the cooling coefficient

(γ), and the number of iterations at each temperature.

4.2.2.2 Cross-over

Cross-over is an operator which is exclusively used in the GA. After selection

procedure and generating the new population, chromosomes are paired randomly

to be combined by cross-over. It is applied to mix the features of each pair of

chromosomes to produce new children in hopes of creating chromosomes with

higher fitness (Sivanandam and Deepa, 2007). There are different types of cross-

overs, which can be used based on the problem type and limitations. In this

thesis, since the focus is on a limited number of specific products, the content of

genes is fixed and cannot be changed or duplicated. So, the Systematic Single

Point Cross-over (SSPC) is employed which has two main steps. The process of

implementing the method is as follows:

• Step 1:

In the first step two operations are done. Firstly, a random cross-over point

is selected and applied to both selected chromosomes (parents), then all

genes before the cross-over point in the parents are exchanged and conse-

quently, two children are produced.

• Step 2:

Since the first element of each gene contains a random number between 1

and 57 (number of products), and the parents are not necessarily in a same

order of products, copying genes of one to the other will make duplicate

genes(products) which is meaningless. So the second step of the applied

cross-over is to remove duplicate genes from both children. Once the ex-

change is done between the parents, all genes of each parent are compared
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to the genes before the cross-over point of the corresponded child. Those

genes which are not placed before the cross-over point in the corresponding

child are copied to the first vacant gene after the cross-over point in it. This

is done until all genes after the cross-over point in both children are filled

with new genes. Figure 4.6 shows two steps of cross-over procedure. For

the sake of illustration, a chromosome with only 15 genes is shown in this

figure.

4.3. Chapter Summary and discussion

In this chapter two metaheuristics were selected and implemented in a case study.

Both GA and SA are considered as powerful methods for solving permutation

problems with wide search area where implementing direct methods is not rea-

sonable in terms of time required and even modelling the problem. The proposed

GA is a typical one with systematic single-point cross-over and tournament se-

lection. Mutation is the same as the perturbation mechanism in the second

proposed algorithm (MPSA) where Move, Shift, and Factors Perturbation are

done to generate a new solution. In order to improve the performance of con-

ventional simulated annealing in terms of quality of solutions and required time,

in this thesis, a population-based simulated annealing is adopted to widen the

search area to reduce error probability exponentially while the implementation

time increases linearly. Figure 4.7 shows the steps of the applied MPSA in more

details, which is inspired by the flowchart proposed in Defersha (2015).
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11 12 15 10 3 7
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Figure 4.6: Illustration of cross-over procedure
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Start

Initialization
Set  n = k = 0; Set T0 = Tinitial

Set E(BS)= Large-Number

Randomly generate initial solutions X0,1, X0,2,…,X0,S

Calculate E(X0,s) for s= 1,2,…,S

Set s = 0

 s = s+1

s = S?

n = n+1

Perturbation 
Perturb Xn,s  (products and factors) to generate a 

new solution X’n,s

Evaluate 
Calculate E(X’n,s)

Decide
If E(X’n,s) < E(Xn,s), then Xn+1,s=X’n,s

Else IF exp[E(Xn,s)-E(X’n,s)] > rand(), then Xn+1,s =X’n,s

Else Xn+1,s = Xn,s

Update  
If E(Xn+1,s) < E(BS) , then BS = Xn+1,s 

Set k = k+1
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Figure 4.7: Steps of the MPSA
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Numerical Example

In this chapter, firstly the performance of the GA is compared to the manual

scheduling method in terms of quality of the solutions, then the effects of altering

the parameters will be illustrated in order to find the best ones for both GA and

MPSA. At the last step, the performance of both proposed algorithms will be

compared in terms of time required and quality of answers.

5.1. GA vs Manual Scheduling

There is no need to say that how time-consuming manually scheduling could be.

In this problem, the required time for scheduling the production line takes around

one week, while GA can find a good solution in far less required time (almost

half an hour). So, the performance measure in this section is only the quality

of the solutions for each objective. Figure 5.1 plotted the differences between

the manual method and the GA for the first two objectives. Parts (a) and (b)

of figure 5.1 shows hourly and average over-pull for the Manual method and the

GA respectively. Clearly, the GA has a smaller average over-pull. The second

objective of the problem was compared in two methods in parts (c) and (d) of

figure 5.1 which shows the difference between target KG and the capacity of the
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system decreased considerably in the GA (part (d)).
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Figure 5.1: Comparison of Manual Scheduling (a and c) and the GA (b and d)

In terms of the third objective, GA also performs better. It could find much

better solutions and improve them for around 40 per cent.

5.2. GA vs MPSA

In this section, the performances of the two proposed algorithms are compared.

Since both algorithms are metaheuristic, the initial random number that they

take to start calculation can alter the search directions and affect the perfor-

mance of them accordingly. figure 5.2 plotted the trend of both algorithms for

ten runs with different seed numbers at which further random numbers are cho-

sen. It clearly demonstrates that the GA performs better than MPSA in both

terms of the speed of convergence and quality of solutions. Figure 5.3 also shows

the better performance of the GA in terms of the quality of solutions. It should

be highlighted that for the MPSA the total number of iterations are considered
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Figure 5.2: GA (a) vs MPSA (b) in solving the problem with different seed numbers.

against the generations in the GA. The maximum number of iterations or gener-

ations are selected based on the convergence of both methods. As it can be seen

in figure 5.2, in both methods although convergence has happened at a different

number of iterations, all of them are converged before 1500 generations (itera-

tions) and the results do not improve significantly after this number, therefore,

this number can be a safe stopping criterion.

Part (a) of this figure shows performance of both methods on average in

each iteration, Also in part (b), it is evident that the GA converge to a better

objectives in all ten runs.
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Figure 5.3: Performance comparison (a) average convergence, (b) final solution objective.
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Table 5.1: Results of applying various combinations of cross-over and mutation probability

Objective value for replications

Experimental Run Cross-Over Probability Mutation Probability 1 2 3 4

1 0.7 0.4 226498 225797 226077 231081
2 0.8 0.4 231243 231970 226374 232071
3 0.9 0.4 230486 230769 225918 229766
4 0.7 0.3 225289 226153 225148 230526
5 0.8 0.3 230419 224755 225785 228697
6 0.9 0.3 224781 228823 223599 223921
7 0.7 0.2 230073 233629 224295 229709
8 0.8 0.2 224039 224227 223457 222362
9 0.9 0.2 221671 228079 227748 229077

5.3. GA Performance Analysis

In this section the performance of the GA is analyzed in presence of different

parameters such as cross-over probability and mutation probability. Also, effect

of changing the population size will be analyzed. To investigate the effects of

changing the GA parameters on the algorithm, Analysis of Variance (ANOVA)

has been implemented. Here, both steps of mutation operator (shift and swap)

are considered as a single operator and the probabilities are changed for both of

them similarly in each run of the experiment. Table 5.1 shows the data used in

9 experimental runs with four different seed numbers which are counted as the

replications of the ANOVA. The parameters were set at three levels as {0.7, 0.8,

0.9} for the cross-over, and {0.4, 0.3, 0.2} for the mutation.

Based on the P-Values of the experiments, (figure 5.4 (c)) the mutation

probability has a significant effect on the objectives. This can be seen in main

effect plot of the mutation probability (figure (a)), however, in spite of the de-

scending trend of cross-over probability plot the main effect of it is not significant

since the corresponding P-value is much higher than 0.05. This means that cross-

over cannot affect the results without considering the mutation. Interaction plot

(figure (b)) shows an obvious interaction between both factors (probabilities) and

it is also confirmed by the interaction P-Value (0.026). Due to the interaction, it
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  Cross-Over Prob*Muation Prob             3.26         0.026 

 

(c) 
 

 

 

 
(e) 

 
(b) 

 

 

 
(d) 

 

 

 

 
(f) 

 

 

Muation Prob

C
ro

s
s
-
O

v
e
r 

P
ro

b

0.400.350.300.250.20

0.90

0.85

0.80

0.75

0.70

>  

–  

–  

–  

–  

–  

<  222000

222000 224000

224000 226000

226000 228000

228000 230000

230000 232000

232000

Objective

Contour Plot of Objective vs Cross-Over Prob, Muation Prob

Figure 5.4: Results of ANOVA for the effects of cross-over and mutation probabilities on GA
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Figure 5.5: Wider range of combination of mutation and crossover probabilities

can be concluded that the performance of the algorithm depends on the factors

within the specified range. Figure 5.4(d) shows the results of different combina-

tions of mutation and cross-over probabilities. According to this figure within the

specified range of factors, best results are attained when the mutation and cross-

over probability are changing between {0.2, 0.22} and {0.78, 0.85} respectively.

Since in this figure the total interval for the best results is not demonstrated, an-

other experiment was run and the results were added to the figure 5.4 (d) which

can be seen in figure 5.5. Figure (e) and (d) are to check two necessary condi-

tions of running ANOVA for the data. They plot the normality of residuals and

equality of variances for the experimented results respectively. So, the accuracy

of the results found by the ANOVA is reliable.

One of the parameters that can also have a significant effect on the perfor-

mance of the GA is the population size. Table 5.2 shows the results of different

population sizes which are plotted in figure 5.6. Considering the p-value of the

experiment, the null hypothesis that is equality of means of objective values with

different population sizes can be rejected. Hence, it can be concluded that in-

creasing the population size can significantly improve the performance of the GA
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Table 5.2: Results of applying different population size

Population Size Objective values for replications

Replication 1 Replication 2 Replication 3 Replication 4

100 246631 248892 245292 260805
300 237226 231041 232239 234778
500 233702 231543 226066 232562
1000 230865 229932 223744 231273
1500 224039 224227 223457 222362
2000 224095 229453 223055 222628
2500 222333 221215 227867 222132
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Figure 5.6: Results of ANOVA for different population sizes

within this range of population sizes. However, since the results do not improve

considerably after population size of 1500 (see figure 5.6 (a)), and considering that

the processing time increases by growing the population size, 1500 is selected for

the size of all experiments on the GA.

5.4. MPSA Performance Analysis

Similar performance analysis to the previous section has been done for the sec-

ond proposed algorithm (MPSA) in this section. The parameters selected for this

analysis are the initial temperature (T0) and the cooling coefficient (γ). Again,
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nine experiments were conducted with different initial random numbers in three

various parameter levels in order to gather different results for replications of the

ANOVA. Initial temperatures levels are {1500, 3000, 4000} and cooling coeffi-

cients are {0.01, 0.02, 0.04}. Results of the runs can be seen in table 5.3.

Table 5.3: Results of applying various combinations of initial temperature and cooling coefficient

Objective value for replications

Experimental Run Initial temperature (T0) Cooling coefficient(γ) 1 2 3 4

1 1500 0.01 235345 233526 243449 243864
2 3000 0.01 245405 233867 249279 255086
3 4000 0.01 252685 236117 245029 238881
4 1500 0.02 239078 237190 239307 225915
5 3000 0.02 233699 239314 245466 247834
6 4000 0.02 248111 237113 241821 240972
7 1500 0.04 238464 234452 238533 243343
8 3000 0.04 239090 234765 248612 243181
9 4000 0.04 250079 235025 245813 243168

The result of running ANOVA on the MPSA data can be seen in figure 5.7.

Figure (a) shows neither positive nor negative trend in main effect plots of both

factors. It is also proved by the P-Value of them that are both higher than the

significance level α = 0.05 (see figure (c)). As it can be seen in the interaction plot

(figure 5.7 (b)) except for one point with T0 = 4000 all plots are almost parallel

which indicates that there is no interaction between selected factors within their

specified range. The P-Value is also 0.928 (figure (c)) which is much higher than

the significance level and supports that the interaction between factors is not

significant and the evidence for rejecting the null hypothesis (having interaction)

are not enough. This demonstrates the robustness of the MPSA algorithm to

these two parameters. Wider combination of factors can be seen in the figure

(d). Similar to the previous ANOVA, parts (e) and (f) of the figure 5.7 shows the

presence of necessary conditions for ANOVA.
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Figure 5.7: Results of ANOVA for the effects of (T0) and (γ) on the MPSA
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Conclusions and Future Research

6.1. Discussions and Conclusion

With the huge development in industries and demands for products, manufac-

turers need to manage the time and resources more thoughtfully. Scheduling is

a way to utilize resources in order to minimize their corresponding costs. How-

ever, scheduling is not always easy enough to be implemented in a reasonable

amount of time, which could make it an overwhelming task. In this thesis, a food

processing manufacturing system was studied and the aim was to present two

metaheuristics methods in order to find satisfactory schedules and confront the

shortages and defects exist in manual scheduling and even the direct methods.

Manual scheduling is usually a very time-consuming job and since only some of

many details of an optimized schedule are considered inevitably, the solutions do

not have enough quality to meet the management criteria. So, in both terms of

time and the quality of solutions metaheuristics are incomparable to the man-

ual method. Metaheuristics proposed in this thesis are the Genetic Algorithm

and Multiple-Path Simulated Annealing. Both of these methods have shown the

ability to considerably improve the time and quality of solutions in comparison

to the manual method which was previously used in the industry studied in this
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thesis. Although in the second proposed method, it was tried to reinforce the sim-

ple simulated annealing by changing it to a population-based method (MPSA),

the results found by the GA seem to be more acceptable. The GA could find

a better solution in a lower number of iterations (faster convergence), while the

required time of each iteration of MPSA was slightly less than the GA. Analysis

of Variance was run for both algorithms for two different factors to analyze the

performance of them. For the GA the best combination of cross-over probability

and mutation probability was found, however, MPSA showed more independence

to the studied parameters within a specified range and consequently should be

considered as a most robust method.

6.2. Future Research and Recommendations

The methods proposed in this thesis prove that in practice metaheuristics can

show a quite acceptable performance without ignoring any constraints. However,

there are some objectives that have not been considered for the problem studied

in this thesis. As a future research, they also can be accounted for the objective

functions. First one can be the minimization of setup times. As explained before,

setup times between products with different flavours are longer than the ones with

similar flavours. Hence, arranging products in such a way that minimum setup

times is required might increase the total production rate during the scheduling

horizon or even decrease the need for facilities. The second one is the allocation

of products to machines. In proposed methods the eligibility of machines for

processing different products is taken into consideration based on the efficiency

rate of them, however, there might be other free machines with more efficiency

for a specific product. Minimizing the number of allocated jobs to machines

with lower efficiency can be an objective function for this study. Furthermore,

in spite of outstanding performance of GA and acceptable results of SA among
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metaheuristics in solving NP-Hard problems, improvements in the performance of

them might be possible by combining both methods to form a hybrid algorithm.

Simulated Annealing can be used as the mutation operator of the GA in order

to improve the randomness of the solutions and consequently extend the search

space.
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